JPH06249606A - Strain sensor - Google Patents

Strain sensor

Info

Publication number
JPH06249606A
JPH06249606A JP3643793A JP3643793A JPH06249606A JP H06249606 A JPH06249606 A JP H06249606A JP 3643793 A JP3643793 A JP 3643793A JP 3643793 A JP3643793 A JP 3643793A JP H06249606 A JPH06249606 A JP H06249606A
Authority
JP
Japan
Prior art keywords
thin film
strain
strain sensor
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3643793A
Other languages
Japanese (ja)
Other versions
JP2634753B2 (en
Inventor
Toshio Kaneko
俊夫 金子
Hiroshi Otsuki
浩 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP3643793A priority Critical patent/JP2634753B2/en
Publication of JPH06249606A publication Critical patent/JPH06249606A/en
Application granted granted Critical
Publication of JP2634753B2 publication Critical patent/JP2634753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve the performance and mass-productivity of a strain sensor by forming the pattern of a strain resistance material after forming an electrically insulating thin film having a special material constitution on the surface of a substrate. CONSTITUTION:An electrically insulating thin film is formed of a multiplayered film of a composite material of aluminum oxide and aluminum nitride and a silicon oxide layer. It is preferable to use a metallic substrate for the substrate of the thin film. The composite material is formed by performing sputtering in an inert gas atmosphere containing nitrogen by using, for example, an aluminum oxide target. The silicon oxide layer is formed by a CVD method by using, for example, a silicon compound. After forming the thin film electric resistor in such a way, a metallic thin film is formed on the terminal section of the electric resistor for fitting lead wires.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は歪センサに関し、特に機
械部品などに取り付けてそれらの使用中に発生する歪み
量を検知するための薄膜歪センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strain sensor, and more particularly to a thin film strain sensor which is attached to a mechanical part or the like to detect the amount of strain generated during use thereof.

【0002】[0002]

【従来の技術】機械部品が使用中に発生する歪み量を検
知するにあたって歪センサを用いることは公知である。
このような機械部品は狭い場所に取り付けられたり、又
使用環境が室内環境とは大幅に異なったりすることがあ
り、そのような場合に利用することができる小型で信頼
性の高い歪センサが望まれている。
2. Description of the Related Art It is known to use strain sensors to detect the amount of strain that mechanical parts generate during use.
Such mechanical parts may be installed in a narrow space, or the operating environment may differ significantly from the indoor environment.Therefore, there is a demand for a small and highly reliable strain sensor that can be used in such cases. It is rare.

【0003】こうした要求に応える歪センサとして、例
えば金属起歪体上に酸化珪素膜を蒸着したうえNi及び
Crを主体とする抵抗材料を蒸着して薄膜抵抗を形成
し、更に薄膜抵抗の一端にリード接続のための端子を蒸
着した歪ゲージが提案されており(特開昭48−309
55)、また物品の表面上にアルミナなどの絶縁フィル
ムを形成し、その上にひずみ感知抵抗材料のパターンを
形成したうえこのパターンを電気接続する導通手段を形
成し、これらの上を絶縁フィルムで被覆した薄膜ひずみ
計も提案されている(特開昭53−44052)。
As a strain sensor which meets such a demand, for example, a silicon oxide film is vapor-deposited on a metal strain body, and a resistive material mainly containing Ni and Cr is vapor-deposited to form a thin film resistor. Further, one end of the thin film resistor is formed. A strain gauge in which terminals for lead connection are vapor-deposited has been proposed (JP-A-48-309).
55), and forming an insulating film of alumina or the like on the surface of the article, forming a pattern of the strain sensing resistance material on it, and forming conductive means for electrically connecting this pattern, and forming an insulating film on these. A coated thin film strain gauge has also been proposed (JP-A-53-44052).

【0004】[0004]

【発明が解決しようとする課題】このような歪センサは
通常金属製の機械部品等の面上に確実に固定して用いら
れるので、センサの基板材料として金属が用いられるこ
とが普通であった。そして特に高温度などの過酷な環境
下での測定が必要な場合には、従来技術の歪センサでは
基板と抵抗体との間の絶縁性が不十分であるという問題
があった。しかし絶縁性を高めるために基板上に設けら
れる絶縁膜を厚く形成すると、歪センサが全体として厚
くかつ大型となって薄膜型センサを用いるという利点が
失われてしまう。その上、従来の薄膜型歪センサは絶縁
性能のバラツキが大きく、製造に際して多数の製品が不
良品となってしまうという問題があった。
Since such a strain sensor is normally fixed and used on the surface of a metal mechanical part or the like, a metal is usually used as a substrate material of the sensor. . When the measurement is required especially under a severe environment such as high temperature, the conventional strain sensor has a problem that the insulation between the substrate and the resistor is insufficient. However, if the insulating film provided on the substrate is formed thick in order to improve the insulating property, the strain sensor becomes thick and large as a whole, and the advantage of using the thin film sensor is lost. In addition, the conventional thin film strain sensor has a large variation in insulation performance, and there is a problem in that many products become defective during manufacturing.

