JPH06249809A - Gas concentration measuring device - Google Patents

Gas concentration measuring device

Info

Publication number
JPH06249809A
JPH06249809A JP6284993A JP6284993A JPH06249809A JP H06249809 A JPH06249809 A JP H06249809A JP 6284993 A JP6284993 A JP 6284993A JP 6284993 A JP6284993 A JP 6284993A JP H06249809 A JPH06249809 A JP H06249809A
Authority
JP
Japan
Prior art keywords
gas
temperature
concentration
plane mirror
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6284993A
Other languages
Japanese (ja)
Inventor
Hironori Yamauchi
弘規 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6284993A priority Critical patent/JPH06249809A/en
Publication of JPH06249809A publication Critical patent/JPH06249809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To carry out only the measurement of concentration of various gases at a low cost without providing a function of qualitative analysis by utilizing changes of reflectance and transmissivity due to condensation of a measured gas component. CONSTITUTION:A standard gas wherein measured gas component concentration is already known as C1 is flown in a gas pipe 14 and a plane mirror 11 is cooled by a temperature regulator 13, and temperature of the plane mirror 11 in which reflectance reaches a predetermined value R1 is represented by T1. Similarly, with respect to respective standard gases having concentration C2, C3,..., temperature T2, T3,... are found when reflectance reaches the value R1 and an analytical curve in relation to the reflectance R1 is obtained. In the case of measuring a gas whose concentration is unknown, the measured gas whose concentration is unknown is flown in the gas pipe 14. A control and calculating device 16 regulates temperature of the plane mirror it through the temperature regulator 13 so that reflectance of the plane mirror 11 may reach R1. In the control and calculating device 16, temperature T' of the plane mirror 11 at that time is found and gas concentration C' is obtained in accordance with the retained analytical curve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラント内のガス管を流
れる被測定ガスや、ガスセル内にある被測定ガスのガス
濃度を測定する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a gas to be measured flowing through a gas pipe in a plant or a gas concentration of the gas to be measured in a gas cell.

【0002】[0002]

【従来の技術】ガス管を流れるガスやその他のガスの濃
度を測定するガス濃度測定方法には種々の方法がある。
例えば半導体式検出器を用いる方法は、安価で手軽にガ
ス濃度を測定することができるが、半導体式検出器はガ
スの種類によって選択性をもっているため、それぞれの
検出器で測定できるガスの種類が固定又は制約され、ガ
スの種類に応じてそれぞれの専用検出器が必要となる。
2. Description of the Related Art There are various gas concentration measuring methods for measuring the concentration of gas flowing through a gas pipe and other gases.
For example, the method using a semiconductor detector can inexpensively and easily measure the gas concentration, but since the semiconductor detector has selectivity depending on the kind of gas, the kind of gas that can be measured by each detector It is fixed or constrained, and each dedicated detector is required depending on the type of gas.

【0003】他の測定方法としては赤外線分光光度計を
用いたりガスクロマトグラフを用いる方法がある。赤外
線分光光度計やガスクロマトグラフは種々のガスに対し
て汎用の分析装置であり、種々のガスの定性測定も定量
測定も可能である。しかし、これらの測定装置は大がか
りになり、高価になる。
Other measuring methods include an infrared spectrophotometer and a gas chromatograph. Infrared spectrophotometers and gas chromatographs are general-purpose analyzers for various gases, and qualitative and quantitative measurements of various gases are possible. However, these measuring devices are bulky and expensive.

【0004】[0004]

【発明が解決しようとする課題】プラント中のガス管を
流れるガスの種類は予め分かっており、そのため赤外線
分光光度計やガスクロマトグラフのように定性分析機能
を備えた測定装置は必要ではない。そこで、本発明は定
性分析の機能を備えずに、安価に種々のガスの定量測
定、すなわち濃度測定のみができるガス濃度測定装置を
提供することを目的とするものである。
Since the type of gas flowing through the gas pipe in the plant is known in advance, a measuring device having a qualitative analysis function such as an infrared spectrophotometer or a gas chromatograph is not necessary. Therefore, an object of the present invention is to provide a gas concentration measuring device that does not have a qualitative analysis function and can inexpensively perform quantitative measurement of various gases, that is, only concentration measurement.

