JPH06250024A - Surface light source device - Google Patents

Surface light source device

Info

Publication number
JPH06250024A
JPH06250024A JP5036656A JP3665693A JPH06250024A JP H06250024 A JPH06250024 A JP H06250024A JP 5036656 A JP5036656 A JP 5036656A JP 3665693 A JP3665693 A JP 3665693A JP H06250024 A JPH06250024 A JP H06250024A
Authority
JP
Japan
Prior art keywords
light
light source
tubular
guide plate
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5036656A
Other languages
Japanese (ja)
Inventor
Yasuhiro Furusawa
康弘 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5036656A priority Critical patent/JPH06250024A/en
Publication of JPH06250024A publication Critical patent/JPH06250024A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the availability of a light obtained from a tubular light source. CONSTITUTION:A reflection mirror 14 for light source is made to be a semi- elliptical shape in the cross-sectional view, a transmitted light from the tubular light source 13 is prevented from returning to the tubular light source 13 again after reflecting by the reflection mirror 14 for light source. The rear reflection surface 22 of a light transmission plate 12 is formed to have a curvature where the larger the oblique angle becomes the far it is separated from the tubular light source 13 and the light exit angle from the front surface 23 is uniformized. The front light exit surface 23 of the light transmission plate 12 is formed to be a sawtooth shape in the cross-sectional view by means of many prisms 25 and the transmitted light is made to approach the normal direction of the front light exit surface 23. The vertex angle of the prism 25 is made acuter as the prism is separated farther from the tubular light source 13 and the final light is made to approach the normal direction of the front light exit surface 23 with the angle conformed with the respective optical paths of various light rays radiated within the light transmission plate 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶ディスプレイ装置
等のバックライトとして用いる面光源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface light source device used as a backlight for a liquid crystal display device or the like.

【0002】[0002]

【従来の技術】従来の面光源装置は、図16のような構
成とされている。図16中、1は管状光源、2は光源反
射鏡、4は導光板、5は導光板4の前面である出射面の
粗面処理面、6は導光板4の後面である反射面に貼着さ
れた後面反射鏡である。
2. Description of the Related Art A conventional surface light source device is constructed as shown in FIG. In FIG. 16, 1 is a tubular light source, 2 is a light source reflecting mirror, 4 is a light guide plate, 5 is a roughened surface of the exit surface which is the front surface of the light guide plate 4, and 6 is attached to the reflection surface which is the rear surface of the light guide plate 4. It is a rear reflector that is worn.

【0003】図16の如く、管状光源1から放射された
光は、直接あるいは光源反射鏡2により反射されて導光
板4に入射する。
As shown in FIG. 16, the light emitted from the tubular light source 1 enters the light guide plate 4 directly or after being reflected by the light source reflecting mirror 2.

【0004】導光板4に入射した光は、後面反射鏡6等
で反射しながら導光板4内を伝搬する。
The light incident on the light guide plate 4 propagates inside the light guide plate 4 while being reflected by the rear surface reflecting mirror 6 and the like.

【0005】また、導光板4の前面である出射面につい
ては、全反射角以上の角度でないと、外へは出射しな
い。そこで光を前方へ出射させるために、図16の如
く、出射面に粗面処理5をしたり、出射光の出射面に対
する法線方向の光を強めるためにプリズムを施したり、
より均一な面光源とするために拡散シートを施したりす
る。
Further, the emission surface, which is the front surface of the light guide plate 4, does not emit to the outside unless the angle is equal to or more than the total reflection angle. Therefore, in order to emit the light forward, as shown in FIG. 16, the emission surface is subjected to the rough surface treatment 5, or a prism is provided to enhance the light in the direction normal to the emission surface,
A diffusion sheet may be applied to make the surface light source more uniform.

【0006】また、導光板4の後面である反射面(後面
反射鏡)6に粗面処理を施したり、図17の如く、反射
面6を曲面状に傾斜させたりする場合もある。
Further, the reflecting surface (rear reflecting mirror) 6 which is the rear surface of the light guide plate 4 may be roughened, or the reflecting surface 6 may be inclined in a curved shape as shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】従来例において、管状
光源1からの光を、管状光源1より離れたところまで光
を伝搬させるには、導光板内で全反射を繰り返して表示
面の光量が均一となるよう、反射面の形状あるいはその
粗面の仕方などを工夫する必要がある。
In the conventional example, in order to propagate the light from the tubular light source 1 to a position away from the tubular light source 1, total reflection is repeated in the light guide plate so that the amount of light on the display surface is reduced. It is necessary to devise the shape of the reflecting surface or the way of roughening the surface so that it becomes uniform.

【0008】しかしながら、このように全反射を繰り返
すことは、光損失を招く要因となる。また、反射面を粗
面とすることは、光透過率の減少の要因となる。これら
のことから、従来では、光効率が大幅に劣化していた。
However, repeating the total reflection in this way causes a light loss. In addition, making the reflecting surface a rough surface causes a decrease in light transmittance. For these reasons, the light efficiency has been significantly deteriorated in the past.

【0009】また、管状光源1からの光を導光板4に入
射させる光源反射鏡2は、単純に管状光源を覆えばよい
のであるが、その材質として薄型の白色フィルムを用い
ていたため、その形状が安定しにくく、故に光源反射鏡
2をできるだけ管状光源1に接触させてその形状を略円
形に安定させていた。しかし、そうすると、光源反射鏡
2と管状光源1との接着面が多くなる。そして、この接
触面に管状光源1からの光が当たっても、導光板4側へ
は減衰した光となって反射し、本来の管状光源1の照度
特性を活かしきれていなかった。
Further, the light source reflecting mirror 2 for making the light from the tubular light source 1 incident on the light guide plate 4 simply covers the tubular light source, but since a thin white film is used as the material thereof, its shape is However, the light source reflecting mirror 2 was brought into contact with the tubular light source 1 as much as possible to stabilize its shape in a substantially circular shape. However, in that case, the number of bonding surfaces between the light source reflecting mirror 2 and the tubular light source 1 increases. Then, even when the light from the tubular light source 1 strikes this contact surface, it is reflected to the light guide plate 4 side as attenuated light, and the original illuminance characteristic of the tubular light source 1 cannot be fully utilized.

【0010】本発明は、上記課題に鑑み、管状光源から
得られた光の利用効率を向上し得る面光源装置の提供を
目的とする。
In view of the above problems, it is an object of the present invention to provide a surface light source device capable of improving the utilization efficiency of light obtained from a tubular light source.