【0005】そこで本発明は、厚さが薄くて絶縁性が優
れた絶縁膜を基板と抵抗体との間に設けることにより、
高性能で信頼性が高くかつ量産に適した薄型の歪センサ
を提供することを目的としたものである。
Therefore, according to the present invention, by providing an insulating film having a small thickness and excellent in insulating property between the substrate and the resistor,
The object is to provide a thin strain sensor having high performance, high reliability, and suitable for mass production.

【0006】[0006]

【課題を解決するための手段】上記の本発明の目的は、
基材上に電気絶縁体薄膜と歪感知用電気抵抗体薄膜とを
積層し、更に該歪感知用電気抵抗体薄膜の電極部の上に
金属薄膜電極を積層してなる歪センサにおいて、前記電
気絶縁体薄膜が酸化アルミニウムと窒化アルミニウムと
の複合物層と酸化珪素層との積層体膜から形成されてい
ることを特徴とする歪センサによって達成される。
The above object of the present invention is to:
A strain sensor comprising an electric insulator thin film and a strain sensing electric resistor thin film laminated on a substrate, and a metal thin film electrode further laminated on an electrode portion of the strain sensing electric resistor thin film, wherein This is achieved by a strain sensor characterized in that the insulating thin film is formed of a laminated film of a composite layer of aluminum oxide and aluminum nitride and a silicon oxide layer.

【0007】本発明の歪センサにおいて用いられる基材
としては、機械部品等の面に固定する手段を任意に選択
できるところから金属性の基材が好ましく用いられる
が、特に制限されるものではない。
As the base material used in the strain sensor of the present invention, a metal base material is preferably used because it is possible to arbitrarily select a means for fixing it to the surface of a mechanical part or the like, but it is not particularly limited. .

【0008】また本発明の歪センサにおいて、基材上に
設けられる電気絶縁体薄膜は酸化アルミニウムと窒化ア
ルミニウムとの複合物層と酸化珪素層との積層体膜から
形成されるものであるが、かかる酸化アルミニウムと窒
化アルミニウムとの複合物層は、例えば酸化アルミニウ
ムのターゲットを用い、窒素を含むアルゴン等の不活性
ガス雰囲気中でスパッタリング成膜を行うことにより得
ることができる。
Further, in the strain sensor of the present invention, the electric insulator thin film provided on the substrate is formed of a laminated film of a composite layer of aluminum oxide and aluminum nitride and a silicon oxide layer. Such a composite layer of aluminum oxide and aluminum nitride can be obtained by, for example, using an aluminum oxide target and performing sputtering film formation in an atmosphere of an inert gas such as argon containing nitrogen.

【0009】このような複合物層には酸化珪素層が積層
されるが、かかる酸化珪素層は例えば珪素化合物を用い
てCVD法により成膜するか、或いは珪酸化合物系塗料
を塗布するなどの方法により得ることができる。こうし
て得られた酸化アルミニウムと窒化アルミニウムとの複
合物層と酸化珪素層との積層体膜はそのまま電気絶縁体
薄膜として用いてもよいが、更にその上に複合物層を積
層し或いは複合物層と酸化珪素層とを交互に順次積層し
て多数層構成とした電気絶縁体薄膜として用いてもよ
い。
A silicon oxide layer is laminated on such a composite layer, and such a silicon oxide layer is formed by, for example, a CVD method using a silicon compound or by applying a silicate compound coating material. Can be obtained by The laminate film of the composite layer of aluminum oxide and aluminum nitride and the silicon oxide layer thus obtained may be used as it is as an electrical insulator thin film, but a composite layer may be further laminated thereon or a composite layer. It may be used as an electrical insulator thin film having a multi-layered structure by alternately laminating and silicon oxide layers.

