JPH06249796A - Apparatus and method for measuring moisture evaporation amount - Google Patents

Apparatus and method for measuring moisture evaporation amount

Info

Publication number
JPH06249796A
JPH06249796A JP6145293A JP6145293A JPH06249796A JP H06249796 A JPH06249796 A JP H06249796A JP 6145293 A JP6145293 A JP 6145293A JP 6145293 A JP6145293 A JP 6145293A JP H06249796 A JPH06249796 A JP H06249796A
Authority
JP
Japan
Prior art keywords
humidity
temperature
evaporation
amount
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6145293A
Other languages
Japanese (ja)
Inventor
Shoichi Matsushima
庄一 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO KEISOKU KK
Original Assignee
TOKYO KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO KEISOKU KK filed Critical TOKYO KEISOKU KK
Priority to JP6145293A priority Critical patent/JPH06249796A/en
Publication of JPH06249796A publication Critical patent/JPH06249796A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a moisture-evaporation-amount measuring apparatus wherein it measures the evaporation amount of moisture evaporated from the surface of soil, bedrock, fiber and the like and to provide its measuring method. CONSTITUTION:The title apparatus is provided with a detection part 4 in which two sets of temperature and humidity sensors having integrated temperature sensors la, 2a and humidity sensors 1b, 2b used to measure a temperature value and a humidity value are installed at prescribed intervals so as to be arranged at a distance difference with reference to a measuring face, with a first operation circuit 9 which finds respective humidity values on the basis of a saturated vapor pressure, a standard atmospheric pressure and the like with reference to respective relative humidity values and measured temperature values detected by the detection part 4, with a second operation circuit 10 which finds an absolute humidity gradient from the difference in the relative humidity values found by the first operation circuit and from the distance difference between both temperature and humidity sensors for the detection part and which finds an evaporation amount from the molecular diffusion coefficient of moisture in the air and with a display part 11 which displays the evaporation amount found by the second operation circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土壌,岩盤,繊維,コ
ンクリート,植物,木材,紙,塗料,食物,樹脂等の表
面から蒸発する水分蒸発量を測定する、水分蒸発量測定
装置およびその測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture evaporation measuring device for measuring the amount of moisture evaporated from the surface of soil, bedrock, fibers, concrete, plants, wood, paper, paint, food, resin, etc. It relates to a measuring method.

【0002】[0002]

【従来の技術】従来の水分蒸発量を測定する方法として
は、次のような幾つかの測定方法がある。大型蒸発計
による方法、この蒸発計は、口径120cmの白色塗装
した盥(たらい)状の容器に水を張り、この容器内の水
面高さをゲージにより1/10mmまで読取って、前日
の同時刻の読取りデータとの差により、日間の蒸発量を
測定する方法である。この方法は、たらいが大きいため
測定ポイントが大きく、しかも直接地表面からの蒸発量
を計測するものでなく、間接的な測定であるため正確性
の点で問題があった。 水収支法、これは水の流入量と流出量とを測定し、貯
水量の減少量から推定する方法であるが、この方法も単
位面積当たりの水量の減少量から推定するものであり、
の大型蒸発計による方法と同様に、測定ポイントが大
きく、また間接的測定のため正確性の点で問題があっ
た。
2. Description of the Related Art There are several conventional methods for measuring the amount of water evaporation. A method using a large-scale evaporometer. This evaporometer is filled with water in a white-painted bowl-shaped container with a caliber of 120 cm, and the height of the water surface in this container is read to 1/10 mm by a gauge, and the same time as the previous day. It is a method of measuring the amount of evaporation per day by the difference with the read data of. This method has a large measurement point due to its large basin, and has a problem in accuracy because it is an indirect measurement, not a method for directly measuring the evaporation amount from the ground surface. The water balance method, which measures the inflow and outflow of water and estimates it from the decrease in water storage, but this method also estimates it from the decrease in water volume per unit area.
Similar to the method using a large-scale evaporator, the measurement points are large, and there is a problem in accuracy due to indirect measurement.