【0011】[0011]

【課題を解決するための手段】本発明による課題解決手
段は、図1,2の如く、被照明体を後方から面状に照明
する透光性の導光板12と、該導光板12の一側端部に
配された管状光源13と、該管状光源13の周囲に配さ
れ管状光源13から外側に発散する光を導光板12側に
反射させる光源反射鏡14とを備え、前記導光板12
は、前記管状光源13からの光を一側端部で入射する端
部入射面21と、内部の後方への光を後面で前方に反射
する後面反射面22と、内部の光を前方の前記被照明体
側に出射する前面出射面23とを有せしめられた面光源
装置において、前記光源反射鏡14は、偏平率が1より
大とされた断面視半楕円形状に形成され、前記導光板1
2の後面反射面22は、前記管状光源13から離間する
ほど傾斜角が大となるよう放物線状に湾曲形成され、導
光板12の前面出射面23には、多数のプリズム25が
管状光源13の管軸に直交する方向に連なって断面視鋸
刃状に形成され、該各プリズム25は、管状光源13か
らの光を斜めに出射させる光透過面27と、該光透過面
27から斜めに出射した光を前方に反射させる光反射面
28とが、頂角θを挟んで互いに傾斜配置されてなり、
該プリズム25の頂角θは、管状光源13から離間する
ほど鋭く形成されたものである。
As shown in FIGS. 1 and 2, a means for solving the problems according to the present invention is a translucent light guide plate 12 for illuminating an object to be illuminated from behind in a planar manner, and one of the light guide plates 12. The light guide plate 12 is provided with a tubular light source 13 arranged at a side end portion, and a light source reflecting mirror 14 arranged around the tubular light source 13 and reflecting light diverging from the tubular light source 13 to the light guide plate 12 side.
Is an end incidence surface 21 on which light from the tubular light source 13 is incident at one end, a rear reflection surface 22 that reflects rearward light inside toward the front, and a rear reflective surface 22 that reflects internal light forward. In a surface light source device having a front emission surface 23 that emits light to the illuminated side, the light source reflecting mirror 14 is formed in a semi-elliptical shape in cross section with an oblateness of more than 1, and the light guide plate 1 is provided.
The rear reflecting surface 22 is formed in a parabolic shape so that the inclination angle becomes larger as the distance from the tubular light source 13 increases, and a large number of prisms 25 of the tubular light source 13 are provided on the front exit surface 23 of the light guide plate 12. The prisms 25 are formed in a saw-tooth shape in a cross section in a direction orthogonal to the tube axis, and each prism 25 has a light transmitting surface 27 that obliquely emits light from the tubular light source 13 and a light transmitting surface 27 that obliquely emits the light. And a light-reflecting surface 28 for reflecting the reflected light forward are arranged so as to be inclined with respect to each other with the apex angle θ interposed therebetween.
The apex angle θ of the prism 25 is formed so as to be farther from the tubular light source 13.

【0012】[0012]

【作用】上記課題解決手段において、光源反射鏡14を
断面視半楕円形状にした場合、管状光源13からの出射
光は比較的拡がる方向に放射されるため、再び管状光源
13に戻される率が少なくなる。しかも、光源反射鏡1
4で反射した光は導光板12の端部入射面21に比較的
鋭角に進入するため、導光板12内において管状光源1
3より離れたところまで光が届きやすくなる。
In the above means for solving the problems, when the light source reflecting mirror 14 has a semi-elliptical shape in cross section, the light emitted from the tubular light source 13 is radiated in a relatively widening direction, and therefore the rate of returning to the tubular light source 13 is high. Less. Moreover, the light source reflector 1
Since the light reflected at 4 enters the end incident surface 21 of the light guide plate 12 at a relatively acute angle, the tubular light source 1 is disposed inside the light guide plate 12.
Light can easily reach areas farther than 3.

【0013】また、導光板12の後面反射面22を、管
状光源13から離間するほど傾斜角が大となるよう放物
線状に湾曲形成しているので、管状光源13から離間す
るほど、光の反射角が鋭角となり、前面出射面23に対
して垂直出射に近い角度で出射する。
Further, since the rear reflection surface 22 of the light guide plate 12 is formed in a parabolic shape so that the inclination angle becomes larger as it is farther from the tubular light source 13, the more it is reflected from the tubular light source 13, the more the reflection of light becomes. The angle becomes an acute angle, and the light is emitted at an angle close to vertical emission with respect to the front emission surface 23.

【0014】さらに、導光板12の前面出射面23を、
多数のプリズム25にて断面視鋸刃状に形成し、各プリ
ズム25の一面を光透過面27として機能させ、他の面
を光透過面27からの斜め出射光を前方に反射させる光
反射面28として機能させているので、光反射面28で
反射した最終光を、前面出射面23の法線方向に近づけ
ることができる。
Further, the front emission surface 23 of the light guide plate 12 is
A plurality of prisms 25 are formed in a saw-tooth shape in cross section, one surface of each prism 25 functions as a light transmitting surface 27, and the other surface reflects the obliquely emitted light from the light transmitting surface 27 forward. Since it functions as 28, the final light reflected by the light reflecting surface 28 can be brought close to the normal direction of the front emission surface 23.

【0015】そして、プリズム25の頂角θを管状光源
13から離間するほど鋭く形成しているので、導光板1
2内を放射される様々な光線の各光路に即した角度で、
最終光を前面出射面23の法線方向に近づけることがで
きる。
Since the apex angle θ of the prism 25 is formed so as to be farther away from the tubular light source 13, the light guide plate 1 is formed.
At an angle according to each optical path of various rays emitted in 2
The final light can be brought close to the normal line direction of the front emission surface 23.

【0016】これら、光源反射鏡14および導光板12
の形状を工夫するだけで、管状光源13からの直接光お
よび後面反射面22による反射光を、前面出射面23に
対して比較的均一に到達させることができる。これによ
り、照明面の輝度均質度を高めることができる。
These light source reflecting mirror 14 and light guide plate 12
The direct light from the tubular light source 13 and the reflected light from the rear reflection surface 22 can reach the front emission surface 23 relatively uniformly only by devising the shape of. Thereby, the brightness homogeneity of the illumination surface can be increased.

【0017】[0017]

【実施例】本発明の一実施例の面光源装置は、図1の如
く、被照明体としての液晶パネルを後方から面状に照明
する透光性の導光板12と、該導光板12の一側端部に
配された管状光源13と、該管状光源13の周囲に配さ
れ管状光源13から外側に発散する光を導光板12側に
反射させる光源反射鏡14とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A surface light source device according to an embodiment of the present invention is, as shown in FIG. 1, a translucent light guide plate 12 for illuminating a liquid crystal panel as an object to be illuminated planarly from the rear side, and a light guide plate 12 of the light guide plate 12. It is provided with a tubular light source 13 arranged at one end, and a light source reflecting mirror 14 arranged around the tubular light source 13 and reflecting light diverging outward from the tubular light source 13 toward the light guide plate 12 side.

【0018】前記導光板12は、ポリメチルメタアクリ
レート(PMMA)等を用いて、例えば、厚さ15m
m、長さ111mmに金型成形されてなるもので、管状
光源13からの光を一側端部で入射する端部入射面21
と、内部の後方への光を後面で前方に反射する後面反射
面22と、内部の光を前方の前記被照明体側に出射する
前面出射面23とを有せしめられている。
The light guide plate 12 is made of polymethylmethacrylate (PMMA) or the like and has a thickness of 15 m, for example.
The end incident surface 21 on which the light from the tubular light source 13 is incident at one end is formed by a metal mold having a length of m and a length of 111 mm.
And a rear reflection surface 22 that reflects the light to the inside rearward to the front by the rear surface, and a front emission surface 23 that emits the internal light to the front side of the illuminated body.

