JPH06249484A - Air conditioning device - Google Patents

Air conditioning device

Info

Publication number
JPH06249484A
JPH06249484A JP5035237A JP3523793A JPH06249484A JP H06249484 A JPH06249484 A JP H06249484A JP 5035237 A JP5035237 A JP 5035237A JP 3523793 A JP3523793 A JP 3523793A JP H06249484 A JPH06249484 A JP H06249484A
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
heat exchanger
refrigerant
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5035237A
Other languages
Japanese (ja)
Inventor
Takayuki Matsumoto
隆幸 松本
Yoshiaki Okubo
吉晃 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP5035237A priority Critical patent/JPH06249484A/en
Publication of JPH06249484A publication Critical patent/JPH06249484A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To remove frost assuredly and quickly while suppressing the cost of the device from increasing. CONSTITUTION:A compressor 11, outdoor heat-exchanger 13, expansion valve 15 and indoor heat-exchangers 16a-16d are orderly connected by conduits 17a-17f, and the temperature of a refrigerant which is drawn into the compressor 11 is detected by a first refrigerant temperature sensor 31, and a lower pressure equivalent saturation temperature is detected by a second refrigerant temperature sensor 32 respectively, and the degree of superheat is controlled by a control unit 1 based on the detected signals. Then, the difference between the temperature of the outside air which is detected by an outside air temperature sensor 34 and the temperature of the indoor heat-exchanger 13 which is detected by a single heat-exchanger temperature sensor 33 is obtained, and it is judged whether the difference is not more than a specified value or not. At the same time, when it is judged that the difference is not more than the specified value, it is judged whether the detected temperature of the second refrigerant temperature sensor 32 is not more than a specified value or not, and when the detected temperature is judged to be not more than the specified value, the defrosting control for the outdoor heat-exchanger 13 is started.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、寒冷期に室外熱交換器
を除霜する機能を備えた空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a function of defrosting an outdoor heat exchanger in the cold season.

【0002】[0002]

【従来の技術】従来、この種の空気調和装置として、例
えば図3に示すようなものが知られている。この空気調
和装置は、圧縮機11,四路切換弁12,ファン14をも
つ室外熱交換器13,電動式の膨張弁15および室内熱
交換器16a〜16dを順次管路17a〜17fで接続した
ヒートポンプ式冷媒回路で構成される。室内熱交換器1
6a〜16dは、液閉鎖弁18,ヘッダー19,各室内膨張
弁20a〜20dおよびヘッダー21,ガス閉鎖弁22を
介して、管路17dと17eの間に並列に接続されて複数
の室に配置される一方、管路17dにフィルタ24をも
つ受液器23を、管路17aに第1開閉弁25を夫々介
設し、第1開閉弁25の上流側と管路17cとを、第2
開閉弁27を介設したデフロスト管路26で接続してい
る。また、受液器23と管路17fを、キャピラリチュ
ーブ29を介設した管路28で接続し、キャピラリチュ
ーブ29の下流側の管路28に,低圧に相当する冷媒の
飽和温度を検出する第2冷媒温度センサ32を、管路1
7fに,圧縮機11に吸い込まれる冷媒の温度を検出する
第1冷媒温度センサ31を夫々設けている。さらに、室
外熱交換器13に熱交換器温度センサ33を、室外に外
気の温度を検出する外気温度センサ34を夫々設け、上
記各センサ31〜34の検出信号に基づいて冷媒回路の
各部を制御する制御部35を設けている。
2. Description of the Related Art Conventionally, an air conditioner of this type is known, for example, as shown in FIG. In this air conditioner, a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13 having a fan 14, an electric expansion valve 15 and indoor heat exchangers 16a to 16d are sequentially connected by pipelines 17a to 17f. It is composed of a heat pump type refrigerant circuit. Indoor heat exchanger 1
6a to 16d are connected in parallel between the conduits 17d and 17e via the liquid closing valve 18, the header 19, the indoor expansion valves 20a to 20d and the header 21, and the gas closing valve 22 and arranged in a plurality of chambers. On the other hand, the liquid receiver 23 having the filter 24 in the pipe line 17d and the first opening / closing valve 25 in the pipe line 17a are provided respectively, and the upstream side of the first opening / closing valve 25 and the pipe line 17c are connected to each other.
They are connected by a defrost pipe line 26 provided with an on-off valve 27. Further, the liquid receiver 23 and the pipe line 17f are connected by a pipe line 28 provided with a capillary tube 29, and the pipe line 28 on the downstream side of the capillary tube 29 detects the saturation temperature of the refrigerant corresponding to the low pressure. 2 Refrigerant temperature sensor 32
A first refrigerant temperature sensor 31 for detecting the temperature of the refrigerant sucked into the compressor 11 is provided at each of 7f. Further, a heat exchanger temperature sensor 33 is provided in the outdoor heat exchanger 13, and an outdoor air temperature sensor 34 that detects the temperature of outdoor air is provided outdoors, respectively, and each part of the refrigerant circuit is controlled based on the detection signals of the sensors 31 to 34. There is provided a control unit 35 for controlling.