【0010】本発明の歪センサにおいて用いられる歪感
知用電気抵抗体薄膜は、例えば従来公知の白金系、ニッ
ケル・クロム系、シリコン系などの電気抵抗材料を、蒸
着やスパッタリングなどの方法、或いは印刷などの方法
で使用目的に応じたパターンに合わせて成膜して得るこ
とができるが、特に限定されるものではない。
The strain sensing electric resistor thin film used in the strain sensor of the present invention is made of a conventionally known platinum-based, nickel-chromium-based or silicon-based electrical resistance material by a method such as vapor deposition or sputtering, or by printing. It can be obtained by forming a film in accordance with a pattern according to the purpose of use, etc., but is not particularly limited.

【0011】本発明の歪センサは、こうして形成された
薄膜状の電気抵抗体の端子部上にリード線を取り付ける
ための金属薄膜を積層成膜してあるものであるが、更に
このような構造に加えて、その表面に外界雰囲気から保
護するための被膜を設けてもよく、かかる保護被膜は耐
酸化性や耐食性ばかりでなく電気絶縁性を有しているほ
か電磁遮蔽性などを備えているものであれば一層好まし
い。
In the strain sensor of the present invention, a thin metal film for attaching a lead wire is laminated and formed on the terminal portion of the thin film electric resistor thus formed. In addition to this, a coating may be provided on its surface to protect it from the external atmosphere. Such a protective coating has not only oxidation resistance and corrosion resistance but also electric insulation and electromagnetic shielding. If it is one, it is more preferable.

【0012】[0012]

【作用】本発明の歪センサは薄型であって、機械部品な
どの表面上に固定する際に取り付け位置での外面形状を
殆ど変化させることがない。そして取り付けられた歪セ
ンサには外部電源から端子部を介して電気抵抗体に電流
を流し、機械部品の表面で発生した歪みと同じ大きさの
歪みをうけた歪センサの電気抵抗体の抵抗変化を比較抵
抗体の抵抗値と比較して歪み検出を行うものであるが、
取り付けた機械部品などの応力−歪特性を害することな
く歪み量の正確な測定ができる。
The strain sensor of the present invention is thin and hardly changes the outer surface shape at the mounting position when it is fixed on the surface of a machine part or the like. Then, an electric current is applied to the attached strain sensor from an external power source through the terminal section to the electrical resistor, and the resistance of the electrical resistor of the strain sensor undergoes the same amount of strain as the strain generated on the surface of the mechanical component. Is compared with the resistance value of the comparative resistor to detect distortion,
Accurate measurement of the amount of strain can be performed without impairing the stress-strain characteristics of attached mechanical parts.

【0013】[0013]

【実施例】【Example】

(比較例1)表面を研磨した厚さ約3mmのクロム・ニッ
ケル系耐熱鋼板の基板をRFスパッタリング装置内に取
り付け、アルゴンとアルゴンに対して約10%の酸素と
を同時に導入して圧力を約10-2Torrに保ち、加熱した
基板の上に溶融アルミナのターゲットを用いてRFスパ
ッタリング成膜を行い、基板上に約2μmの厚さで10
mm×20mmのアルミナ絶縁膜を形成した。
(Comparative Example 1) A substrate made of a chromium / nickel heat-resistant steel plate having a thickness of about 3 mm and having a polished surface was mounted in an RF sputtering apparatus, and argon and oxygen of about 10% were simultaneously introduced to adjust the pressure to about 10. RF sputtering film formation was performed on a heated substrate while maintaining the temperature at 10 -2 Torr, and a thickness of about 2 μm was applied on the substrate.
An alumina insulating film of mm × 20 mm was formed.

【0014】次いでこのアルミナ絶縁膜の上に抵抗パタ
ーンを有するレジスト膜を形成し、ニッケル・クロム
(80/20)合金の厚さ0.1μmの抵抗体膜をRF
スパッタリング成膜したのち、更にこの抵抗体膜の両端
及び中央部から延長して設けられた電極部の上を開けた
電極パターンを有するレジスト膜を形成し、白金電極層
をRFスパッタリング成膜した。その後レジスト膜を剥
離して、白金電極が電極部の上に設けられたニッケル・
クロム抵抗体パターンを有する比較用の歪センサAを作
成した。
Next, a resist film having a resistance pattern is formed on the alumina insulating film, and a nickel-chromium (80/20) alloy film having a thickness of 0.1 μm is formed by RF.
After the sputtering film formation, a resist film having an open electrode pattern was formed on the electrode portions extending from both ends and the central portion of the resistor film, and the platinum electrode layer was formed by RF sputtering. After that, the resist film is peeled off, and the platinum electrode is placed on the electrode.
A comparative strain sensor A having a chrome resistor pattern was made.