【0003】エネルギー収支法、この方法は日射、放
射、熱伝導など熱エネルギーの収支量を測定して蒸発量
を推定する方法である。この方法も前記,に示した
方法と同様に、ポイント測定ではなくゾーンを対象とす
るものであり、長期間のデータより解析するので時間的
ロス等の問題があった。 重量法(ライシメーター)、適当な容器に資料、例え
ば測定地点の土を入れて、一定時間ごとの重量変化から
蒸発量を算出する方法である。この方法は、微少蒸発量
の計測は行い得るが、土壌を破壊することになるため、
正しい蒸発量の計測は行うことができないという問題が
あった。
Energy balance method, which is a method of estimating the evaporation amount by measuring the balance amount of thermal energy such as solar radiation, radiation, and heat conduction. Similar to the method described in the above, this method also targets the zone instead of the point measurement, and there is a problem such as time loss because it is analyzed from long-term data. The gravimetric method (lysimeter) is a method in which a material such as soil at a measurement point is put in an appropriate container and the evaporation amount is calculated from the weight change at regular time intervals. This method can measure the minute amount of evaporation, but since it will destroy the soil,
There was a problem that the correct amount of evaporation could not be measured.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このように
従来の蒸発量の測定方法における問題点である、間接測
定や推定方法であるため不正確であること、測定ポイン
トが広いこと、測定に長時間を要すること、測定装置が
大型であり持ち運びが大変であること、等をすべて改善
しようとするもので、まったく新しい考え方により測定
対象物の測定面から直接、水分蒸発量を測定するように
したものである。従って、前述したような土壌,岩盤,
繊維,コンクリート,植物など、あらゆる物質の水分蒸
発量を正確に測定することを可能にしたものである。
The present invention, as described above, is a problem in the conventional method for measuring the evaporation amount, that is, it is inaccurate because it is an indirect measurement or estimation method, that the measurement point is wide, and that the measurement point is large. It takes a long time to complete, the measuring device is large and difficult to carry, etc., and it aims to measure the amount of water evaporation directly from the measurement surface of the object to be measured with a completely new idea. It is the one. Therefore, soil, bedrock,
This makes it possible to accurately measure the water evaporation amount of any substance such as fiber, concrete, and plants.

【0005】[0005]

【課題を解決するための手段】本発明の水分蒸発量測定
装置は、温度および相対湿度を測定するための温度セン
サーおよび湿度センサーを一体とした温度・湿度センサ
ー2組を測定面に対して距離差をもって配置されるため
に所定間隔で設けられた検出部と、この検出部によって
検出されたそれぞれの相対湿度と測定温度に対する飽和
水蒸気圧、標準気圧等からそれぞれの絶対湿度を求める
第1の演算回路と、この第1の演算回路によって求めら
れたそれぞれの絶対湿度の差と前記検出部の両温度・湿
度センサーの距離差とから絶対湿度勾配を求めると共
に、空気中の水分の分子拡散係数から蒸発量を求める第
2の演算回路と、この第2の演算回路によって求められ
た蒸発量を表示する表示部とを備え、前記2組の温度・
湿度センサーを被測定物質面の層流層内に配置して蒸発
量を測定するようにしたものである。また、本発明の水
分蒸発量測定方法は、被測定物質面の層流層内に、ある
距離差をもって設けられた2組の温度・湿度センサーに
より各々の温度と相対湿度を測定し、この相対湿度と測
定温度に対する飽和水蒸気圧、標準気圧等から各々の絶
対湿度を求め、この各々の絶対湿度の差と前記2つの温
度・湿度センサーの距離差から絶対湿度勾配を求めると
共に、この絶対湿度勾配に空気中の水分の分子拡散係数
を乗じて蒸発量を求めるようにしたものである。
In the apparatus for measuring the amount of water evaporation of the present invention, two sets of temperature / humidity sensors, which are integrated with a temperature sensor and a humidity sensor for measuring temperature and relative humidity, are placed at a distance from a measurement surface. The first calculation for obtaining the absolute humidity from the relative humidity detected by this detection unit and the saturated water vapor pressure, the standard atmospheric pressure, etc. with respect to the measured temperature, which are provided at predetermined intervals because they are arranged with a difference The absolute humidity gradient is obtained from the circuit and the difference in absolute humidity obtained by the first arithmetic circuit and the distance difference between both temperature / humidity sensors of the detection unit, and from the molecular diffusion coefficient of moisture in the air. A second arithmetic circuit for obtaining the evaporation amount and a display section for displaying the evaporation amount obtained by the second arithmetic circuit are provided, and the two sets of temperature /
A humidity sensor is arranged in the laminar flow layer on the surface of the substance to be measured to measure the evaporation amount. In addition, the method for measuring the amount of water evaporation of the present invention is to measure the temperature and relative humidity of each by two sets of temperature / humidity sensors provided with a certain distance difference in the laminar flow layer on the surface of the substance to be measured. The absolute humidity is calculated from the humidity and the saturated vapor pressure, the standard atmospheric pressure, etc. with respect to the measured temperature, and the absolute humidity gradient is calculated from the difference between the absolute humidity and the distance difference between the two temperature / humidity sensors. The amount of evaporation is obtained by multiplying by the molecular diffusion coefficient of water in the air.