【0005】[0005]

【課題を解決するための手段】本発明では光を用い、被
測定ガス成分の凝縮による反射率や透過率の変化を利用
して被測定ガス濃度を測定する。本発明のガス濃度測定
装置は、被測定ガスと接すように配置されたガラス面
と、そのガラス面の温度を変化させる温度調節手段と、
測定光をそのガラス面に照射する光源部及びそのガラス
面による測定光の反射光又は透過光を検出する光検出器
を少なくとも含む光学系と、予め定められた反射率又は
透過率における前記ガラス面温度と被測定ガス濃度との
関係を保持し、前記光検出器の出力を取り込みその光検
出器出力に基づく測定光の反射率又は透過率が前記予め
定められた反射率又は透過率になるように前記温度調節
手段を介して前記ガラス面の温度を調節するとともに、
その調節された前記ガラス面温度をガラス面温度と被測
定ガス濃度との前記関係にあてはめて被測定ガス濃度を
求める制御・演算手段とを備えている。
According to the present invention, light is used to measure the concentration of a gas to be measured by utilizing changes in reflectance and transmittance due to condensation of a gas component to be measured. The gas concentration measuring device of the present invention, a glass surface arranged to be in contact with the gas to be measured, a temperature adjusting means for changing the temperature of the glass surface,
An optical system including at least a light source section for irradiating the glass surface with the measurement light and a photodetector for detecting reflected light or transmitted light of the measurement light by the glass surface, and the glass surface at a predetermined reflectance or transmittance Maintaining the relationship between the temperature and the concentration of the gas to be measured, taking in the output of the photodetector so that the reflectance or transmittance of the measuring light based on the output of the photodetector becomes the predetermined reflectance or transmittance. While adjusting the temperature of the glass surface through the temperature adjusting means,
The control / calculation means for applying the adjusted glass surface temperature to the above relationship between the glass surface temperature and the measured gas concentration to obtain the measured gas concentration.

【0006】[0006]

【作用】被測定ガスと接するガラス面の温度を下げてい
くと、被測定ガスの濃度がそのガラス面温度における飽
和蒸気圧となった時点でガラス面には被測定ガス成分が
凝縮する。ガラス面にガス成分が凝縮することによりそ
のガラス面による測定光の反射率や透過率が低下する。
When the temperature of the glass surface in contact with the gas to be measured is lowered, the gas component to be measured is condensed on the glass surface when the concentration of the gas to be measured reaches the saturated vapor pressure at the temperature of the glass surface. Condensation of the gas component on the glass surface reduces the reflectance and the transmittance of the measuring light by the glass surface.

【0007】被測定ガスの測定に先立って被測定ガス成
分の濃度が既知の標準ガスをガラス面と接触させ、その
ガラス面に凝縮が起こってそのガラス面の反射率又は透
過率があらかじめ定めた値になるときのそのガラス面の
温度を測定する。この測定を被測定ガス成分濃度を変え
た複数の標準試料について行なうことにより、あらかじ
め定めた反射率又は透過率における被測定ガス成分濃度
とガラス面温度との関係が求まる。この関係が検量線と
なる。
Prior to the measurement of the gas to be measured, a standard gas whose concentration of the gas to be measured is known is brought into contact with the glass surface, condensation occurs on the glass surface, and the reflectance or the transmittance of the glass surface is predetermined. The temperature of the glass surface when the value is reached is measured. By performing this measurement on a plurality of standard samples having different concentrations of the gas component to be measured, the relationship between the concentration of the gas component to be measured and the glass surface temperature at a predetermined reflectance or transmittance can be obtained. This relationship becomes a calibration curve.