【0003】制御部35は、暖房運転時には、第1開閉
弁25を開き,第2開閉弁27を閉じ、四路切換弁12
を破線で示す通路に切り換え、圧縮機1から吐出された
ガス冷媒を、図3の実線矢印の如く、室内熱交換器16
a〜16dで凝縮させ、室外熱交換器13で蒸発させるよ
うに循環させる。一方、冷房運転時には、四路切換弁1
2を実線で示す通路に切り換え、吐出ガス冷媒を図3の
破線矢印の如く、室内熱交換器16a〜16dで蒸発さ
せ、室外熱交換器13で凝縮させるように循環させる。
そして、冷暖房いずれの場合も、第1冷媒温度センサ3
1の検出する圧縮機への吸込冷媒温度Daと、第2冷媒
温度センサ32が検出する低圧相当飽和温度Deとの差
(Da−De)が、所定の値(過熱度)になるように、膨張弁
15の開度および圧縮機11の回転数を制御するととも
に、室内膨張弁20a〜20dの開度を調整して、各室の
蒸発冷媒の過熱度や各室への冷媒分配量を制御する。
During heating operation, the control unit 35 opens the first on-off valve 25, closes the second on-off valve 27, and closes the four-way switching valve 12
To the passage indicated by the broken line, and the gas refrigerant discharged from the compressor 1 is transferred to the indoor heat exchanger 16 as indicated by the solid line arrow in FIG.
It is condensed in a to 16d and circulated so as to be evaporated in the outdoor heat exchanger 13. On the other hand, during cooling operation, the four-way switching valve 1
2 is switched to the passage shown by the solid line, and the discharged gas refrigerant is circulated so as to be evaporated in the indoor heat exchangers 16a to 16d and condensed in the outdoor heat exchanger 13 as shown by the broken line arrow in FIG.
Then, in both cases of cooling and heating, the first refrigerant temperature sensor 3
Difference between the suction refrigerant temperature Da to the compressor detected by No. 1 and the low pressure equivalent saturation temperature De detected by the second refrigerant temperature sensor 32.
The opening degree of the expansion valve 15 and the rotation speed of the compressor 11 are controlled and the opening degrees of the indoor expansion valves 20a to 20d are adjusted so that (Da-De) becomes a predetermined value (superheat degree). , The degree of superheat of the evaporated refrigerant in each chamber and the amount of refrigerant distributed to each chamber are controlled.

【0004】また、制御部35は、暖房運転の際に、熱
交換器温度センサ33の検出温度Dcが所定値(例えば0
℃)以下か否かで、室外熱交換器13への霜の付着の有
無を判別し、霜の付着有と判別すると、室外ファン14
と各室内ファンを停止し、四路切換弁12を暖房運転位
置にしたまま、第1開閉弁25および膨張弁15を閉
じ,第2開閉弁27を開く。すると、圧縮機11からの
高温の吐出ガス冷媒が、図3の一点鎖線矢印のごとく、
デフロスト管路26から室外熱交換器13に流れて、付
着していた霜が除去される。
Further, during the heating operation, the control unit 35 causes the temperature Dc detected by the heat exchanger temperature sensor 33 to have a predetermined value (for example, 0).
(° C) or less, it is determined whether or not frost is attached to the outdoor heat exchanger 13, and when it is determined that frost is attached, the outdoor fan 14
Then, the indoor fans are stopped, the first opening / closing valve 25 and the expansion valve 15 are closed, and the second opening / closing valve 27 is opened while the four-way switching valve 12 is kept in the heating operation position. Then, the high-temperature discharge gas refrigerant from the compressor 11 changes as indicated by the one-dot chain line arrow in FIG.
Flowing from the defrost pipe line 26 to the outdoor heat exchanger 13, the frost adhering thereto is removed.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記従来の
空気調和装置は、循環する冷媒が、分流器30によって
分岐されてから多パスで室外熱交換器13を流れるもの
であるため、運転状態によっては、各パス間に冷媒流量
の差つまり偏流が生じる。そのため、室外熱交換器13
の熱交換器温度センサ33が設けられた箇所が、偏流で
冷媒流量の減ったパスに該当する場合は、上記センサ3
3の検出温度Dcが本来の温度よりも高めになって適切
な測温ができず、0℃以下で室外熱交換器に着霜の虞が
あるにも拘わらず、除霜運転が開始されないことにな
る。かかる事態を放置すれば、空気調和装置の能力低下
や圧縮機の故障等をもたらす。このような問題を解決す
るには、室外熱交換器13の各パスごとに温度センサを
取り付け、これらの温度センサの検出温度のうち最も低
いもので着霜の虞れを判断すれば良いが、そうすると、
数個の温度センサが必要になって、空気調和装置の製品
価格の上昇を招くという問題がある。
However, in the above-described conventional air conditioner, the circulating refrigerant flows through the outdoor heat exchanger 13 in multiple passes after being branched by the flow divider 30. Causes a difference in the flow rate of the refrigerant between the passes, that is, a drift. Therefore, the outdoor heat exchanger 13
If the location where the heat exchanger temperature sensor 33 is provided corresponds to a path where the flow rate of the refrigerant is reduced due to uneven flow, the sensor 3 is used.
Detected temperature Dc of 3 is higher than the original temperature and proper temperature measurement cannot be performed, and defrosting operation is not started even if the outdoor heat exchanger may frost at 0 ° C or less. become. If such a situation is neglected, the capacity of the air conditioner will be deteriorated and the compressor will malfunction. In order to solve such a problem, a temperature sensor may be attached to each path of the outdoor heat exchanger 13, and the risk of frost formation may be determined by the lowest temperature detected by these temperature sensors. Then,
There is a problem that several temperature sensors are required, which causes an increase in the product price of the air conditioner.