【0019】前記端部入射面21は、前面出射面23の
端部に直交して形成され、前記管状光源13の管径に対
応して細長く形成されている。
The end entrance surface 21 is formed orthogonally to the end of the front exit surface 23, and is elongated in correspondence with the tube diameter of the tubular light source 13.

【0020】前記後面反射面22は、前記管状光源13
から離間するほど傾斜角が大となるよう放物線状に湾曲
形成されている。これは、管状光源13から離間するほ
ど前面出射面23の輝度が低下するのを防止すべく、反
射光の反射角を鋭角として前面出射面23の法線方向に
近づけ、光出射効率を高めるためである。
The rear reflecting surface 22 is the tubular light source 13.
It is formed in a parabolic shape so that the angle of inclination increases with increasing distance from. This is because in order to prevent the brightness of the front emission surface 23 from decreasing as the distance from the tubular light source 13 decreases, the reflection angle of the reflected light is set to an acute angle and approaches the normal direction of the front emission surface 23 to improve the light emission efficiency. Is.

【0021】前記前面出射面23には、図2の如く、多
数の前方に突出する三角柱状のプリズム25が、管状光
源13の管軸に直交する方向に連なって断面視鋸刃状に
形成されている。
As shown in FIG. 2, on the front emission surface 23, a large number of prismatic prisms 25 projecting forward are formed in a saw-tooth shape in cross section in a direction perpendicular to the tube axis of the tubular light source 13. ing.

【0022】ここで、三角柱状の各プリズム25の前方
に突出する二面27,28のうち、管状光源13に遠い
側の面27は、図2中の傾斜角ψの設定により、端部入
射面21を通って導光板12内を進行する光に対してよ
り直角に近い傾斜角で配置される。言い換えれば、より
光を出射しやすい傾斜角で配置される。
Here, of the two surfaces 27, 28 projecting forward of each prism 25 having a triangular prism shape, the surface 27 on the side farther from the tubular light source 13 is incident on the end portion by setting the inclination angle ψ in FIG. It is arranged at a tilt angle that is closer to a right angle with respect to the light traveling in the light guide plate 12 through the surface 21. In other words, they are arranged at an inclination angle that allows light to be emitted more easily.

【0023】一方、三角柱状のプリズム25の前方に突
出する二面27,28のうち、管状光源13に近い側の
面28は、前述の遠い側の面27とは逆に、導光板12
内を進行する光に対してより平行に近い傾斜角で配置さ
れる。言い換えれば、より光を出射しにくい傾斜角で配
置される。しかしながら、近い側の面28は、図2のよ
うに、隣接するプリズム25の遠い側の面27から斜め
に出射した光を前方に反射しやすい位置に配置されてい
ると言える。
On the other hand, of the two surfaces 27, 28 projecting forward of the prism 25 having a triangular prism shape, the surface 28 closer to the tubular light source 13 is opposite to the surface 27 farther from the light guide plate 12.
It is arranged at an inclination angle that is more parallel to the light traveling inside. In other words, they are arranged at an inclination angle that makes it more difficult to emit light. However, it can be said that the surface 28 on the near side is arranged at a position where the light obliquely emitted from the surface 27 on the far side of the adjacent prism 25 is easily reflected forward, as shown in FIG.

【0024】このことを考慮し、三角柱状の各プリズム
25の管状光源13から遠い側の面27は、管状光源1
3からの光を斜めに出射させる光透過面として機能さ
せ、管状光源13に近い側の面28は、隣接するプリズ
ム25の光透過面27(遠い側の面)から斜めに出射し
た光を前方に反射させる光反射面として機能させてい
る。
In consideration of this, the surface 27 of each prism 25 having a triangular prism shape on the side far from the tubular light source 13 has a tubular light source 1.
The surface 28 on the side closer to the tubular light source 13 functions as a light transmitting surface that obliquely emits the light from 3 and the light emitted obliquely from the light transmitting surface 27 (the surface on the far side) of the adjacent prism 25 is forward. It functions as a light-reflecting surface that reflects light.

【0025】なお、該光反射面28は、例えば金属パタ
ーンを形成するなどして鏡面状に形成してもよいが、導
光板12の材料であるPMMAの表面を特別に加工せず
そのまま用いても、光反射は充分に得られるため、光透
過面27に比べて特に異なる表面処理を行う必要はな
い。
The light reflecting surface 28 may be formed into a mirror surface by, for example, forming a metal pattern, but the surface of PMMA, which is the material of the light guide plate 12, is used as it is without any special processing. However, since sufficient light reflection is obtained, it is not necessary to perform a different surface treatment as compared with the light transmitting surface 27.

【0026】ここで、該プリズム25の光透過面27と
光反射面28とに挟まれる頂角をθとすると、該頂角θ
は、管状光源13から離間するほど鋭く形成されてい
る。これは、導光板12内を進行する光が管状光源13
から離間するほど、その光進行方向が前面出射面23に
平行に近づくことを考慮し、該プリズム25の光透過面
27を管状光源13から離間するほど前面出射面23に
対して直角に近い傾斜角で配置することで、光透過効率
を高めるためである。
Assuming that the apex angle between the light transmitting surface 27 and the light reflecting surface 28 of the prism 25 is θ, the apex angle θ
Are formed so as to be farther from the tubular light source 13. This is because the light traveling in the light guide plate 12 is a tubular light source 13.
Considering that the light traveling direction becomes closer to the front emission surface 23 in parallel to the front emission surface 23, the light transmission surface 27 of the prism 25 is inclined at a right angle to the front emission surface 23 as it is separated from the tubular light source 13. This is because the light transmission efficiency is increased by arranging the corners.

【0027】前記管状光源13は、図1の冷陰極管(C
CFT)または熱陰極管(HCFT)が用いられ、前記
導光板12の端部入射面21の付近に配置される。該管
状光源13の径は、例えば6mmとされ、該管状光源1
3の中心から導光板12の端部入射面21までの距離
は、例えば3.1mmとされている。
The tubular light source 13 is a cold cathode fluorescent lamp (C
CFT) or hot cathode tube (HCFT) is used, and is arranged near the end incident surface 21 of the light guide plate 12. The tubular light source 13 has a diameter of 6 mm, for example.
The distance from the center of 3 to the end incident surface 21 of the light guide plate 12 is, for example, 3.1 mm.

【0028】前記光源反射鏡14は、例えばアルミニウ
ム等を用いた鏡面シート材が用いられ、図1の如く、偏
平率が1より大とされた断面視半楕円形状に形成されて
いる。ここで、該光源反射鏡14を断面視半楕円形状に
保持する手段として、例えば、内周が断面視半楕円形状
となるよう金型にて成形された樹脂性保護カバー等を用
いればよい。
The light source reflecting mirror 14 is made of, for example, a mirror-finished sheet material made of aluminum or the like, and is formed in a semi-elliptical shape in cross section with a flatness ratio larger than 1, as shown in FIG. Here, as a means for holding the light source reflecting mirror 14 in a semi-elliptical shape in cross section, for example, a resin protective cover or the like formed by a mold so that the inner circumference has a semi-elliptical shape in cross section may be used.