【0008】被測定ガスの測定にあたっては、濃度が未
知の被測定ガスがガラス面に接触し、ガラス面での反射
率又は透過率が検量線を作成したときの値になるように
温度調節手段を介してガラス面の温度が調節される。そ
のときの温度から検量線を用いてガス濃度が求められ
る。
In the measurement of the gas to be measured, the gas to be measured whose concentration is unknown comes into contact with the glass surface, and the temperature adjusting means is set so that the reflectance or the transmittance on the glass surface becomes the value when the calibration curve was created. The temperature of the glass surface is adjusted via. The gas concentration is obtained from the temperature at that time using a calibration curve.

【0009】[0009]

【実施例】図1は一実施例を表わしたものである。14
はプラント内におけるガス管であり、その中を被測定ガ
ス15が流れる。ガス管14はこの測定装置が設置され
る部分では透明ガラス製にするか、少なくとも測定光が
透過する部分には透明ガラス製の窓板が設けられるよう
にする。ガス管14の壁面の一部には測定側平面鏡11
がその鏡面をガス管14内に露出させてガス管14内を
流れるガス15と直接接触するように取りつけられてい
る。平面鏡11の裏面にはペルチェ素子などの温調器1
3が取りつけられており、平面鏡11の温度を調整す
る。ガス管14の他の部分の壁面には参照側平面鏡12
がその鏡面をガス管14内に露出させてガス管14内を
流れるガス15と直接接触するように取りつけられてい
る。
Embodiment FIG. 1 shows an embodiment. 14
Is a gas pipe in the plant, through which the measured gas 15 flows. The gas pipe 14 is made of transparent glass in a portion where the measuring device is installed, or a window plate made of transparent glass is provided at least in a portion where the measurement light is transmitted. The measurement side plane mirror 11 is provided on a part of the wall surface of the gas pipe 14.
Is mounted so that its mirror surface is exposed in the gas pipe 14 and is in direct contact with the gas 15 flowing in the gas pipe 14. A temperature controller 1 such as a Peltier device is provided on the back surface of the plane mirror 11.
3 is attached to adjust the temperature of the plane mirror 11. The reference side plane mirror 12 is provided on the wall surface of the other part of the gas pipe 14.
Is mounted so that its mirror surface is exposed in the gas pipe 14 and is in direct contact with the gas 15 flowing in the gas pipe 14.

【0010】平面鏡11,12による反射光を測定して
反射率を検出するための光学系がガス管14を挾んで平
面鏡11,12と反対側に設けられている。1は白色光
源であり、その光源1からの測定光を平行光束とするた
めにコリメータレンズ2が配置されている。測定光を測
定側平面鏡11側と参照側平面鏡12側とに分離するた
めに、半透鏡4がその測定光の光路に配置され、半透鏡
4を透過した測定光がガス管14を透過して測定側平面
鏡11に入射し、平面鏡11で反射されるように光学系
が配置されている。平面鏡11からの反射光を測定側光
検出器9へ導くために、光路に半透鏡5が配置され、半
透鏡5で反射された測定光を光検出器9に集光するため
に集光レンズ7が配置されている。
An optical system for measuring the light reflected by the plane mirrors 11 and 12 and detecting the reflectance is provided on the opposite side of the plane mirrors 11 and 12 across the gas pipe 14. Reference numeral 1 denotes a white light source, and a collimator lens 2 is arranged in order to convert the measurement light from the light source 1 into a parallel light flux. In order to separate the measurement light into the measurement-side plane mirror 11 side and the reference-side plane mirror 12 side, the semitransparent mirror 4 is arranged in the optical path of the measurement light, and the measurement light transmitted through the semitransparent mirror 4 passes through the gas pipe 14. The optical system is arranged so that the light enters the measurement-side plane mirror 11 and is reflected by the plane mirror 11. In order to guide the reflected light from the plane mirror 11 to the measurement side photodetector 9, a semitransparent mirror 5 is arranged in the optical path, and a condensing lens for condensing the measurement light reflected by the semitransparent mirror 5 on the photodetector 9. 7 are arranged.