【0006】そこで、本発明の目的は、室外熱交換器の
温度センサ以外の既存の温度センサを利用して、着霜を
的確に検知する手法を工夫することによって、製品コス
トを上昇させることなく除霜運転を適切に行なうことが
できる空気調和装置を提供することにある。
Therefore, an object of the present invention is to improve the cost of the product by devising a method of accurately detecting frost formation by utilizing an existing temperature sensor other than the temperature sensor of the outdoor heat exchanger. An object is to provide an air conditioner that can appropriately perform defrosting operation.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の空気調和装置は、図1に例示するように、
圧縮機11、蒸発器として動作しうる室外熱交換器1
3、膨張弁15及び凝縮器として動作しうる室内熱交換
器16a〜16dを順次管路17a〜17fで接続し、上記
管路17fに圧縮機11に吸い込まれる冷媒の温度Daを
検出する第1冷媒温度センサ31及び低圧に相当する冷
媒の飽和温度Deを検出する第2冷媒温度センサ32を
設けたヒートポンプ式冷媒回路と、上記第1,第2冷媒
温度センサ31,32の検出信号の差が所定値になるよ
うに上記膨張弁15の開度および圧縮機11の回転数を
制御する制御部1を備えたものにおいて、外気の温度を
検出する外気温度センサ34と、上記室外熱交換器の温
度を検出する単一の熱交換器温度センサ33と、運転時
に外気温度センサ34,熱交換器温度センサ33との両
検出信号に基づいて外気温度Doと室外熱交換器温度Dc
の差を求め、この差(Do−Dc)が一定値α以下か否かを
判別する偏流判別手段1と、この偏流判別手段1が肯と
判別した場合、上記熱交換器温度センサ33の検出信号
に代えて、上記第2冷媒温度センサ32の検出信号が表
わす温度Deが一定値β以下であるか否かを判別し、肯
と判別したとき、上記室外熱交換器13を除霜する制御
を開始する除霜制御開始手段1を備えたことを特徴とす
る。
In order to achieve the above object, the air conditioner of the present invention is, as illustrated in FIG.
Compressor 11 and outdoor heat exchanger 1 that can operate as an evaporator
3, the expansion valve 15 and the indoor heat exchangers 16a to 16d capable of operating as condensers are sequentially connected by the pipelines 17a to 17f, and the pipeline Da is used to detect the temperature Da of the refrigerant sucked into the compressor 11. The difference between the heat pump type refrigerant circuit provided with the refrigerant temperature sensor 31 and the second refrigerant temperature sensor 32 for detecting the saturation temperature De of the refrigerant corresponding to the low pressure and the detection signals of the first and second refrigerant temperature sensors 31, 32 is In the one provided with the control unit 1 for controlling the opening degree of the expansion valve 15 and the rotation speed of the compressor 11 so as to be a predetermined value, the outside air temperature sensor 34 for detecting the temperature of the outside air and the outdoor heat exchanger. The outside air temperature Do and the outside heat exchanger temperature Dc are detected based on the detection signals of the single heat exchanger temperature sensor 33 that detects the temperature and the outside air temperature sensor 34 and the heat exchanger temperature sensor 33 during operation.
Of the heat exchanger temperature sensor 33. When the difference (Do-Dc) is equal to or less than a constant value α, the deviation determination unit 1 determines whether the difference is greater than a certain value α. Instead of a signal, it is determined whether or not the temperature De represented by the detection signal of the second refrigerant temperature sensor 32 is equal to or lower than a constant value β, and when it is determined to be affirmative, control for defrosting the outdoor heat exchanger 13 The defrosting control starting means 1 for starting is provided.