【0029】上記構成の面光源装置において、管状光源
13からの光のうち、導光板12に向かって照射された
光は、直接導光板12の端部入射面21に到達する。
In the surface light source device having the above structure, of the light from the tubular light source 13, the light emitted toward the light guide plate 12 directly reaches the end incident surface 21 of the light guide plate 12.

【0030】一方、管状光源13から外側に向けて発散
された光は、光源反射鏡14に当たって反射する。
On the other hand, the light emitted from the tubular light source 13 toward the outside hits the light source reflecting mirror 14 and is reflected.

【0031】このとき、光源反射鏡14は、偏平率が1
より大であるため、反射光は管状光源13を避けるよう
に拡がり、導光板12の端部入射面21に到達する。し
たがって、図16,17で示した従来例に比べて、光源
反射鏡14での反射光が再び管状光源13に戻される率
が少なくなり、光の損失を低減できる。
At this time, the light source reflecting mirror 14 has an aspect ratio of 1
Since it is larger, the reflected light spreads so as to avoid the tubular light source 13, and reaches the end incident surface 21 of the light guide plate 12. Therefore, as compared with the conventional example shown in FIGS. 16 and 17, the rate at which the light reflected by the light source reflecting mirror 14 is returned to the tubular light source 13 again decreases, and the light loss can be reduced.

【0032】しかも、光源反射鏡14で反射した光は導
光板12の端部入射面21に比較的鋭角に進入するた
め、導光板12内において管状光源13より離れたとこ
ろまで光が届きやすくなる。
Moreover, the light reflected by the light source reflecting mirror 14 enters the end entrance surface 21 of the light guide plate 12 at a relatively acute angle, so that the light easily reaches a position apart from the tubular light source 13 in the light guide plate 12. .

【0033】次に、端部入射面21に到達した光は、多
少屈折されて導光板12内へ入射する。
Next, the light that has reached the end incident surface 21 is refracted to some extent and enters the light guide plate 12.

【0034】このうち、比較的後方に屈折された光は、
後面反射面22に到達する。
Of these, the light refracted relatively backward is
The rear reflection surface 22 is reached.

【0035】このとき、後面反射面22の管状光源13
に近い部分の傾斜角が小となっているため、この部分へ
の光の入射角を臨界角より大にでき、全反射が容易とな
り、反射の際の光損失を少なくできる。
At this time, the tubular light source 13 of the rear reflection surface 22
Since the inclination angle of the portion close to is small, the incident angle of light to this portion can be made larger than the critical angle, total reflection becomes easy, and light loss at the time of reflection can be reduced.

【0036】また、後面反射面22の管状光源13から
離間した部分については、傾斜角が大となっているた
め、この部分での反射光の反射角が鋭角となり、故に前
面出射面23の法線方向に反射させることができる。し
たがって、前面出射面23の光出射効率を高めることが
できる。
Further, since the inclination angle of the portion of the rear reflecting surface 22 which is separated from the tubular light source 13 is large, the reflection angle of the reflected light at this portion becomes an acute angle. It can be reflected in the line direction. Therefore, the light emission efficiency of the front emission surface 23 can be improved.

【0037】これらのことから、導光板12内で前面出
射面23に向かう光の光量を、比較的均一にできる。
From these facts, the amount of light traveling toward the front emission surface 23 in the light guide plate 12 can be made relatively uniform.

【0038】また、端部入射面21から導光板12内へ
入射した光のうち、比較的前方に屈折された光は、直接
に前面出射面23に向かって進行する。
Of the light entering the light guide plate 12 from the end entrance surface 21, the light refracted relatively forward advances directly to the front exit surface 23.

【0039】このようにして、後面反射面22で反射さ
れ、または端部入射面21から直接に進行した光は、前
面出射面23に到達する。
In this way, the light reflected by the rear reflection surface 22 or directly traveling from the end entrance surface 21 reaches the front emission surface 23.

【0040】このとき、光は、図2の如く、プリズム2
5の光透過面27に垂直出射に近い角度で出射する。し
たがって、前面出射面23に光透過面27を形成しない
従来例に比べて、出射時の光反射を低減でき、ここでの
光損失を低減できる。
At this time, the light is reflected by the prism 2 as shown in FIG.
The light is emitted to the light transmitting surface 27 of No. 5 at an angle close to vertical emission. Therefore, as compared with the conventional example in which the light transmitting surface 27 is not formed on the front emission surface 23, the light reflection at the time of emission can be reduced and the light loss here can be reduced.

【0041】光透過面27から出射した光は、図2の如
く、光反射面28に当たり、前面出射面23の法線方向
に向かって反射する。そして、被照明体としての液晶パ
ネルを後方から面状に照明する。このとき、照明光は、
前面出射面23の法線方向に向かって照明するため、液
晶パネルを直前方から見たときの輝度が向上する。
The light emitted from the light transmitting surface 27 hits the light reflecting surface 28 as shown in FIG. 2, and is reflected in the direction normal to the front emission surface 23. Then, the liquid crystal panel as the object to be illuminated is illuminated planarly from behind. At this time, the illumination light is
Since the illumination is performed in the direction normal to the front emission surface 23, the brightness when the liquid crystal panel is viewed from the front is improved.

【0042】ここで、導光板12内を進行する光が前面
出射面23に到達する場合、管状光源13から離間する
ほど、その光進行方向が前面出射面23に平行に近づ
く。したがって、従来例のように前面出射面23を位置
によって均一に形成すると、前面出射面23での出射光
量にばらつきが生じる恐れがある。
Here, when the light traveling in the light guide plate 12 reaches the front emission surface 23, the farther it is from the tubular light source 13, the closer the light traveling direction becomes parallel to the front emission surface 23. Therefore, if the front emission surface 23 is formed uniformly depending on the position as in the conventional example, the amount of emitted light on the front emission surface 23 may vary.

【0043】しかし、本実施例では、プリズム25の頂
角θを、管状光源13から離間するほど鋭く形成してい
るので、光透過面27を管状光源13から離間するほど
前面出射面23に対して直角に近い傾斜角で配置するこ
とができ、故に出射光をいずれの位置においても垂直出
射に近い角度で出射させることができる。そして、ここ
で出射した角度は、前述のように光反射面28に当た
り、前面出射面23の法線方向に向けて角度補正するの
で、前面出射面23での指向角を調整しながら光透過効
率を高めることができる。
However, in the present embodiment, the apex angle θ of the prism 25 is formed so as to be sharper as it is farther from the tubular light source 13, so that the farther the light transmitting surface 27 is from the tubular light source 13, the more the front emitting surface 23 is. Therefore, the emitted light can be emitted at an angle close to vertical emission at any position. The angle emitted here hits the light reflection surface 28 and is corrected in the direction of the normal line of the front emission surface 23 as described above. Therefore, the light transmission efficiency is adjusted while adjusting the directivity angle on the front emission surface 23. Can be increased.