【0015】(比較例2)比較例1と同様にして基板上
に約2μmの厚さのアルミナ層を形成したのちシロキサ
ンエステルを主剤とした塗料を塗布し、電気炉内で熱分
解処理して厚さ約0.1μmの酸化珪素層を積層形成し
た。こうして形成したアルミナ層と酸化珪素層との積層
絶縁膜の上に、比較例1と同様にして白金電極層を電極
部の上に設けたニッケル・クロム抵抗体パターンを形成
して、比較用の歪センサBを作成した。
(Comparative Example 2) In the same manner as in Comparative Example 1, an alumina layer having a thickness of about 2 μm was formed on a substrate, a coating material containing a siloxane ester as a main component was applied, and a thermal decomposition treatment was performed in an electric furnace. A silicon oxide layer having a thickness of about 0.1 μm was laminated. On the laminated insulating film of the alumina layer and the silicon oxide layer thus formed, a nickel-chromium resistor pattern in which a platinum electrode layer was provided on the electrode portion was formed in the same manner as in Comparative Example 1, and was used for comparison. A strain sensor B was created.

【0016】(実施例1)雰囲気ガス中に酸素の代わり
に窒素を加えた他は比較例1と同様にして、基板上に約
2μmの厚さの酸化アルミニウムと窒化アルミニウムと
の複合物層を形成し、更にその上に比較例2と同様にし
て厚さ約0.1μmの酸化珪素層を積層形成した。次い
で比較例1と同様にして上記の積層絶縁膜の上に電極層
を設けた抵抗体パターンを形成して、本発明の歪センサ
Cを作成した。
Example 1 A composite layer of aluminum oxide and aluminum nitride having a thickness of about 2 μm was formed on a substrate in the same manner as in Comparative Example 1 except that nitrogen was added to the atmospheric gas instead of oxygen. Then, a silicon oxide layer having a thickness of about 0.1 μm was laminated thereon in the same manner as in Comparative Example 2. Then, in the same manner as in Comparative Example 1, a resistor pattern having an electrode layer provided on the above laminated insulating film was formed to prepare a strain sensor C of the present invention.

【0017】(試験例)良品率試験 上記の各歪センサのそれぞれ100個について基板と電
極との間に10Vの直流電圧を印加して絶縁抵抗を測定
し、常温で絶縁抵抗値が2000MΩ以上であるものの
割合を求めて、良品率(%)として表1に示した。
(Test Example) Non-defective rate test Insulation resistance was measured by applying a DC voltage of 10 V between the substrate and the electrode for each of the above 100 strain sensors, and the insulation resistance value was 2000 MΩ or more at room temperature. The ratio of certain products was determined and shown in Table 1 as the non-defective product ratio (%).

【0018】耐電圧性試験 又、上記の良品率試験に合格した各歪センサについて印
加電圧を徐々に高めて絶縁抵抗の変化を測定し、絶縁抵
抗値が1000MΩ以下となる電圧を求めて耐電圧性
(V)とし、そのバラツキの範囲を表1に併せて示し
た。
Withstand voltage test In addition, with respect to each strain sensor that passed the above-mentioned non-defective rate test, the applied voltage was gradually increased to measure the change in the insulation resistance, and the voltage at which the insulation resistance value was 1000 MΩ or less was obtained to obtain the withstand voltage. (V), and the range of the variation is also shown in Table 1.

【0019】温度特性試験 更に前記の良品率試験に合格した各歪センサについて絶
縁抵抗測定時の環境温度を変化させて直流10Vにおけ
る絶縁抵抗値の変化を調べ、絶縁抵抗値が500MΩに
低下する温度を求めた結果を表1に併せて示した。
Temperature characteristic test Further, with respect to each strain sensor which passed the above non-defective rate test, the environmental temperature at the time of measuring the insulation resistance was changed to examine the change of the insulation resistance value at DC 10V, and the temperature at which the insulation resistance value dropped to 500 MΩ. The results obtained are also shown in Table 1.