【0008】[0008]

【作用】暖房運転時は、圧縮機11から吐出されたガス
冷媒が、室内熱交換器16a〜16dで凝縮し、室外熱交
換器13で蒸発するように冷媒回路を循環し、かつ、第
1冷媒温度センサ31が検出する圧縮機への吸込冷媒温
度Daと,第2冷媒温度センサ32が検出する低圧相当飽
和温度Deとの差(Da−De)が所定値になるように、制
御部1によって、膨張弁15の開度および圧縮機11の
回転数が制御(過熱度制御)される。
During the heating operation, the gas refrigerant discharged from the compressor 11 circulates in the refrigerant circuit so that it is condensed in the indoor heat exchangers 16a to 16d and evaporated in the outdoor heat exchanger 13, and the first refrigerant is used. The control unit 1 controls the difference (Da-De) between the suction refrigerant temperature Da to the compressor detected by the refrigerant temperature sensor 31 and the low pressure equivalent saturation temperature De detected by the second refrigerant temperature sensor 32 to be a predetermined value. Thus, the opening degree of the expansion valve 15 and the rotation speed of the compressor 11 are controlled (superheat degree control).

【0009】今、寒冷期の暖房運転開始時または運転中
に、室外熱交換器13に霜が着いたとする。偏流判別手
段1は、外気温度センサ34が検出する外気温度Doと,
熱交換器温度センサ33が検出する室外熱交換器13の
温度Dcの差を求め、この差(Do−Dc)が一定値α以下
か否かを判別する。室外熱交換器13内で偏流が生じる
と、熱交換器温度Dcは正常時より高くなって外気温度
Doに近付いて、肯と判別され、偏流が生じていない場
合は、否と判別される。肯と判別された場合は、上記温
度Dcは正確な室外熱交換器13の温度でないため、除
霜の要否の判定に使えず、偏流のない管路17fに設け
られた第2冷媒温度センサ32が検出する低圧相当飽和
温度De、つまりサイクル線図における蒸発器(室外熱交
換器13)出口での乾き飽和蒸気の温度により判定をす
べきである。一方、否と判別されれば、上記温度Dcは
正確な室外熱交換器13の温度を示すから、この温度に
より除霜の要否判定ができる。そこで、肯と判別された
場合、除霜制御開始手段1は、熱交換器温度センサ33
の検出温度Dcに代えて、第2冷媒温度センサ32の検
出温度Deが、一定値β(例えば0℃)以下であるか否か
を判別し、肯と判別した時、例えば圧縮機11からの高
温のガス冷媒を室外熱交換器13に直接流すなどして除
霜制御を始める。一方、否と判別された場合は、従来と
同様、上記室外熱交換器の温度Dcが一定値以下である
か否かが制御部1によって判別され、肯と判別されたと
き、同様の除霜制御が開始される。
It is assumed that frost has formed on the outdoor heat exchanger 13 at the start or during the heating operation in the cold season. The nonuniform flow determination means 1 detects the outside air temperature Do detected by the outside air temperature sensor 34,
The difference in the temperature Dc of the outdoor heat exchanger 13 detected by the heat exchanger temperature sensor 33 is obtained, and it is determined whether or not this difference (Do-Dc) is less than or equal to a constant value α. When the nonuniform flow occurs in the outdoor heat exchanger 13, the heat exchanger temperature Dc becomes higher than that in the normal state, approaches the outdoor air temperature Do, and is determined as positive. When no nonuniform flow occurs, it is determined as no. If it is determined to be affirmative, the temperature Dc is not the accurate temperature of the outdoor heat exchanger 13 and therefore cannot be used to determine the necessity of defrosting, and the second refrigerant temperature sensor provided in the duct 17f having no drift is provided. The judgment should be made by the low pressure equivalent saturation temperature De detected by 32, that is, the temperature of the dry saturated steam at the outlet of the evaporator (outdoor heat exchanger 13) in the cycle diagram. On the other hand, if it is determined to be no, the temperature Dc indicates the accurate temperature of the outdoor heat exchanger 13, and therefore it is possible to determine whether defrosting is necessary or not based on this temperature. Therefore, when it is determined that the answer is positive, the defrosting control starting means 1 determines that the heat exchanger temperature sensor 33
In place of the detected temperature Dc of No. 2, the detected temperature De of the second refrigerant temperature sensor 32 is determined to be equal to or less than a constant value β (for example, 0 ° C.), and when affirmative, for example, from the compressor 11 Defrost control is started by directly flowing a high-temperature gas refrigerant to the outdoor heat exchanger 13. On the other hand, when it is determined to be no, as in the conventional case, the control unit 1 determines whether or not the temperature Dc of the outdoor heat exchanger is below a certain value, and when it is determined to be affirmative, the same defrosting is performed. Control is started.

【0010】[0010]