【0006】[0006]

【作用】本発明は、物質表面よりの水分蒸発量が、空気
の温度と相対湿度および風速により影響されることに着
目して為されたものである。発明者の経験によれば、一
般的に空気温度20℃前後、相対湿度60%前後で、最
大30mg/m2 /s程度の蒸発量が観察され、また空
気温度12℃〜13℃、相対湿度85%内外では、3〜
4mg/m2 /s程度の蒸発量が観察された。そして、
その蒸発量は空気中を地表面の直交方向に運ばれる水分
量と等しくなるという論理に基づくものである。したが
って、水分蒸発量は、地表面近傍でこの水分輸送量を計
測することによって求めることができることを発見した
ものである。具体的には、地表面上には薄い層流層が形
成されており、その層流層の中では、流は地表面に沿
い、地表面直交方向の空気中の水分輸送は分子拡散によ
り行われる。従って、地表面に沿った湿度変化が小さけ
れば、この水分輸送量qn,換言すれば水分蒸発量Ev
は次の式で表される。
The present invention was made by paying attention to the fact that the amount of water evaporated from the surface of a substance is affected by the temperature of air, relative humidity, and wind speed. According to the experience of the inventor, generally, at an air temperature of about 20 ° C. and a relative humidity of about 60%, a maximum evaporation amount of about 30 mg / m 2 / s was observed. 85% inside and outside 3 ~
An evaporation amount of about 4 mg / m 2 / s was observed. And
The amount of evaporation is based on the theory that it becomes equal to the amount of water carried in the air in the direction orthogonal to the ground surface. Therefore, it was discovered that the water evaporation amount can be obtained by measuring the water transportation amount near the ground surface. Specifically, a thin laminar flow layer is formed on the ground surface.In the laminar flow layer, the flow is along the ground surface, and water transport in the air in the direction orthogonal to the ground surface is carried out by molecular diffusion. Be seen. Therefore, if the humidity change along the ground surface is small, this water transport amount qn, in other words, the water evaporation amount Ev
Is expressed by the following equation.

【数1】 qn=Ev=Dm・△θ/△n ………(1) Dmは空気中水分の分子拡散係数、△θは地表面(測定
対象面)からの異なる距離の2点間の絶対湿度の変化
量、△nは前記地表面直交方向の2点間の距離差であ
る。
## EQU1 ## qn = Ev = Dm.Δθ / Δn (1) Dm is the molecular diffusion coefficient of moisture in the air, and Δθ is between two points at different distances from the ground surface (measurement surface). The amount of change in absolute humidity, Δn, is the distance difference between two points in the direction orthogonal to the ground surface.

【0007】[0007]

【実施例】図1は、本発明の一実施例を示すブロック構
成図である。図1において、1は温度センサー1aおよ
び湿度センサー1bとが略同一平面状に一体的に固定さ
れた第1の温度・湿度センサーである。2は温度センサ
ー2aおよび湿度センサー2bとが略同一平面状に一体
的に固定された第2の温度・湿度センサーである。そし
て、この第1および第2の温度・湿度センサーは、図2
(a)の平面図および図2(b)の側面図に示すよう
に、そのセンサー面が所定間隔をもって、かつその面が
重ならないように固定具3で固定された1つの検出部4
となる。なお、温度センサー1a、2aは白金測温抵抗
体からなるもので約2mm×4nmの平板状であり、湿
度センサー1b,2bは高分子膜等から構成された約3
mm×5mmの平板状であって、それらセンサーはそれ
ぞれ保護カバー5の中心部に配置され、保護されてい
る。また、温度・湿度センサー1および2の寸法は、そ
れぞれが例えば、幅は10mm程度、厚さ5mm程度で
ある。相互の配置関係は、温度・湿度センサー1,2相
互間の測定面に対する直交方向の間隔、即ち距離差Aは
数mm程度、また水平方向への間隔Bは15mm程度で
ある。そして、各センサーは後述の測定回路と接続線6
で接続されている。また、前記固定具3により、相互の
配置関係の寸法は適宜変更できるようになっている。ま
た、保護カバー5はその上下左右に空気流通窓が設けら
れている。
FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, reference numeral 1 is a first temperature / humidity sensor in which a temperature sensor 1a and a humidity sensor 1b are integrally fixed in a substantially coplanar manner. Reference numeral 2 is a second temperature / humidity sensor in which the temperature sensor 2a and the humidity sensor 2b are integrally fixed in a substantially same plane. The first and second temperature / humidity sensors shown in FIG.
As shown in the plan view of FIG. 2A and the side view of FIG. 2B, one detection unit 4 is fixed by a fixture 3 so that its sensor surfaces have a predetermined interval and their surfaces do not overlap.
Becomes It should be noted that the temperature sensors 1a and 2a are made of platinum resistance temperature detectors and have a flat plate shape of about 2 mm × 4 nm, and the humidity sensors 1b and 2b are made of a polymer film or the like and have a thickness of about 3 mm.
The sensor is a flat plate of mm × 5 mm, and these sensors are arranged and protected in the center of the protective cover 5, respectively. The dimensions of the temperature / humidity sensors 1 and 2 are, for example, about 10 mm in width and about 5 mm in thickness. The mutual arrangement relationship is that the distance between the temperature / humidity sensors 1 and 2 in the direction orthogonal to the measurement surface, that is, the distance difference A is about several mm, and the distance B in the horizontal direction is about 15 mm. Each sensor has a measuring circuit and a connecting line 6 which will be described later.
Connected by. Further, the size of the mutual arrangement relationship can be appropriately changed by the fixing tool 3. Further, the protective cover 5 is provided with air circulation windows on the upper, lower, left and right sides thereof.