【0011】一方、半透鏡4で反射された測定光を方向
を変えて参照側平面鏡12に入射させるために、半透鏡
6が配置され、平面鏡12で反射された測定光を参照側
光検出器10に導くために、集光レンズ8が配置されて
いる。
On the other hand, in order to change the direction of the measurement light reflected by the semi-transparent mirror 4 and make it enter the reference plane mirror 12, the semi-transparent mirror 6 is arranged, and the measurement light reflected by the plane mirror 12 is used as the reference side photodetector. A condensing lens 8 is arranged in order to lead to 10.

【0012】測定側光検出器9の検出出力と、参照側光
検出器10の検出出力は制御・演算装置16に取り込ま
れる。制御・演算装置16は平面鏡12からの反射光強
度を参照光として平面鏡11からの反射光の反射率を算
出する。制御・演算装置16はまた温調器13を制御し
て測定側平面鏡11の温度を変化させるとともに、測定
側平面鏡11の温度を検出する。
The detection output of the measurement side photodetector 9 and the detection output of the reference side photodetector 10 are fetched by the control / calculation device 16. The control / arithmetic unit 16 calculates the reflectance of the reflected light from the plane mirror 11 using the reflected light intensity from the plane mirror 12 as the reference light. The control / arithmetic unit 16 also controls the temperature controller 13 to change the temperature of the measuring-side flat mirror 11 and detect the temperature of the measuring-side flat mirror 11.

【0013】次に、図1の実施例の動作について説明す
る。検量線作成 ガス管14内を被測定ガス成分濃度が既知の標準ガスを
流す。平面鏡12はガス温度になっており、平面鏡12
上には被測定ガス成分は凝縮しない。平面鏡11は温調
器13によって温度が低下させられ、平面鏡11上にガ
ス成分が凝縮して平面鏡11が曇った状態となる。平面
鏡11上にガス成分が凝縮する温度は、ガス管14内の
ガスの濃度がその成分の飽和蒸気圧となる温度又はそれ
以下の温度である。
Next, the operation of the embodiment shown in FIG. 1 will be described. A standard gas having a known concentration of the gas component to be measured is flowed through the calibration curve creating gas pipe 14. The plane mirror 12 is at the gas temperature, and the plane mirror 12
The measured gas component does not condense on the top. The temperature of the plane mirror 11 is lowered by the temperature controller 13, the gas component is condensed on the plane mirror 11, and the plane mirror 11 becomes cloudy. The temperature at which the gas component is condensed on the plane mirror 11 is a temperature at which the concentration of the gas in the gas pipe 14 becomes the saturated vapor pressure of the component or a temperature below the temperature.

【0014】光学系では、光源1を出た光がコリメータ
レンズ2で平行光となり、その一部はガス管内の測定側
平面鏡11で反射され、半透鏡5で方向を変えて集光レ
ンズ7を経て光検出器9に到達する。半透鏡4で反射さ
れた測定光は、半透鏡6で方向を変えて温調されない平
面鏡12で反射し、半透鏡6を素通りして集光レンズ8
を経て光検出器10に到達する。これにより、平面鏡1
2を反射した光を参照光とする平面鏡11の反射率(R
%)が制御・演算装置16で求められる。
In the optical system, the light emitted from the light source 1 is collimated by the collimator lens 2 and a part of the light is reflected by the measurement side plane mirror 11 in the gas pipe, and the semitransparent mirror 5 changes its direction to change the direction of the condenser lens 7. After that, it reaches the photodetector 9. The measuring light reflected by the semi-transparent mirror 4 changes its direction by the semi-transparent mirror 6, is reflected by the plane mirror 12 which is not temperature-controlled, passes through the semi-transparent mirror 6 as it is, and the condensing lens 8
To reach the photodetector 10. As a result, the plane mirror 1
The reflectance (R of the plane mirror 11 using the light reflected by 2 as the reference light)
%) Is calculated by the control / arithmetic unit 16.