【実施例】以下、本発明を図示の実施例により詳細に説
明する。図1は、本発明の空気調和装置の一例を示して
おり、この空気調和装置は、制御部1の構成が異なる点
を除いて、図3で述べた冷媒回路と同じ構成であり、同
じ部材には同一の番号を付している。即ち、圧縮機1
1,四路切換弁12,ファン14をもつ室外熱交換器1
3,膨張弁15及び複数の室内熱交換器16a〜16dを
順次管路17a〜17fで接続し、管路17aと17cをデ
フロスト管路26で接続すると共に、吸込側の管路17
fに吸込冷媒温度Daを検出する第1冷媒温度センサ3
1、管路28に低圧相当飽和温度Deを検出する第2冷
媒温度センサ32、室外熱交換器13に単一の熱交換器
温度センサ33、室外に外気温度センサ34をそれぞれ
設け、これらのセンサ31〜34の検出信号に基づいて
冷媒回路の各部を制御する制御部1を設けている。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 shows an example of the air conditioner of the present invention. This air conditioner has the same configuration as the refrigerant circuit described in FIG. 3 except for the configuration of the control unit 1, and the same members. Are given the same numbers. That is, the compressor 1
1, an outdoor heat exchanger 1 having a four-way switching valve 12 and a fan 14
3, the expansion valve 15 and the plurality of indoor heat exchangers 16a to 16d are sequentially connected by the pipelines 17a to 17f, the pipelines 17a and 17c are connected by the defrost pipeline 26, and the suction side pipeline 17 is connected.
First refrigerant temperature sensor 3 for detecting the suction refrigerant temperature Da at f
1. The second refrigerant temperature sensor 32 for detecting the low pressure equivalent saturation temperature De in the pipe 28, the single heat exchanger temperature sensor 33 in the outdoor heat exchanger 13, and the outdoor air temperature sensor 34 in the outdoor, respectively. A control unit 1 that controls each unit of the refrigerant circuit based on the detection signals of 31 to 34 is provided.

【0011】上記制御部1は、図3で述べた制御部35
と同じ制御を行なうと共に、偏流判別手段と除霜制御開
始手段を兼ねる。すなわち、制御部1は、偏流判別手段
として、暖房運転開始時または暖房運転中に、外気温度
センサ34の検出する外気温度Doと,熱交換器温度セン
サ33の検出する室外熱交換器温度Dcの差を求め、こ
の差(Do−Dc)が一定値α以下か否かを判別する。これ
は、図2のヒートポンプサイクルのP-h線図(但し、縦
軸のDo等は、便宜上圧力相当飽和温度を表わす)におい
て、偏流がない場合は、温度センサ33の検出温度Dc
は、上記線図左下隅の膨張弁出口かつ蒸発器入口に相当
する温度を正確に表わすが、偏流が生じると、高温側の
Doで示す外気温度センサ34の検出する外気温度に近
付き、図中の矢印で示すように(Do−Dc)≦αの範囲に
入るからである。また、図2のP-h線図の左上隅は、膨
張弁15の入口の高圧冷媒液の状態を示すが、この冷媒
液が図1の受液器23からキャピラリーチューブ29を
経て吸込管路17fに開口した管路28で、吸込圧力に
相当する乾き飽和蒸気の温度Deを発生する。従って、
第2冷媒温度センサ32は、上記低圧相当飽和温度De
を検出することになり、第1冷媒温度センサ31が圧縮
器に吸い込まれる冷媒温度Daを検出するので、両セン
サの検出温度の差(Da−De)がヒートポンプサイクルの
過熱度を表わすことになる。
The control unit 1 is the control unit 35 described with reference to FIG.
The same control is performed, and it also serves as a drift detection unit and a defrost control start unit. That is, the control unit 1 serves as the non-uniformity determination means for determining the outside air temperature Do detected by the outside air temperature sensor 34 and the outdoor heat exchanger temperature Dc detected by the heat exchanger temperature sensor 33 at the start of heating operation or during heating operation. A difference is obtained, and it is determined whether or not this difference (Do-Dc) is less than or equal to a constant value α. This is because in the Ph diagram of the heat pump cycle of FIG. 2 (however, Do on the vertical axis represents the saturation temperature equivalent to the pressure for convenience), if there is no drift, the temperature Dc detected by the temperature sensor 33 is detected.
Accurately represents the temperature corresponding to the expansion valve outlet and the evaporator inlet at the lower left corner of the above diagram. However, if a drift occurs, the temperature approaches the outside air temperature detected by the outside air temperature sensor 34 indicated by Do on the high temperature side. This is because it falls within the range of (Do-Dc) ≤α as indicated by the arrow. The upper left corner of the Ph diagram of FIG. 2 shows the state of the high-pressure refrigerant liquid at the inlet of the expansion valve 15. This refrigerant liquid passes through the capillary tube 29 from the liquid receiver 23 of FIG. In the conduit 28 opened to 17f, the temperature De of the dry saturated vapor corresponding to the suction pressure is generated. Therefore,
The second refrigerant temperature sensor 32 uses the low pressure equivalent saturation temperature De
Since the first refrigerant temperature sensor 31 detects the refrigerant temperature Da sucked into the compressor, the difference (Da-De) between the detected temperatures of both sensors represents the degree of superheat of the heat pump cycle. .