【0008】この温度・湿度センサー1および2は、装
置本体7のA/D変換回路8に接続され、各測定データ
はディジタル化されて絶対湿度演算回路9に加えられ
る。この絶対湿度演算回路9は湿度センサー1b,2b
の相対湿度H、温度センサー1a、2aの測定温度tに
よって定まる飽和水蒸気圧es、温度t、標準気圧Po
等よりそれぞれの絶対湿度θが次の式に基づき求められ
る。
The temperature / humidity sensors 1 and 2 are connected to an A / D conversion circuit 8 of the apparatus main body 7, and each measurement data is digitized and added to an absolute humidity calculation circuit 9. This absolute humidity calculation circuit 9 is composed of humidity sensors 1b and 2b.
Relative humidity H, saturated water vapor pressure es determined by the temperature t measured by the temperature sensors 1a, 2a, temperature t, standard atmospheric pressure Po
From the above, each absolute humidity θ can be obtained based on the following equation.

【数2】 θ=804・H・es /100・(1+0.00366t)・Po …(2)[Number 2] θ = 804 · H · e s / 100 · (1 + 0.00366t) · Po ... (2)

【0009】次に、両温度・湿度センサー1,2の絶対
湿度θ1,θ2と、測定対象物質面から各温度・湿度セ
ンサー1,2までの距離n1,n2(距離差A)、分子
拡散係数から水分蒸発量演算回路11により、水分蒸発
量Evが次の式に基づき求められる。なお、この場合温
度・湿度センサー2が測定対象物質面に近く、温度・湿
度センサー1が遠くに位置しているものとする。
Next, the absolute humidity θ1 and θ2 of both the temperature / humidity sensors 1 and 2, the distances n1 and n2 (distance difference A) from the surface of the substance to be measured to the temperature / humidity sensors 1 and 2, the molecular diffusion coefficient. From this, the water evaporation amount calculation circuit 11 obtains the water evaporation amount Ev based on the following equation. In this case, it is assumed that the temperature / humidity sensor 2 is located near the surface of the substance to be measured and the temperature / humidity sensor 1 is located far away.

【数3】 Ev=Dm・(θ2−θ1)/(n1−n2) ………(3) なお、(3)式のうち、(θ2−θ1)/(n1−n
2)は絶対湿度勾配を表すもので、この絶対湿度勾配に
分子拡散係数Dmを乗じて水分蒸発量Evを求めるもの
である。分子拡散係数Dmは、次のように求めることが
できる。
## EQU00003 ## Ev = Dm.multidot. (. Theta.2-.theta.1) / (n1-n2) ... (3) In the equation (3), (.theta.2-.theta.1) / (n1-n).
2) represents an absolute humidity gradient, and this absolute humidity gradient is multiplied by the molecular diffusion coefficient Dm to obtain the water evaporation amount Ev. The molecular diffusion coefficient Dm can be obtained as follows.

【数4】 Dm=1.6375×10-7×t+2.1325×10-5 (m2/s) ……(4)[Equation 4] Dm = 1.6375 × 10 −7 × t + 2.1325 × 10 −5 (m 2 / s) …… (4)