【0015】いま、被測定ガス成分濃度がC1で既知の
標準ガスをガス管14に流したとき、平面鏡11を温調
器13で冷却して反射率があらかじめ定めた値R1にな
るときの平面鏡11の温度をT1とする。同様にして別
の濃度C2,C3,……の各標準ガスについても同様に反
射率がR1になるときの平面鏡11の温度T2,T3,…
…を求める。このように、標準ガス測定によって図2に
示されるようにある反射率R1に対する検量線が得られ
る。反射率は他の値に設定することもできる。求められ
た検量線のデータは制御・演算装置16に保持される。
Now, when a known standard gas having a measured gas component concentration of C 1 is flown through the gas pipe 14, when the plane mirror 11 is cooled by the temperature controller 13 and the reflectance reaches a predetermined value R 1. The temperature of the plane mirror 11 is T 1 . Similarly, for the standard gases having different concentrations C 2 , C 3 , ..., Similarly, the temperatures T 2 , T 3 , ... Of the plane mirror 11 when the reflectance becomes R 1 .
Ask for ... Thus, the standard gas measurement yields a calibration curve for a given reflectance R 1 as shown in FIG. The reflectivity can be set to other values. The data of the obtained calibration curve is held in the control / calculation device 16.

【0016】被測定ガス測定 次に、濃度が未知の被測定ガスの測定を行なう場合につ
いて説明する。ガス管14に濃度が未知の被測定ガスを
流す。制御・演算装置16は温調器13を介して平面鏡
11の反射率がR1となるように、平面鏡11の温度を
調節する。制御・演算装置16ではそのときの平面鏡1
1の温度T’が求められ、保持されている検量線に従っ
て図3のようにガス濃度C’が求められる。
Measurement of measured gas Next, the case of measuring a measured gas whose concentration is unknown will be described. A gas under measurement whose concentration is unknown is passed through the gas pipe 14. The controller / arithmetic unit 16 adjusts the temperature of the plane mirror 11 via the temperature controller 13 so that the reflectance of the plane mirror 11 becomes R 1 . In the control / arithmetic unit 16, the plane mirror 1 at that time
The temperature T'of 1 is obtained, and the gas concentration C'is obtained as shown in FIG. 3 according to the calibration curve held.

【0017】実施例では検量線の作成及びその検量線を
用いて被測定ガスの濃度を求める演算操作を制御・演算
装置16で行なわせるようにしているので、測定が容易
である。しかし、この演算操作を測定者がするようにし
てもよい。
In the embodiment, the control / calculation device 16 is made to perform the calculation operation for creating the calibration curve and calculating the concentration of the gas to be measured using the calibration curve, so that the measurement is easy. However, the operator may perform this calculation operation.

【0018】図1の実施例では平面鏡11を直接被測定
ガスと接触させているが、例えば図4に示されるよう
に、ガス管14には透明ガラス窓板17を取りつけ、被
測定ガスの凝縮をその窓板17の表面に生じさせるとと
もに、平面鏡11はその窓板17の外部に配置するよう
にしてもよい。その場合には窓板17の温度を変化させ
ることになるので、窓板17の周囲に温調器13を配置
する。この場合は窓板17の透過率(吸収率)をパラメ
ータとしてガス濃度を測定することになる。また、図4
の実施例において、平面鏡11の位置に測定側集光レン
ズ7と光検出器9を配置するようにしてもよい。
In the embodiment of FIG. 1, the plane mirror 11 is brought into direct contact with the gas to be measured, but as shown in FIG. 4, for example, a transparent glass window plate 17 is attached to the gas pipe 14 to condense the gas to be measured. May be generated on the surface of the window plate 17, and the plane mirror 11 may be arranged outside the window plate 17. In that case, since the temperature of the window plate 17 is changed, the temperature controller 13 is arranged around the window plate 17. In this case, the gas concentration is measured using the transmittance (absorption rate) of the window plate 17 as a parameter. Also, FIG.
In the embodiment, the measurement-side condenser lens 7 and the photodetector 9 may be arranged at the position of the plane mirror 11.