【0012】制御部1は、(Do−Dc)≦αと判別する
と、除霜制御開始手段として、熱交換器温度センサ33
の検出信号に代えて、第2冷媒温度センサ32の検出信
号が表わす温度Deが、一定値β(例えば0℃)以下であ
るか否かを判別し、肯と判別したとき、吐出側の管路1
7aの第1開閉弁25を閉じ,第2開閉弁27を開いて、
デフロスト管路26を経て高温の吐出冷媒ガスを室外熱
交換器13に直接送って除霜を開始するようになってい
る。これは、室外熱交換器13で偏流が生じると、上述
のように温度センサ33の検出温度Dcが本来の温度よ
り高くなるため、除霜の要否の判定に使えず、蒸発器出
口側の偏流のない管路17f,28に設けられた第2冷媒
温度センサ32が検出する図2のDe点で示す低圧相当
飽和温度、つまり室外熱交換器13の出口での乾き飽和
温度により、除霜の要否を判定する必要があるからであ
る。なお、(Do−Dc)>αと判別した場合は、偏流がな
くて、温度センサ33の検出温度Dcは本来の室外熱交
換器13の温度を表わすから、制御部1は、この検出温
度Dcが一定値以下であるか否かで、除霜の要否を判定
し、必要に応じて上述の除霜制御を開始する。
When the controller 1 determines that (Do-Dc) ≤α, the heat exchanger temperature sensor 33 serves as a defrosting control starting means.
Instead of the detection signal of No. 2, the temperature De represented by the detection signal of the second refrigerant temperature sensor 32 is determined to be equal to or less than a constant value β (for example, 0 ° C.), and when it is determined to be affirmative, the pipe on the discharge side is determined. Road 1
7a closing the first on-off valve 25, opening the second on-off valve 27,
High-temperature discharged refrigerant gas is sent directly to the outdoor heat exchanger 13 via the defrost pipe line 26 to start defrosting. This is because if a drift occurs in the outdoor heat exchanger 13, the temperature Dc detected by the temperature sensor 33 becomes higher than the original temperature as described above, and therefore it cannot be used to determine whether defrosting is necessary, and the evaporator outlet side Defrosting is performed by the low-pressure equivalent saturation temperature indicated by De in FIG. 2 detected by the second refrigerant temperature sensor 32 provided in the ducts 17f, 28 having no drift, that is, the dry saturation temperature at the outlet of the outdoor heat exchanger 13. This is because it is necessary to determine whether or not When it is determined that (Do-Dc)> α, there is no drift and the detected temperature Dc of the temperature sensor 33 represents the original temperature of the outdoor heat exchanger 13. Therefore, the control unit 1 determines the detected temperature Dc. Is determined to be equal to or less than a certain value, the necessity of defrosting is determined, and the above-described defrosting control is started if necessary.

【0013】上記構成の制御部1は、次のように空気調
和装置を制御する。制御部1は、暖房運転時には、第1
開閉弁25を開き,第2開閉弁27を閉じ、四路切換弁
12を破線で示す通路に切り換え、圧縮機1から吐出さ
れたガス冷媒を、図3の実線矢印の如く、室内熱交換器
16a〜16dで凝縮させ、室外熱交換器13で蒸発させ
るように循環させる。一方、冷房運転時には、四路切換
弁12を実線で示す通路に切り換え、吐出ガス冷媒を図
3の破線矢印の如く、室内熱交換器16a〜16dで蒸発
させ、室外熱交換器13で凝縮させるように循環させ
る。そして、冷暖房いずれの場合も、第1冷媒温度セン
サ31の検出する圧縮機に吸い込まれる冷媒温度Da(図
2参照)と、第2冷媒温度センサ32が検出する低圧相
当飽和温度Deとの差(Da−De)が、所定の値(過熱度)
になるように、膨張弁15の開度および圧縮機11の回
転数を制御すると共に、室内膨張弁20a〜20dの開度
を調整して、各室の蒸発冷媒の過熱度や各室への冷媒分
配量を制御する。
The control unit 1 having the above structure controls the air conditioner as follows. The control unit 1 makes the first
The on-off valve 25 is opened, the second on-off valve 27 is closed, the four-way switching valve 12 is switched to the path indicated by the broken line, and the gas refrigerant discharged from the compressor 1 is transferred to the indoor heat exchanger as indicated by the solid line arrow in FIG. It is condensed in 16a to 16d and circulated so as to be evaporated in the outdoor heat exchanger 13. On the other hand, during the cooling operation, the four-way switching valve 12 is switched to the passage indicated by the solid line, and the discharged gas refrigerant is evaporated in the indoor heat exchangers 16a to 16d and condensed in the outdoor heat exchanger 13 as shown by the broken line arrow in FIG. To circulate. Then, in both cases of cooling and heating, the difference between the refrigerant temperature Da detected by the first refrigerant temperature sensor 31 (see FIG. 2) and the low pressure equivalent saturation temperature De detected by the second refrigerant temperature sensor 32 ( Da-De) is a predetermined value (superheat degree)
The opening degree of the expansion valve 15 and the rotation speed of the compressor 11 are controlled so that Controls the refrigerant distribution amount.