【0010】本発明は、このようにして水分蒸発量Ev
を測定するものであるが、この測定結果をどのように表
示、記録、伝送処理するかは、必要に応じて種々の方法
がある。図1に示した水分蒸発量測定装置の実施例で
は、ある時間間隔毎の測定結果を表示部11に表示させ
るようにすると共に、必要に応じてD/A変換回路12
を介して自動記録装置等に記録させたり、またRS−2
32C出力回路13を介して伝送し、遠方の情報処理装
置に入力させるようにしてもよい。また、前述した測定
結果を、移動平均演算回路14で所定時間毎の移動平均
値として求め、このデータを表示させたり、記録させる
ようにしてもよい。また、前述した相対湿度H等から水
分蒸発量Evを求める過程で、その結果に影響を与える
測定環境における風速および大気圧を、風速センサー1
5、気圧センサー16により測定して、風速データは分
子拡散係数の補正に、気圧データは絶対湿度の補正に利
用して水分蒸発量測定の正確性の向上を図るようにして
もよい。勿論、無風状態の環境での測定であったり、標
準気圧の下での測定であれば前述した補正の必要はな
い。
According to the present invention, the water evaporation amount Ev
However, there are various methods for displaying, recording, and transmitting the measurement result as needed. In the embodiment of the water evaporation measuring apparatus shown in FIG. 1, the measurement result at every certain time interval is displayed on the display unit 11, and the D / A conversion circuit 12 is also provided if necessary.
And record it on an automatic recording device, etc. via RS-2.
The data may be transmitted via the 32C output circuit 13 and input to a remote information processing device. Further, the above-mentioned measurement result may be obtained as a moving average value for each predetermined time by the moving average calculation circuit 14, and this data may be displayed or recorded. Further, in the process of obtaining the water evaporation amount Ev from the relative humidity H and the like described above, the wind speed and the atmospheric pressure in the measurement environment that affect the result are measured by the wind speed sensor 1.
5. The wind speed data may be used for correction of the molecular diffusion coefficient and the atmospheric pressure data may be used for correction of the absolute humidity as measured by the atmospheric pressure sensor 16 to improve the accuracy of the moisture evaporation amount measurement. Of course, if the measurement is performed in a windless environment or under standard atmospheric pressure, the above-mentioned correction is not necessary.

【0011】前述した本発明の実施例に関する測定論理
について、更に詳細に説明すると、(3)式のうち、θ
2−θ1/n1−n2=△θ/△n のn1,n2は地
表面から各々の測定点までの高さ(n1>n2)、θ
1,θ2はそれぞれの位置での絶対湿度、△θ,△nは
それぞれ絶対湿度差、高度差である。絶対湿度は、気温
で定まる飽和水蒸気量に相対湿度を乗じることにより求
められる。従って、測定においては2つの点で温度と相
対湿度を求めることになる。また、前述した分子拡散係
数Dmは、温度との関数で表現できる。地表面からの水
分蒸発量は、小カップの重量変化から求めることができ
るので、小カップ上で鉛直方向の絶対湿度分布を測定す
る。層流層内であれば、絶対湿度は高さに伴って直線的
に減少し、層流層外では水分輸送は乱流拡散の影響を強
く受けるため、高さの増加に対する絶対湿度の減少割合
は、層流層内に比較し小さくなる。従って、高度と絶対
湿度との関係から勾配の変化点を求めれば、層流層の厚
さを求めることができる。
The measurement logic relating to the above-described embodiment of the present invention will be described in more detail. In equation (3), θ
2-θ1 / n1-n2 = Δθ / Δn, where n1 and n2 are the height from the ground surface to each measurement point (n1> n2), θ
1 and θ2 are absolute humidity at each position, and Δθ and Δn are absolute humidity difference and altitude difference, respectively. Absolute humidity is calculated by multiplying the amount of saturated water vapor determined by the temperature by the relative humidity. Therefore, in the measurement, the temperature and the relative humidity are obtained at two points. The molecular diffusion coefficient Dm described above can be expressed as a function of temperature. Since the amount of water evaporation from the ground surface can be obtained from the weight change of the small cup, the absolute humidity distribution in the vertical direction is measured on the small cup. In the laminar layer, the absolute humidity decreases linearly with the height, and outside the laminar layer, water transport is strongly affected by turbulent diffusion, so the absolute humidity decrease rate relative to the height increase. Is smaller than in the laminar flow layer. Therefore, the thickness of the laminar flow layer can be obtained by obtaining the change point of the gradient from the relationship between the altitude and the absolute humidity.