【0020】[0020]

【表1】 ────────────────────────────────── 歪センサ 良品率(%) 耐電圧性(V) 温度特性(℃) ────────────────────────────────── A* 10 10 〜 30 200 〜 250 B* 27 20 〜 30 250 〜 300 C 73 50 〜 60 300 〜 350 ────────────────────────────────── * : 比較例[Table 1] ────────────────────────────────── Strain sensor Good product rate (%) Withstand voltage (V ) Temperature characteristics (℃) ────────────────────────────────── A * 10 10 〜 30 200 〜 250 B * 27 20 to 30 250 to 300 C 73 50 to 60 300 to 350 ─────────────────────────────────── *: Comparative example

【0021】[0021]

【発明の効果】本発明の歪センサは、特殊な材料構成の
電気絶縁体薄膜を基材面上に設けたうえ歪抵抗材料のパ
ターンを形成したもので、従来の公知材料から成る電気
絶縁体薄膜を設けたものに比べて際立って絶縁特性が優
れているばかりでなく信頼性が高く、品質の揃った歪セ
ンサを効率的に生産することができる。
The strain sensor of the present invention comprises an electrical insulator thin film of a special material structure provided on the surface of a substrate and a pattern of a strain resistance material formed thereon. Not only is the insulating property remarkably excellent as compared with the thin film-provided one, but also the reliability is high and a strain sensor of uniform quality can be efficiently produced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材上に電気絶縁体薄膜と歪感知用電気
抵抗体薄膜とを積層し、更に該歪感知用電気抵抗体薄膜
の電極部の上に金属薄膜電極を積層してなる歪センサに
おいて、前記電気絶縁体薄膜が酸化アルミニウムと窒化
アルミニウムとの複合物層と酸化珪素層との積層体膜か
ら形成されていることを特徴とする歪センサ。
1. A strain formed by laminating an electric insulator thin film and a strain sensing electric resistor thin film on a substrate, and further laminating a metal thin film electrode on an electrode portion of the strain sensing electric resistor thin film. In the sensor, the strain sensor, wherein the electrical insulator thin film is formed of a laminate film of a composite layer of aluminum oxide and aluminum nitride and a silicon oxide layer.
JP3643793A 1993-02-25 1993-02-25 Strain sensor Expired - Fee Related JP2634753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3643793A JP2634753B2 (en) 1993-02-25 1993-02-25 Strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3643793A JP2634753B2 (en) 1993-02-25 1993-02-25 Strain sensor

Publications (2)

Publication Number Publication Date
JPH06249606A true JPH06249606A (en) 1994-09-09
JP2634753B2 JP2634753B2 (en) 1997-07-30

Family

ID=12469794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3643793A Expired - Fee Related JP2634753B2 (en) 1993-02-25 1993-02-25 Strain sensor

Country Status (1)

Country Link
JP (1) JP2634753B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3965481B2 (en) * 1999-11-02 2007-08-29 株式会社アメニテックス Vital signs detector
JP2002017692A (en) * 2000-07-10 2002-01-22 Amenitex Inc Portable energy saving vitality checker

Also Published As

Publication number Publication date
JP2634753B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US4103275A (en) Resistance element for resistance thermometer and process for its manufacturing
JP3010166B2 (en) Thick film piezoresistor detection structure
EP0468429B1 (en) SiC thin-film thermistor and method of producing it.
JPH09145489A (en) Resistance thermometer
JPH0770366B2 (en) Electric resistor
KR970705012A (en) Temperature sensor element and method of manufacturing temperature sensor and temperature sensor element having same
US2962393A (en) Method of preparing electrical resistors
US4276535A (en) Thermistor
US4758814A (en) Structure and method for wire lead attachment to a high temperature ceramic sensor
JPH0376561B2 (en)
US20200271528A1 (en) Method for producing a sensor and sensor
US3705993A (en) Piezoresistive transducers and devices with semiconducting films and their manufacturing process
US5306873A (en) Load cell with strain gauges having low temperature dependent coefficient of resistance
US4309687A (en) Resistance strain gauge
JPH09162421A (en) Piezoresistance element and its manufacture
US2935717A (en) Metal film resistor and method of making the same
JP2634753B2 (en) Strain sensor
JP2585681B2 (en) Metal thin film resistive strain gauge
US4821011A (en) Pressure sensor
CN108369845A (en) Thermistor and the device for using thermistor
US3305816A (en) Ternary alloy strain gauge
WO2022092205A1 (en) Laminated film, manufacturing method therefor, and strain sensor
JP2018091705A (en) Strain resistance film and strain sensor for high temperature, and manufacturing method of them
US20240003762A1 (en) Strain sensor, functional film, and method for manufacturing same
JP4071458B2 (en) Manufacturing method of resistors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970218

LAPS Cancellation because of no payment of annual fees