【0019】装置の安定性を向上させ、設置を容易にす
るために、図1における平面鏡11,12をコーナーキ
ューブに置き換えてもよい。測定するガスによっては測
定光を白色光とせず、制限された波長域の光の方が有利
な場合や、複数成分のガス中のあるガスについてのみ選
択的に測定する場合には、平面鏡11又は窓板17上に
凝縮したガス成分に特有の測定光を照射できるように、
図1の光学系でコリメートレンズ2と半透鏡4の間の光
路上にバンドパスフィルタ3を設けるようにすればよ
い。また、被測定ガス成分に応じた特定の単一波長の光
を測定光とした方が好都合な場合は、光源1に代えてレ
ーザを用いることもできる。実施例はガス管14中を流
れる被測定ガスの濃度を測定する実施例を示している
が、ガス管14に代えてガスセル中の被測定ガスを測定
するために本発明を適用することもできる。
In order to improve the stability of the device and facilitate installation, the plane mirrors 11 and 12 in FIG. 1 may be replaced by corner cubes. Depending on the gas to be measured, if the measurement light is not white light and light in a limited wavelength range is advantageous, or if only a certain gas in the gas of a plurality of components is selectively measured, the plane mirror 11 or In order to irradiate the measuring light peculiar to the gas component condensed on the window plate 17,
In the optical system of FIG. 1, the bandpass filter 3 may be provided on the optical path between the collimator lens 2 and the semitransparent mirror 4. Further, when it is convenient to use light having a specific single wavelength according to the gas component to be measured as the measurement light, a laser can be used instead of the light source 1. Although the embodiment shows an embodiment in which the concentration of the gas to be measured flowing through the gas pipe 14 is measured, the present invention can be applied to measure the gas to be measured in the gas cell instead of the gas pipe 14. .

【0020】[0020]

【発明の効果】本発明では被測定ガス中のガス成分の凝
縮温度とガス濃度との関係を利用してガス濃度を測定す
るようにしたので、従来のガスクロマトグラフや赤外分
光光度計のような大がかりな装置を用いる必要がなく、
簡単な構成で、ガス濃度を連続的に監視することができ
るようになる。この測定装置は連続運転されるプラント
においてガス管を流れるガス濃度を監視する場合に特に
有効である。また、ガスに特有の検出器を使用しないの
で、種々のガスに対応することができる。さらに、分光
フィルタを追加すれば、多成分のガスの濃度測定にも適
用することができる。
As described above, according to the present invention, the gas concentration is measured by utilizing the relationship between the condensation temperature and the gas concentration of the gas component in the gas to be measured. Therefore, it is possible to use the conventional gas chromatograph and infrared spectrophotometer. It is not necessary to use a large-scale device,
With a simple structure, the gas concentration can be continuously monitored. This measuring device is particularly effective in monitoring the gas concentration flowing through the gas pipe in a continuously operated plant. Further, since a detector specific to gas is not used, various gases can be supported. Furthermore, if a spectral filter is added, it can be applied to the concentration measurement of multi-component gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment.

【図2】本発明における検量線を示す図である。FIG. 2 is a diagram showing a calibration curve in the present invention.

【図3】検量線を用いてガス濃度を測定する方法を示す
図である。
FIG. 3 is a diagram showing a method of measuring a gas concentration using a calibration curve.

【図4】他の実施例を示す要部の概略正面断面図であ
る。
FIG. 4 is a schematic front sectional view of an essential part showing another embodiment.

【符号の説明】[Explanation of symbols]