【0012】絶対湿度分布、換言すれば相対湿度と温度
分布の測定は、2つの点の相対湿度と温度を同時に測定
し、これらの値から、絶対湿度と絶対湿度勾配を演算す
ることにより求めることができるものである。そしてこ
の絶対湿度勾配に、測定された温度に対する空気中の水
分の分子拡散係数を乗じ、水分蒸発量を求めことができ
るもので、本発明の水分蒸発量の測定は、この論理によ
る方法を用いたものである。図3に地表面直上風速Vo
と鉛直方向絶対湿度θの分布例を示してある。即ち、地
表面上3mm位置の風速Voが、それぞれ0.0m/
s,0.28m/s,1.5m/sの場合の絶対湿度θ
の鉛直方向の分布で、各風速に対して高さHiまでは、
絶対湿度θは直線的に大きく減少している。高さHiの
値は、風速が大きい程小さくなる傾向があるが、高さH
i以上では絶対湿度θの高さに対する減少率が小さくな
り、全体として直線が折れ曲がったような分布を示して
いる。これは高さHi以上の領域は乱流の影響を受け、
乱流拡散によって多くの水分が輸送されることによるも
のと解釈することができる。このように考えれば、高さ
Hi以下の領域は分子拡散が支配する層流域(層流層
内)として測定が可能な範囲である。また、風速が大き
く層流域内での測定ができない場合には乱流拡散係数を
考慮して算出することができる。
The absolute humidity distribution, in other words, the relative humidity and temperature distribution is measured by simultaneously measuring the relative humidity and temperature at two points and calculating the absolute humidity and the absolute humidity gradient from these values. Is something that can be done. And this absolute humidity gradient can be obtained by multiplying the molecular diffusion coefficient of the moisture in the air with respect to the measured temperature to obtain the moisture evaporation amount.The measurement of the moisture evaporation amount of the present invention uses the method according to this logic. It was what I had. Fig. 3 shows the wind speed Vo directly above the ground surface.
And an example of the distribution of the vertical absolute humidity θ is shown. That is, the wind speed Vo at the position of 3 mm above the ground surface is 0.0 m /
Absolute humidity θ when s, 0.28 m / s, 1.5 m / s
Of the vertical distribution of, up to height Hi for each wind speed,
The absolute humidity θ is greatly reduced linearly. The value of the height Hi tends to decrease as the wind speed increases, but the height H
Above i, the rate of decrease with respect to the height of the absolute humidity θ becomes small, and the distribution shows a straight line as a whole. This is because the area above the height Hi is affected by turbulence,
It can be interpreted that a large amount of water is transported by turbulent diffusion. In this way, the region below the height Hi is a measurable range as a laminar flow region (in the laminar flow layer) in which molecular diffusion is dominant. Further, when the wind speed is too high to measure in the laminar flow region, the turbulent diffusion coefficient can be taken into consideration for the calculation.

【0013】次に、前述した高さHi以下の領域におい
て、本発明による測定結果が正しいか否か、即ち、本当
に水分が分子拡散でのみ輸送されているかどうかを検証
してみた。そのため、高さHiより低い範囲で得られた
絶対湿度勾配と、小カップの重量変化から求めた水分蒸
発量Evoを、(1)式の△θ/△n、Evにそれぞれ
代入し、分子拡散係数Dmを逆算してみた結果、高さH
i以下の領域を分子拡散の支配する層流域とすることの
妥当性が確認できた。即ち、このデータ比較の結果は、
図4から明らかなように、本発明の水分蒸発量測定装置
による水分蒸発量測定出力Ev(黒点)も、小カップの
重量変化から求めた水分蒸発量Evoの45度の点線に
ほぼ重なる結果が得られた。なお、前記の小カップの重
量変化から求める方法では、変化をはっきり計測するま
で1〜2時間程度掛かるが、本発明の水分蒸発量測定に
おいては、センサーを測定対象面に設置してから、安定
的出力が測定ができるまでの時間が、例えば60秒と極
めて短く、かつ測定開始後は連続的な変化を出力するこ
とができるものである。
Next, it was verified whether or not the measurement result according to the present invention is correct, that is, whether or not water is actually transported only by molecular diffusion in the region of the height Hi or lower. Therefore, the absolute humidity gradient obtained in the range lower than the height Hi and the water evaporation amount Evo obtained from the weight change of the small cup are substituted into Δθ / Δn and Ev in the equation (1), respectively, and the molecular diffusion is performed. As a result of back-calculating the coefficient Dm, the height H
It was confirmed that the region below i is the laminar flow region where molecular diffusion controls. That is, the result of this data comparison is
As is clear from FIG. 4, the moisture evaporation amount measurement output Ev (black dot) by the moisture evaporation amount measuring device of the present invention is also almost overlapped with the 45 degree dotted line of the moisture evaporation amount Evo obtained from the weight change of the small cup. Was obtained. In the method of obtaining the weight change of the small cup, it takes about 1 to 2 hours to measure the change clearly, but in the moisture evaporation measurement of the present invention, it is stable after the sensor is installed on the surface to be measured. It takes a very short time, for example, 60 seconds, until the target output can be measured, and a continuous change can be output after the start of the measurement.

【0014】[0014]