【0044】なお、現実には、あらゆる光を考慮して前
述のように理想的に出射させるべくプリズム25の頂角
θ等を設計するのは不可能であるが、例えば、次のよう
にして設計を行えば、導光板12内の光のうち、大部分
の光が上述のように動作する。すなわち、まず、図15
の如く、前面出射面23をn分割化する。そして、管状
光源13に最も近いエリアを第一エリアRa1とし、ま
た最も遠いエリアを第nエリアRanとする。次に、、
第一エリアRa1と第nエリアRanに到達する夫々の
光の平均入射角に対して、光透過面27の傾斜角ψと頂
角θとを夫々決定する。その後、第一エリアRa1から
第nエリアRanの間に位置するエリアRa2〜Ra9
の傾斜角ψと頂角θは、徐々に線形に変化するよう設計
するとよい。また、光反射面28の傾斜角は、光透過面
27から出射した光を正面方向へ反射できるよう調整す
ればよいが、個々のプリズム25について厳密に調整す
るのが困難であるため、便宜上、光透過面27の傾斜角
ψと同様の傾斜角にすればよい。そうすると、プリズム
25が二等辺三角形となり、精度のよい形成が可能とな
る。
In reality, it is impossible to design the apex angle θ of the prism 25 so as to ideally emit light as described above in consideration of all kinds of light. If designed, most of the light in the light guide plate 12 operates as described above. That is, first, in FIG.
As described above, the front emission surface 23 is divided into n. The area closest to the tubular light source 13 is the first area Ra1, and the farthest area is the nth area Ran. next,,
The tilt angle ψ and the apex angle θ of the light transmitting surface 27 are determined with respect to the average incident angles of the respective lights reaching the first area Ra1 and the nth area Ran. Then, the areas Ra2 to Ra9 located between the first area Ra1 and the nth area Ran.
It is preferable that the inclination angle ψ and the apex angle θ are designed to gradually change linearly. Further, the inclination angle of the light reflecting surface 28 may be adjusted so that the light emitted from the light transmitting surface 27 can be reflected in the front direction, but it is difficult to strictly adjust each prism 25. The inclination angle may be the same as the inclination angle ψ of the light transmitting surface 27. Then, the prism 25 becomes an isosceles triangle and can be accurately formed.

【0045】ここで、構成の異なる何種類かの面光源装
置において、前面出射面23に到達するまでの光線追跡
シミュレーションを行った。シミュレーションの条件は
次の〜の通りである。
Here, a ray tracing simulation until reaching the front emission surface 23 was carried out in several kinds of surface light source devices having different configurations. The simulation conditions are as follows.

【0046】二次元モデルによるシミュレーション 管状光源13は真円柱状とし、中心より1度間隔で3
60度全方向に1という強度で放射する。
Simulation by Two-Dimensional Model The tubular light source 13 has a perfect cylindrical shape, and is 3 degrees apart from the center by 1 degree.
It radiates with an intensity of 1 in all directions at 60 degrees.

【0047】光源反射鏡14による反射光が管状光源
13に戻るときは、光はすべて管状光源14に吸収され
ると考える。また光源反射鏡14での光損失は考えな
い。
When the light reflected by the light source reflecting mirror 14 returns to the tubular light source 13, it is considered that all the light is absorbed by the tubular light source 14. Moreover, the light loss at the light source reflecting mirror 14 is not considered.

【0048】導光板12の端部入射面21において発
生する反射光線(光損失)や、図3,9に示す平板状導
光板12の端部入射面21と逆側の端面21aへ到達す
る光線の二次追跡は行わない。
Reflected light rays (light loss) generated at the end incident surface 21 of the light guide plate 12 and light rays reaching the end surface 21a opposite to the end incident surface 21 of the flat light guide plate 12 shown in FIGS. No secondary tracking is performed.

【0049】管状光源13の径を6mm、導光板12
の厚さを15mm、導光板12の長さを111mm、管
状光源13の中心から導光板12の端部入射面21まで
の距離を3.1mmとする。
The diameter of the tubular light source 13 is 6 mm, and the light guide plate 12 is
Is 15 mm, the length of the light guide plate 12 is 111 mm, and the distance from the center of the tubular light source 13 to the end incident surface 21 of the light guide plate 12 is 3.1 mm.

【0050】屈折率は空気1.0、導光板1.49と
する。
The refractive index is air 1.0 and the light guide plate 1.49.

【0051】ここで、図3は、光源反射鏡14を断面半
径7.5mmの半円形とし、導光板12の後面反射面2
2を前面出射面23と平行に形成した場合(図3中のP
o点を原点としたときに後面反射面22はy=−7.5
で表わされる直線となる)、図4はこの場合の測定結果
を示す図である。
Here, in FIG. 3, the light source reflecting mirror 14 has a semicircular shape with a sectional radius of 7.5 mm, and the rear reflecting surface 2 of the light guide plate 12 is shown.
2 is formed in parallel with the front emission surface 23 (P in FIG. 3).
When the point o is the origin, the rear reflection surface 22 has y = -7.5.
4 is a diagram showing the measurement result in this case.

【0052】図5は、光源反射鏡14を断面半径7.5
mmの半円形とし、導光板12の後面反射面22を一定
の傾斜角で傾斜させた場合(図5中のPo点を原点とし
たときに後面反射面22はy=0.13513514x
−7.5で表わされる直線となる)、図6はこの場合の
測定結果を示す図である。
In FIG. 5, the light source reflecting mirror 14 has a sectional radius of 7.5.
When the rear reflection surface 22 of the light guide plate 12 is inclined at a constant inclination angle (when the Po point in FIG. 5 is the origin, the rear reflection surface 22 is y = 0.13513514x).
6 is a diagram showing the measurement results in this case.

【0053】図7は、光源反射鏡14を断面半径7.5
mmの半円形とし、導光板12の後面反射面22を放物
線状に傾斜させた場合(図7中のPo点を原点としたと
きに後面反射面22はy=0.0012174336x
−7.5で表わされる二次曲線となる)、図8はこの
場合の測定結果を示す図である。
In FIG. 7, the light source reflecting mirror 14 has a sectional radius of 7.5.
When the rear reflection surface 22 of the light guide plate 12 is inclined in a parabolic shape with a semi-circular shape of mm (when the Po point in FIG. 7 is set as the origin, the rear reflection surface 22 has y = 0.0012174336x).
2 becomes a quadratic curve represented by 2-7.5), and FIG. 8 shows the measurement results in this case.

【0054】図9は、光源反射鏡14を断面半楕円形
(縦径15mm、偏平率1.1)とし、導光板12の後
面反射面22を前面出射面23と平行に形成した場合
(図9中のPo点を原点としたときに後面反射面22は
y=−7.5で表わされる直線となる)、図10はこの
場合の測定結果を示す図である。
FIG. 9 shows a case where the light source reflecting mirror 14 has a semi-elliptical cross section (vertical diameter 15 mm, flatness ratio 1.1) and the rear reflecting surface 22 of the light guide plate 12 is formed parallel to the front emitting surface 23 (FIG. The rear reflection surface 22 becomes a straight line represented by y = -7.5 when the Po point in 9 is the origin), and FIG. 10 is a diagram showing the measurement result in this case.