【0014】いま、寒冷期の暖房運転開始時または運転
中に、室外熱交換器13に霜が着いたとする。このと
き、制御部1は、外気温度センサ34が検出する外気温
度Doと,熱交換器温度センサ33が検出する温度Dcの
差を求め、この差(Do−Dc)が一定値α以下か否かを判
別する。室外熱交換器13内で偏流が生じると、上記検
出温度Dcは正常時より高くなって外気温度Doに近付い
て、肯と判別され、偏流が生じていない場合は、否と判
別される。肯,つまり(Do−Dc)≦αと判別した場合、
制御部1は、室外熱交換器温度センサ33による温度D
cは除霜の要否判定に使えないとして、これに代えて第
2冷媒温度センサ32による温度De(低圧相当飽和温
度)が、一定値β以下であるか否かを判別し、肯と判別
したとき,霜の付着有と判断して、室外ファン14と各
室内ファンを停止し、四路切換弁12を暖房運転位置に
したまま、第1開閉弁25と膨張弁15を閉じ,第2開
閉弁27を開く。すると、圧縮機11からの高温の吐出
ガス冷媒が、図1の一点鎖線矢印の如く、デフロスト管
路26から室外熱交換器13に流れて、付着していた霜
が除去される。一方、制御部1は、否,つまり(Do−D
c)>αと判別すると、熱交換器温度センサ33による温
度Dcが本来の室外熱交換器13の温度を示しているか
ら、この温度Dcが一定値以下であるか否かを判別し、
以下と判別したとき、上述と同様の除霜制御が行なわれ
る。
It is assumed that frost is formed on the outdoor heat exchanger 13 at the start or during the heating operation in the cold season. At this time, the control unit 1 obtains the difference between the outside air temperature Do detected by the outside air temperature sensor 34 and the temperature Dc detected by the heat exchanger temperature sensor 33, and determines whether this difference (Do-Dc) is less than or equal to a constant value α. Determine whether. When a drift occurs in the outdoor heat exchanger 13, the detected temperature Dc becomes higher than that in the normal state and approaches the outside air temperature Do, and it is determined to be positive. If no drift is generated, it is determined to be no. If it is determined that ACK, that is, (Do-Dc) ≤α,
The control unit 1 controls the temperature D by the outdoor heat exchanger temperature sensor 33.
Since c cannot be used for determining whether or not defrosting is necessary, instead of this, it is determined whether the temperature De (low pressure equivalent saturation temperature) by the second refrigerant temperature sensor 32 is equal to or lower than a constant value β, and it is determined as positive. When it is determined that frost has adhered, the outdoor fan 14 and each indoor fan are stopped, the first open / close valve 25 and the expansion valve 15 are closed while the four-way switching valve 12 is in the heating operation position, and the second The on-off valve 27 is opened. Then, the hot discharge gas refrigerant from the compressor 11 flows from the defrost pipe line 26 to the outdoor heat exchanger 13 as shown by the one-dot chain line arrow in FIG. On the other hand, the control unit 1 determines whether or not (Do-D
If it is determined that c)> α, the temperature Dc by the heat exchanger temperature sensor 33 indicates the original temperature of the outdoor heat exchanger 13, so it is determined whether or not this temperature Dc is below a certain value.
When the following is determined, the same defrosting control as described above is performed.

【0015】このように、室外熱交換器13が偏流の生
じやすい多パス型であっても、各パスに温度センサを設
けることなく、単一の熱交換器温度センサ33と、着霜
時にこれを補助する既存の第2冷媒温度センサ32とを
除霜の要否判定に用いているので、空気調和装置のコス
トアップを抑えつつ、確実かつ迅速に霜を除去して着霜
による暖房能力の低下や圧縮機の故障をなくすことがで
きる。なお、上記実施例では、四路切換弁12により冷
媒の循環方向を正逆に切り換えうる冷暖兼用の冷媒回路
について説明したが、本発明が、室内熱交換器が凝縮器
としてのみ働く暖房専用の冷媒回路についても適用でき
るのは勿論である。
As described above, even if the outdoor heat exchanger 13 is a multi-pass type in which uneven flow is apt to occur, a single heat exchanger temperature sensor 33 and a single heat exchanger temperature sensor 33 are not provided in each pass when frost is formed. Since the existing second refrigerant temperature sensor 32 that assists the air conditioner is used for determining whether or not defrosting is necessary, the frost removal can be reliably and quickly performed while suppressing the cost increase of the air conditioner, and the heating capacity of frosting can be improved. Degradation and compressor failure can be eliminated. In the above embodiment, the refrigerant circuit for both cooling and heating in which the circulation direction of the refrigerant can be switched between the forward and reverse directions by the four-way switching valve 12 has been described, but the present invention is only for heating in which the indoor heat exchanger functions only as a condenser. Of course, it can be applied to the refrigerant circuit.