【発明の効果】以上詳細に説明したように、本発明は2
組の温度・湿度センサーを備えた検出部を測定対象物質
面近くに配置し、その温度・湿度センサーの測定データ
および関係係数等から水分蒸発量を求めるものであるた
め、次のような種々の優れた作用効果を奏するものであ
る。 地表面等の測定対象面からの水分蒸発量を、直接的
に測定できるものであるため、測定ポイントを破壊する
ことなく正確に測定することができる。 センサー部分が小型であるため、測定対象物質面が
小さいもの、或いはポイント測定を行うことができる。
そのため、測定対象が土壌,岩盤,繊維,コンクリー
ト,植物,木材,紙,塗料,食物,樹脂など、様々な物
質の測定に適用できる。 微少な蒸発量であっても正確な測定が可能である。 測定対象物質面に設置してから測定開始可能までの
時間が短く、また連続的な測定も可能である。 水平面だけでなく、岩盤等の壁面からの蒸発量の測
定も可能である。 測定装置が小型・軽量であるため、持ち運びに極め
て便利である。
As described above in detail, the present invention has two advantages.
The detection unit equipped with a pair of temperature / humidity sensors is placed near the surface of the substance to be measured, and the amount of water evaporation is calculated from the measured data of the temperature / humidity sensor and the coefficient of relation. It has excellent effects. Since the amount of water evaporated from the surface to be measured such as the ground surface can be directly measured, it can be accurately measured without destroying the measurement point. Since the sensor portion is small, it is possible to perform a point measurement with a small surface of the substance to be measured.
Therefore, the measurement target can be applied to the measurement of various substances such as soil, bedrock, fiber, concrete, plant, wood, paper, paint, food and resin. Accurate measurement is possible even with a small amount of evaporation. The time from installation on the surface of the substance to be measured until the start of measurement is short, and continuous measurement is possible. It is possible to measure the amount of evaporation not only from the horizontal surface but also from the wall surface of rock. Since the measuring device is small and lightweight, it is extremely convenient to carry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック構成図であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明における温度・湿度センサー部分を説明
する図面である。
FIG. 2 is a diagram illustrating a temperature / humidity sensor portion of the present invention.

【図3】地表面上の風速と、鉛直方向絶対湿度の分布図
である。
FIG. 3 is a distribution diagram of wind speed on the ground surface and vertical absolute humidity.

【図4】重量変化から求めた蒸発量と、本発明の水分蒸
発量測定装置による蒸発量とを比較した図面である。
FIG. 4 is a diagram comparing an evaporation amount obtained from a change in weight with an evaporation amount measured by a water evaporation amount measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1,2 温度・湿度センサー 1a,2a 温度センサー 1b.2b 湿度センサー 3 固定具 4 検出部 5 保護カバー 6 接続コード 7 測定装置本体 8 A/D変換回路 9 絶対湿度演算回路 10 水分蒸発量演算回路 11 表示部 12 D/A変換回路 13 RS−232C出力回路 14 移動平均演算回路 15 風速センサー 16 気圧センサー 1, 2 temperature / humidity sensor 1a, 2a temperature sensor 1b. 2b Humidity sensor 3 Fixture 4 Detecting part 5 Protective cover 6 Connection cord 7 Measuring device body 8 A / D conversion circuit 9 Absolute humidity calculation circuit 10 Moisture evaporation amount calculation circuit 11 Display part 12 D / A conversion circuit 13 RS-232C output Circuit 14 Moving average calculation circuit 15 Wind speed sensor 16 Atmospheric pressure sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 温度および相対湿度を測定するための温
度センサーおよび湿度センサーを一体とした温度・湿度
センサー2組を測定面に対して距離差をもって配置され
るために所定間隔で設けられた検出部と、この検出部に
よって検出されたそれぞれの相対湿度と測定温度に対す
る飽和水蒸気圧、標準気圧等からそれぞれの絶対湿度を
求める第1の演算回路と、この第1の演算回路によって
求められたそれぞれの絶対湿度の差と前記検出部の両温
度・湿度センサーの距離差とから絶対湿度勾配を求める
と共に、空気中の水分の分子拡散係数から蒸発量を求め
る第2の演算回路と、この第2の演算回路によって求め
られた蒸発量を表示する表示部とを備え、前記2組の温
度・湿度センサーを被測定物質面の層流層内に配置して
蒸発量を測定するようにした水分蒸発量測定装置。
1. A detection provided at predetermined intervals so that two sets of temperature / humidity sensors, which are integrated with a temperature sensor and a humidity sensor for measuring temperature and relative humidity, are arranged with a distance difference with respect to a measurement surface. Section, a first arithmetic circuit for obtaining respective absolute humidity from the relative humidity detected by the detecting section, saturated water vapor pressure with respect to the measured temperature, standard atmospheric pressure, etc., and each obtained by the first arithmetic circuit. A second arithmetic circuit for obtaining an absolute humidity gradient from the difference in absolute humidity of the sensor and the distance difference between both temperature / humidity sensors of the detection unit, and also obtaining the evaporation amount from the molecular diffusion coefficient of moisture in the air; And a display section for displaying the evaporation amount obtained by the arithmetic circuit of 1., and the evaporation amount is measured by arranging the two sets of temperature and humidity sensors in the laminar layer on the surface of the substance to be measured. A device for measuring water evaporation.
【請求項2】 前記第2の演算回路によって求められた
蒸発量を、所定時間の移動平均値として求める第3の演
算回路を付加し、この第3の演算回路により移動平均さ
れた蒸発量を前記表示部に表示するようにした請求項1
に記載の水分蒸発量測定装置。
2. A third arithmetic circuit for determining the evaporation amount obtained by the second arithmetic circuit as a moving average value for a predetermined time is added, and the evaporation amount obtained by the moving average by the third arithmetic circuit is added. The display is made on the display unit.
The apparatus for measuring the amount of water evaporation according to.
【請求項3】 被測定物質面の層流層内に、ある距離差
をもって配置された2組の温度・湿度センサーにより各
々の温度と相対湿度を測定し、この相対湿度と測定温度
に対する飽和水蒸気圧、標準気圧等から各々の絶対湿度
を求め、この各々の絶対湿度の差と前記2つの温度・湿
度センサーの距離差とから絶対湿度勾配を求めると共
に、この絶対湿度勾配に空気中の水分の分子拡散係数を
乗じて蒸発量を求めるようにした水分蒸発量測定方法。
3. The temperature and relative humidity are measured by two sets of temperature / humidity sensors arranged with a certain distance difference in the laminar flow layer on the surface of the material to be measured, and saturated steam corresponding to the relative humidity and the measured temperature is measured. Each absolute humidity is calculated from the pressure, standard atmospheric pressure, etc., and the absolute humidity gradient is calculated from the difference between the absolute humidity and the distance difference between the two temperature / humidity sensors. A method for measuring the amount of evaporation of water by multiplying the molecular diffusion coefficient to determine the amount of evaporation.
JP6145293A 1993-02-26 1993-02-26 Apparatus and method for measuring moisture evaporation amount Pending JPH06249796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6145293A JPH06249796A (en) 1993-02-26 1993-02-26 Apparatus and method for measuring moisture evaporation amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6145293A JPH06249796A (en) 1993-02-26 1993-02-26 Apparatus and method for measuring moisture evaporation amount