【0055】図11は、光源反射鏡14を断面半楕円形
(縦径15mm、偏平率1.1)とし、導光板12の後
面反射面22を一定の傾斜角で傾斜させた場合(図11
中のPo点を原点としたときに後面反射面22はy=
0.13513514x−7.5で表わされる直線とな
る)、図12はこの場合の測定結果を示す図である。
FIG. 11 shows a case where the light source reflecting mirror 14 has a semi-elliptical cross section (longitudinal diameter 15 mm, flatness ratio 1.1), and the rear reflection surface 22 of the light guide plate 12 is inclined at a constant inclination angle (FIG. 11).
When the Po point in the inside is set as the origin, the rear reflection surface 22 is y =
0.13513514x−7.5), and FIG. 12 shows the measurement results in this case.

【0056】図13は、光源反射鏡14を断面半楕円形
(縦径15mm、偏平率1.1)とし、導光板12の後
面反射面22を放物線状に傾斜させた場合(図13中の
Po点を原点としたときに後面反射面22はy=0.0
012174336x−7.5で表わされる二次曲線
となる)、図14はこの場合の測定結果を示す図であ
る。
FIG. 13 shows a case where the light source reflecting mirror 14 has a semi-elliptical cross section (longitudinal diameter 15 mm, flatness ratio 1.1), and the rear reflecting surface 22 of the light guide plate 12 is inclined in a parabolic shape (see FIG. 13). When the Po point is the origin, the rear reflecting surface 22 has y = 0.0.
012174336x a quadratic curve represented by 2 -7.5), FIG. 14 shows a measurement result in this case.

【0057】なお、図3,5,7,9,11,13中、
前面出射面23は、プリズム25は考慮に入れていない
ため、破線で表している。
In FIGS. 3, 5, 7, 9, 11, and 13,
The front emission surface 23 is shown by a broken line because the prism 25 is not taken into consideration.

【0058】また、図4,6,8,10,12,14
中、(a)は、前面出射面23をn分割化し、管状光源
13に最も近いエリアを第一エリアRa1とし、また最
も遠いエリアを第nエリアRanとした場合の、各エリ
アの相対光強度分布であって、測定したうちの最高強度
(MAX)を100としている。また、(b)はエリア
番号、(c)は到達光線本数、(d)は到達光量、
(e)は「90゜−到達光線の平均入射角」、(f)は
「90゜−到達光線の最大入射角」、(g)は「到達光
線の最小入射角」を夫々示している。また、これらのシ
ミュレーションに当たっては、プリズム25の機能を一
切考慮していない。
Further, FIGS. 4, 6, 8, 10, 12, 14
(A) shows the relative light intensity of each area when the front emission surface 23 is divided into n areas, the area closest to the tubular light source 13 is the first area Ra1, and the farthest area is the nth area Ran. The maximum intensity (MAX) of the distribution is 100. Also, (b) is an area number, (c) is the number of reaching rays, (d) is the reaching light quantity,
(E) shows "90 ° -the average incident angle of the reaching light beam", (f) shows "90 ° -the maximum incident angle of the reaching light beam", and (g) shows "the minimum incident angle of the reaching light beam". In addition, in these simulations, the function of the prism 25 is not considered at all.

【0059】図4と図10、図6と図12、または図8
と図14の(a)〜(g)を比較することにより、光源
反射鏡14は、円よりも楕円の方が、前面出射面23へ
の到達効率が高く、かつ比較的均一に到達することがわ
かる。
FIG. 4 and FIG. 10, FIG. 6 and FIG. 12, or FIG.
14A to 14G, the light source reflecting mirror 14 has a higher ellipticity than the circle to reach the front emission surface 23, and the light source reflecting mirror 14 arrives relatively uniformly. I understand.

【0060】また、図4と図6と図8、または図10と
図12と図14の(a)〜(g)を比較することによ
り、導光板12の後面反射面22の形状は、平行直線や
直線よりも二次曲線の方が前面出射面への到達効率が高
く、かつ比較的均一に到達することがわかる。
Further, by comparing FIGS. 4 and 6 and 8 or FIGS. 10 and 12 and FIGS. 14A to 14G, the shape of the rear reflection surface 22 of the light guide plate 12 is parallel. It can be seen that a straight line or a quadratic curve has a higher efficiency of reaching the front emission surface and a relatively uniform arrival than the straight line.

【0061】ところで、これらの状態はあくまでもプリ
ズム25を考慮に入れていないものであるから、プリズ
ム25の頂角θを決定する方法を図15にしたがって説
明する。
By the way, since these states do not take the prism 25 into consideration, a method for determining the apex angle θ of the prism 25 will be described with reference to FIG.

【0062】図15の如く、まず、前面出射面23を十
分割し、第一エリアRa1のプリズム25の頂角θ
61.1度、光透過面27の傾斜角ψを61.1度と
し、第十エリアRa10のプリズム25の頂角θ10
55.5度、光透過面27の傾斜角ψ10を21.0と
している。また、第二エリアRa2から第九エリアRa
9のプリズム25の頂角θ〜θおよび光透過面27
の傾斜角ψ〜ψは、夫々(θ,ψ)と
(θ10,ψ10)との間で線形に変化するよう設定さ
れている。
As shown in FIG. 15, first, the front emission surface 23 is divided into ten, the apex angle θ 1 of the prism 25 in the first area Ra1 is 61.1 degrees, and the inclination angle ψ 1 of the light transmission surface 27 is 61.1. The apex angle θ 10 of the prism 25 in the tenth area Ra10 is 55.5 °, and the inclination angle ψ 10 of the light transmitting surface 27 is 21.0. Also, from the second area Ra2 to the ninth area Ra
Apex angles θ 2 to θ 9 of the prism 25 of 9 and the light transmitting surface 27
The inclination angles ψ 2 to ψ 9 are set to linearly change between (θ 1 , ψ 1 ) and (θ 10 , ψ 10 ), respectively.

【0063】なお、図15に示す面光源装置では、導光
板12の厚さおよび後面反射面22等の形状は、図13
に示したものと同条件とされている。
In the surface light source device shown in FIG. 15, the thickness of the light guide plate 12 and the shapes of the rear reflection surface 22 and the like are as shown in FIG.
The conditions are the same as those shown in.

【0064】図15の構成によれば、管状光源13の全
光束に対する導光板12の前面出射面23の全光束の比
(以下、光効率と称す)、前面出射面23の強度分布、
および、出射面法線を0度とし管状光源より離れた方向
へ傾く方を正とした場合の出射角は、計算上、おおよそ
次のようになった。
According to the configuration of FIG. 15, the ratio of the total luminous flux of the front emission surface 23 of the light guide plate 12 to the total luminous flux of the tubular light source 13 (hereinafter referred to as light efficiency), the intensity distribution of the front emission surface 23,
Also, the exit angle when the normal to the exit surface is 0 degree and the direction tilting away from the tubular light source is positive is approximately calculated as follows.