1 光源 2 コリメートレンズ 3 バンドパスフィルタ 4,5,6 半透鏡 7,8 集光レンズ 9,10 光検出器 11,12 平面鏡 13 温調器 14 ガス管 15 被測定ガスの流れ 16 制御・演算装置 1 light source 2 collimator lens 3 bandpass filter 4,5,6 semi-transparent mirror 7,8 condenser lens 9,10 photodetector 11, 12 plane mirror 13 temperature controller 14 gas pipe 15 flow of measured gas 16 control / calculation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定ガスと接すように配置されたガラ
ス面と、 前記ガラス面の温度を変化させる温度調節手段と、 測定光を前記ガラス面に照射する光源部及びそのガラス
面による測定光の反射光又は透過光を検出する光検出器
を少なくとも含む光学系と、 予め定められた反射率又は透過率における前記ガラス面
温度と被測定ガス濃度との関係を保持し、前記光検出器
の出力を取り込みその光検出器出力に基づく測定光の反
射率又は透過率が前記予め定められた反射率又は透過率
になるように前記温度調節手段を介して前記ガラス面の
温度を調節するとともに、その調節された前記ガラス面
温度をガラス面温度と被測定ガス濃度との前記関係にあ
てはめて被測定ガス濃度を求める制御・演算手段と、を
備えたことを特徴とするガス濃度測定装置。
1. A glass surface arranged in contact with a gas to be measured, temperature adjusting means for changing the temperature of the glass surface, a light source unit for irradiating the glass surface with measurement light, and measurement by the glass surface. An optical system including at least a photodetector that detects reflected light or transmitted light, and holds the relationship between the glass surface temperature and the measured gas concentration at a predetermined reflectance or transmittance, and the photodetector. While adjusting the temperature of the glass surface via the temperature adjusting means so that the reflectance or the transmittance of the measurement light based on the output of the photodetector becomes the predetermined reflectance or the transmittance. And a control / calculation means for determining the measured gas concentration by applying the adjusted glass surface temperature to the relationship between the glass surface temperature and the measured gas concentration. Place
JP6284993A 1993-02-26 1993-02-26 Gas concentration measuring device Pending JPH06249809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6284993A JPH06249809A (en) 1993-02-26 1993-02-26 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6284993A JPH06249809A (en) 1993-02-26 1993-02-26 Gas concentration measuring device

Publications (1)

Publication Number Publication Date
JPH06249809A true JPH06249809A (en) 1994-09-09

Family

ID=13212174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6284993A Pending JPH06249809A (en) 1993-02-26 1993-02-26 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JPH06249809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232210A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Gas composition detection system and engine control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232210A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Gas composition detection system and engine control system

Similar Documents

Publication Publication Date Title
RU2437719C2 (en) Apparatus and method for spectrophotometric analysis
US6188476B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US5464983A (en) Method and apparatus for determining the concentration of a gas
EP0146781B1 (en) Photometric apparatus with multi-wavelength excitation
US4781456A (en) Absorption photometer
JPS6116010B2 (en)
US7113286B2 (en) Apparatus and method for improved analysis of liquids by continuous wave-cavity ring down spectroscopy
JPH08304282A (en) Gas analyzer
US4193694A (en) Photosensitive color monitoring device and method of measurement of concentration of a colored component in a fluid
JPH0599845A (en) Water content analysis device using semiconductor laser
JPS58103625A (en) Photometer
EP2344862B1 (en) An arrangement adapted for spectral analysis of high concentrations of gas
US6368560B1 (en) Photometric gas detection system and method
KR20210027487A (en) Normal incidence in situ process monitor sensor
JPS6250641A (en) Analyzing instrument having absorption spectrophotometer
WO2005038436A2 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
JP3609029B2 (en) Detector and liquid sample measuring device
US20040107764A1 (en) System and method for measuring trace gases
JPH06249809A (en) Gas concentration measuring device
JPH0219718Y2 (en)
JPH07151685A (en) Non-dispersion type infrared gas analyzer
JP2002257723A (en) Method and instrument for determining concentration of liquid sample
RU103400U1 (en) LABORATORY STAND FOR CREATION AND CONTROL OF CONCENTRATIONS OF GASES IN THE FORMATION OF THE BASIS OF SPECTRAL DATA AND ASSESSMENT OF TECHNICAL CHARACTERISTICS OF FOURIER SPECTRADRADIOMETERS
US4922747A (en) Method for the determination of volative components in continuous flow condensed phase sample stream
US3518439A (en) Absorption tester having beam splitter and wheatstone bridge with potentiometer balancing