Publications (1)

Publication Number Publication Date
JPH06249796A true JPH06249796A (en) 1994-09-09

Family

ID=13171459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6145293A Pending JPH06249796A (en) 1993-02-26 1993-02-26 Apparatus and method for measuring moisture evaporation amount

Country Status (1)

Country Link
JP (1) JPH06249796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014635A (en) * 2007-07-09 2009-01-22 Sumitomo Mitsui Construction Co Ltd Apparatus and facility for measuring amount of dissipated moisture
JP2019179044A (en) * 2019-07-25 2019-10-17 国立研究開発法人農業・食品産業技術総合研究機構 Measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014635A (en) * 2007-07-09 2009-01-22 Sumitomo Mitsui Construction Co Ltd Apparatus and facility for measuring amount of dissipated moisture
JP2019179044A (en) * 2019-07-25 2019-10-17 国立研究開発法人農業・食品産業技術総合研究機構 Measurement device

Similar Documents

Publication Publication Date Title
Nicholls Measurements of turbulence by an instrumented aircraft in a convective atmospheric boundary layer over the sea
Liu et al. A modified Bowen ratio method to determine sensible and latent heat fluxes
Desjardins et al. Limitations of an eddy-correlation technique for the determination of the carbon dioxide and sensible heat fluxes
Heikinheimo et al. Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods
US20090319189A1 (en) Low cost, unattended weather sensor
ES2201407T3 (en) PROCEDURE TO DETERMINE THE STRATEGY OF A SALT.
Tsvang et al. A comparison of turbulence measurements by different instruments; Tsimlyansk field experiment 1970
Sauer 5.5 Heat flux density
Ono et al. Apparent downward CO 2 flux observed with open-path eddy covariance over a non-vegetated surface
US20100191496A1 (en) Method for compensating for temperature measurement error in a sond
Wulfmeyer et al. Twenty-four-hour observations of the marine boundary layer using shipborne NOAA high-resolution Doppler lidar
Cain et al. Spatially averaged sensible heat fluxes measured over barley
Mölder et al. Thermal roughness length of a boreal forest
JPH06249796A (en) Apparatus and method for measuring moisture evaporation amount
Ukita et al. Thermal and wind effects on the azimuth axis tilt of the ASTE 10-m antenna
GB2568885A (en) Methods and apparatus for performance testing of human powered vehicles
Arnold et al. Tomographic monitoring of wind and temperature at different heights above the ground
Donelan et al. Apparatus for atmospheric surface layer measurements over waves
Nicholls et al. The structure of the turbulent atmospheric boundary layer
US10436585B2 (en) Method for compensating for Venturi effects on pressure sensors in moving water
Ostapoff Some tests on the radiosonde humidity error
CN101825448B (en) Method for determining included angle between lens plane of thermal infrared imager and plane to be measured
Lindelöw et al. Wind shear proportional errors in the horizontal wind speed sensed by focused, range gated lidars
McNaughton Surface temperature and the surface energy balance: Commentary
JPS5777967A (en) Measuring device for wind direction and wind velocity