【0065】光効率=69.1% 強度分布≧50% 出射角=+30度〜−30度 なお、本発明は、上記実施例に限定されるものではな
く、本発明の範囲内で上記実施例に多くの修正および変
更を加え得ることは勿論である。
Light efficiency = 69.1% Intensity distribution ≧ 50% Emission angle = + 30 ° to −30 ° The present invention is not limited to the above-mentioned embodiments, but is within the scope of the present invention. Of course, many modifications and changes can be made.

【0066】例えば、上述の面光源装置はあくまでも一
例であり、管状光源13の管径、導光板12の厚さ等が
変化すれば、導光板12の形状や光源反射鏡14の半楕
円形状も変化する。
For example, the above-mentioned surface light source device is merely an example, and if the tube diameter of the tubular light source 13 and the thickness of the light guide plate 12 are changed, the shape of the light guide plate 12 and the semi-elliptical shape of the light source reflecting mirror 14 may be changed. Change.

【0067】また、後面反射面22に反射率の高いシー
トを貼ったり、TiO等の白色系の光散乱材等塗布し
てもよい。
A sheet having a high reflectance may be attached to the rear reflecting surface 22 or a white light scattering material such as TiO 2 may be applied.

【0068】[0068]

【発明の効果】以上の説明から明らかな通り、本発明に
よると、光源反射鏡を断面視半楕円形状にしているの
で、管状光源からの出射光は比較的拡がる方向に放射さ
れるため、再び管状光源に戻される率が少なくなる。し
かも、光源反射鏡で反射した光は導光板の端部入射面に
比較的鋭角に進入するため、導光板内において管状光源
より離れたところまで光が届きやすくなる。
As is apparent from the above description, according to the present invention, since the light source reflecting mirror has a semi-elliptical shape in cross section, the light emitted from the tubular light source is radiated in a relatively widening direction, and therefore, again. Less likely to be returned to the tubular light source. Moreover, the light reflected by the light source reflecting mirror enters the end incident surface of the light guide plate at a relatively acute angle, so that the light easily reaches a position apart from the tubular light source in the light guide plate.

【0069】また、導光板の後面反射面を、管状光源か
ら離間するほど傾斜角が大となるよう放物線状に湾曲形
成しているので、管状光源から離間するほど、光の反射
角が鋭角となり、いずれの位置においても前面出射面に
対して垂直出射に近い角度で光を出射することができ
る。
Further, since the rear reflection surface of the light guide plate is formed in a parabolic curve so that the inclination angle becomes larger as it is farther from the tubular light source, the reflection angle of light becomes sharper as it is farther from the tubular light source. At any position, light can be emitted at an angle close to vertical emission with respect to the front emission surface.

【0070】さらに、導光板の前面出射面を、多数のプ
リズムにて断面視鋸刃状に形成し、各プリズムの一面を
光透過面として機能させ、他の面を光透過面からの斜め
出射光を前方に反射させる光反射面として機能させてい
るので、光反射面で反射した最終光を、前面出射面の法
線方向に近づけることができる。
Further, the front emission surface of the light guide plate is formed in a sawtooth shape in cross section by a large number of prisms, one surface of each prism functions as a light transmitting surface, and the other surface is obliquely projected from the light transmitting surface. Since it functions as a light reflecting surface that reflects the emitted light forward, the final light reflected by the light reflecting surface can be brought close to the normal direction of the front emission surface.

【0071】そして、プリズムの頂角を管状光源から離
間するほど鋭く形成しているので、導光板内を放射され
る様々な光線の各光路に即した角度で、最終光を前面出
射面の法線方向に近づけることができる。
Since the apex angle of the prism is formed so as to be farther from the tubular light source, the final light is directed to the front emission surface at an angle according to each optical path of various light rays emitted in the light guide plate. It can be close to the line direction.

【0072】これら、光源反射鏡および導光板の形状等
を工夫するだけで、管状光源からの直接光および後面反
射面による反射光を、前面出射面に対して比較的均一に
到達させることができる。これにより、照明面の輝度均
質度を高めることができるといった優れた効果がある。
The direct light from the tubular light source and the reflected light from the rear reflection surface can be made to reach the front emission surface relatively uniformly only by devising the shapes of the light source reflection mirror and the light guide plate. . This has an excellent effect that the brightness homogeneity of the illumination surface can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明一実施例の面光源装置の概要説明図FIG. 1 is a schematic explanatory diagram of a surface light source device according to an embodiment of the present invention.

【図2】本発明一実施例の面光源装置の要部拡大図FIG. 2 is an enlarged view of a main part of a surface light source device according to an embodiment of the present invention.

【図3】光源反射鏡が断面半円形で導光板の後面反射面
が前面出射面に平行な面光源装置の側面図
FIG. 3 is a side view of a surface light source device in which a light source reflecting mirror has a semicircular cross section and a rear reflection surface of a light guide plate is parallel to a front emission surface.

【図4】光源反射鏡が断面半円形で導光板の後面反射面
が前面出射面に平行な面光源装置の各種測定結果を示す
FIG. 4 is a diagram showing various measurement results of a surface light source device in which a light source reflection mirror has a semicircular cross section and a rear reflection surface of a light guide plate is parallel to a front emission surface.

【図5】光源反射鏡が断面半円形で導光板の後面反射面
が一定の傾斜角で傾斜した面光源装置の側面図
FIG. 5 is a side view of a surface light source device in which a light source reflector has a semicircular cross section and a rear reflection surface of a light guide plate is inclined at a constant inclination angle.

【図6】光源反射鏡が断面半円形で導光板の後面反射面
が一定の傾斜角で傾斜した面光源装置の各種測定結果を
示す図
FIG. 6 is a view showing various measurement results of a surface light source device in which a light source reflecting mirror has a semicircular cross section and a rear reflecting surface of a light guide plate is inclined at a constant inclination angle.

【図7】光源反射鏡が断面半円形で導光板の後面反射面
が放物線状に傾斜した面光源装置の側面図
FIG. 7 is a side view of a surface light source device in which a light source reflecting mirror has a semicircular cross section and a rear reflecting surface of a light guide plate is inclined in a parabolic shape.

【図8】光源反射鏡が断面半円形で導光板の後面反射面
が放物線状に傾斜した面光源装置の各種測定結果を示す
FIG. 8 is a diagram showing various measurement results of a surface light source device in which a light source reflecting mirror has a semicircular cross section and a rear reflecting surface of a light guide plate is inclined in a parabolic shape.

【図9】光源反射鏡が断面半楕円形で導光板の後面反射
面が前面出射面に平行な面光源装置の側面図
FIG. 9 is a side view of a surface light source device in which the light source reflecting mirror has a semi-elliptical cross section and the rear reflection surface of the light guide plate is parallel to the front emission surface.

【図10】光源反射鏡が断面半楕円形で導光板の後面反
射面が前面出射面に平行な面光源装置の各種測定結果を
示す図
FIG. 10 is a diagram showing various measurement results of a surface light source device in which a light source reflecting mirror has a semi-elliptical cross section and a rear reflection surface of a light guide plate is parallel to a front emission surface.

【図11】光源反射鏡が断面半楕円形で導光板の後面反
射面が一定の傾斜角で傾斜した面光源装置の側面図
FIG. 11 is a side view of a surface light source device in which a light source reflecting mirror has a semi-elliptical cross section and a rear reflection surface of a light guide plate is inclined at a constant inclination angle.

【図12】光源反射鏡が断面半楕円形で導光板の後面反
射面が一定の傾斜角で傾斜した面光源装置の各種測定結
果を示す図
FIG. 12 is a diagram showing various measurement results of a surface light source device in which a light source reflecting mirror has a semi-elliptical cross section and a rear reflection surface of a light guide plate is inclined at a constant inclination angle.

【図13】光源反射鏡が断面半楕円形で導光板の後面反
射面が放物線状に傾斜した面光源装置の側面図
FIG. 13 is a side view of a surface light source device in which a light source reflecting mirror has a semi-elliptical cross section and a rear reflecting surface of a light guide plate is inclined in a parabolic shape.

【図14】光源反射鏡が断面半楕円形で導光板の後面反
射面が放物線状に傾斜した面光源装置の各種測定結果を
示す図
FIG. 14 is a diagram showing various measurement results of a surface light source device in which a light source reflecting mirror has a semi-elliptical cross section and a rear reflecting surface of a light guide plate is inclined in a parabolic shape.

【図15】本発明一実施例の面光源装置の前面出射面を
説明する図
FIG. 15 is a diagram illustrating a front emission surface of a surface light source device according to an embodiment of the present invention.

【図16】導光板の後面反射面が前面出射面に平行な従
来の面光源装置の側面図
FIG. 16 is a side view of a conventional surface light source device in which a rear reflection surface of a light guide plate is parallel to a front emission surface.

【図17】導光板の後面反射面が湾曲された従来の面光
源装置の側面図
FIG. 17 is a side view of a conventional surface light source device in which a rear reflection surface of a light guide plate is curved.

【符号の説明】[Explanation of symbols]

12 導光板 13 管状光源 14 光源反射鏡 21 端部入射面 22 後面反射面 23 前面出射面 25 プリズム 27 光透過面 28 光反射面 θ 頂角 12 light guide plate 13 tubular light source 14 light source reflecting mirror 21 end incident surface 22 rear reflecting surface 23 front emission surface 25 prism 27 light transmitting surface 28 light reflecting surface θ apex angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被照明体を後方から面状に照明する透光
性の導光板と、 該導光板の一側端部に配された管状光源と、 該管状光源の周囲に配され管状光源から外側に発散する
光を導光板側に反射させる光源反射鏡とを備え、 前記導光板は、 前記管状光源からの光を一側端部で入射する端部入射面
と、 内部の後方への光を後面で前方に反射する後面反射面
と、 内部の光を前方の前記被照明体側に出射する前面出射面
とを有せしめられた面光源装置において、 前記光源反射鏡は、偏平率が1より大とされた断面視半
楕円形状に形成され、 前記導光板の後面反射面は、前記管状光源から離間する
ほど傾斜角が大となるよう放物線状に湾曲形成され、 導光板の前面出射面には、多数のプリズムが管状光源の
管軸に直交する方向に連なって断面視鋸刃状に形成さ
れ、 該各プリズムは、 管状光源からの光を斜めに出射させる光透過面と、該光
透過面から斜めに出射した光を前方に反射させる光反射
面とが、頂角を挟んで互いに傾斜配置されてなり、 該プリズムの頂角は、管状光源から離間するほど鋭く形
成されたことを特徴とする面光源装置。
1. A translucent light guide plate for illuminating an object to be illuminated in a planar manner from the rear, a tubular light source arranged at one end of the light guide plate, and a tubular light source arranged around the tubular light source. From a light source reflecting mirror that reflects the light diverging outward from the light guide plate side, the light guide plate, the end incident surface on which the light from the tubular light source is incident at one side end, In a surface light source device having a rear reflection surface that reflects light forward on a rear surface and a front emission surface that emits internal light to the front side of the object to be illuminated, the light source reflection mirror has an aspect ratio of 1 It is formed in a larger semi-elliptical shape in cross section, and the rear reflection surface of the light guide plate is formed in a parabolic shape so that the inclination angle becomes larger as the distance from the tubular light source increases, and the front emission surface of the light guide plate is formed. The multiple saws are connected in the direction perpendicular to the tube axis of the tubular light source, Each of the prisms has a light-transmitting surface that obliquely emits the light from the tubular light source and a light-reflecting surface that reflects the light that is obliquely emitted from the light-transmitting surface forward with the apex angle sandwiched. 2. The surface light source device according to claim 1, wherein the prisms are inclined with respect to each other, and the apex angle of the prisms is formed so as to be more distant from the tubular light source.
JP5036656A 1993-02-25 1993-02-25 Surface light source device Pending JPH06250024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036656A JPH06250024A (en) 1993-02-25 1993-02-25 Surface light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036656A JPH06250024A (en) 1993-02-25 1993-02-25 Surface light source device

Publications (1)

Publication Number Publication Date
JPH06250024A true JPH06250024A (en) 1994-09-09

Family

ID=12475904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036656A Pending JPH06250024A (en) 1993-02-25 1993-02-25 Surface light source device

Country Status (1)

Country Link
JP (1) JPH06250024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986727A (en) * 1996-04-05 1999-11-16 Matsushita Electric Industrial Co., Ltd. Back light illuminator for liquid crystal display apparatus
WO2009141953A1 (en) * 2008-05-20 2009-11-26 シャープ株式会社 Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986727A (en) * 1996-04-05 1999-11-16 Matsushita Electric Industrial Co., Ltd. Back light illuminator for liquid crystal display apparatus
WO2009141953A1 (en) * 2008-05-20 2009-11-26 シャープ株式会社 Liquid crystal display device
US8477263B2 (en) 2008-05-20 2013-07-02 Sharp Kabushiki Kaisha Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP3992296B2 (en) Illuminator
JP2692025B2 (en) Planar light emitter device
US6974236B2 (en) Illuminating apparatus
JP3529387B2 (en) Light directing optical structure
JP2842739B2 (en) Surface light source unit and liquid crystal display device
KR910001084B1 (en) Light diffuser
JP3994190B2 (en) Backlight
JPH10510929A (en) Prism refractive optical array for flat panel liquid crystal display backlight device
JP2005331969A (en) Back illumination to be used for display unit
WO2005045313A1 (en) Surface light source device and apparatus using this device
JP2001083330A (en) Light guide plate and planar lighting system
WO2007029858A1 (en) Surface lighting device and light source unit using it
JP2003505737A (en) Light collimation and distribution device
JP2000048618A (en) Illumination panel and display device using it
EP0989356A1 (en) Surface illuminant device emitting light in multiple directions in concentrativemanner
JPH1172625A (en) Back light and liquid crystal display device using it
JPH07114024A (en) Back light
JPH0545505A (en) Plane light emission plate
US5720545A (en) Refracting optic for fluorescent lamps used in backlighting liquid crystal displays
JP4047437B2 (en) Linear light projection device and flat illumination device
JPH06250024A (en) Surface light source device
JP2000214460A (en) Back light device
JP4004599B2 (en) Light guide plate and flat illumination device
JPH09258029A (en) Illuminating device
JP3042842B2 (en) Surface light source element