【0016】[0016]

【発明の効果】以上の説明で明らかなように、本発明の
空気調和装置は、圧縮機,室外熱交換器,膨張弁および室
内熱交換器を順次管路で接続し、第1冷媒温度センサで
圧縮機への吸込冷媒温度を、第2冷媒温度センサで低圧
相当飽和温度を夫々検出し、この検出信号に基づき制御
部により過熱度を制御する冷媒回路において、偏流判別
手段により、外気温度センサの検出した外気温度と、単
一の熱交換器温度センサの検出した室内熱交換器の温度
の差を求め、この差が一定値以下か否かを判別するとと
もに、一定値以下と判別されたとき、除霜制御開始手段
により、第2冷媒温度センサの検出温度が一定値以下か
否かを判別し、以下と判別したとき、室外熱交換器の除
霜制御を開始するようにしているので、装置のコストア
ップを抑えつつ、確実かつ迅速に霜を除去して着霜によ
る暖房能力の低下や圧縮機の故障をなくすことができ
る。
As is apparent from the above description, in the air conditioner of the present invention, the compressor, the outdoor heat exchanger, the expansion valve and the indoor heat exchanger are sequentially connected by the pipeline, and the first refrigerant temperature sensor is connected. In the refrigerant circuit in which the suction refrigerant temperature to the compressor is detected by the second refrigerant temperature sensor, the low-pressure equivalent saturation temperature is detected by the second refrigerant temperature sensor, and the superheat degree is controlled by the control unit based on this detection signal, The difference between the outside air temperature detected by and the temperature of the indoor heat exchanger detected by the single heat exchanger temperature sensor was determined, and it was determined whether this difference was less than a certain value, and it was determined that it was less than the certain value. At this time, the defrost control start means determines whether or not the temperature detected by the second refrigerant temperature sensor is equal to or lower than a certain value, and when it is determined that the temperature is less than or equal to the predetermined value, the defrost control of the outdoor heat exchanger is started. , While suppressing the cost increase of the device, Real and quickly defrost can be eliminated failure reduction and compressor heating capacity due to frost formation in.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の空気調和装置の一実施例を示す冷媒
回路図である。
FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner of the present invention.

【図2】 図1の制御部による除霜の要否判定の手法を
示すヒートポンプサイクルのP-h線図である。
FIG. 2 is a Ph diagram of a heat pump cycle showing a method of determining necessity of defrosting by the control unit of FIG. 1.

【図3】 従来の空気調和装置を示す冷媒回路図であ
る。
FIG. 3 is a refrigerant circuit diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1…制御部、11…圧縮機、12…四路切換弁、13…
室外熱交換器、14…室外ファン、15…膨張弁、16
a〜16d…室内熱交換器、17a〜17f…管路、23…
受液器、25…第1開閉弁、26…デフロスト管路、2
7…第2開閉弁、28…管路、29…キャピラリチュー
ブ、30…分流器、31…第1冷媒温度センサ、32…
第2冷媒温度センサ、33…熱交換器温度センサ、34
…外気温度センサ。
DESCRIPTION OF SYMBOLS 1 ... Control part, 11 ... Compressor, 12 ... Four-way switching valve, 13 ...
Outdoor heat exchanger, 14 ... outdoor fan, 15 ... expansion valve, 16
a to 16d ... Indoor heat exchanger, 17a to 17f ... Pipe line, 23 ...
Liquid receiver, 25 ... First on-off valve, 26 ... Defrost pipe line, 2
7 ... 2nd on-off valve, 28 ... Pipe line, 29 ... Capillary tube, 30 ... Flow divider, 31 ... 1st refrigerant temperature sensor, 32 ...
2nd refrigerant temperature sensor, 33 ... Heat exchanger temperature sensor, 34
... outside temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(11)、蒸発器として動作しう
る室外熱交換器(13)、膨張弁(15)および凝縮器と
して動作しうる室内熱交換器(16a〜16d)を順次管路
(17a〜17f)で接続し、上記管路(17f)に圧縮機(1
1)に吸い込まれる冷媒の温度(Da)を検出する第1冷媒
温度センサ(31)および低圧に相当する冷媒の飽和温度
(De)を検出する第2冷媒温度センサ(32)を設けたヒ
ートポンプ式冷媒回路と、上記第1,第2冷媒温度セン
サ(31,32)の検出信号の差が所定値になるように上
記膨張弁(15)の開度および圧縮機(11)の回転数を制
御する制御部(1)を備えた空気調和装置において、 外気の温度を検出する外気温度センサ(34)と、 上記室外熱交換器の温度を検出する単一の熱交換器温度
センサ(33)と、 運転時に外気温度センサ(34)と熱交換器温度センサ
(33)との両検出信号に基づいて外気温度(Do)と室外
熱交換器温度(Dc)の差を求め、この差(Do−Dc)が一
定値(α)以下か否かを判別する偏流判別手段(1)と、 この偏流判別手段(1)が肯と判別した場合、上記熱交換
器温度センサ(33)の検出信号に代えて、上記第2冷媒
温度センサ(32)の検出信号が表わす温度(De)が一定
値(β)以下であるか否かを判別し、肯と判別したとき、
上記室外熱交換器(13)を除霜する制御を開始する除霜
制御開始手段(1)を備えたことを特徴とする空気調和装
置。
1. A compressor (11), an outdoor heat exchanger (13) capable of operating as an evaporator, an expansion valve (15), and an indoor heat exchanger (16a-16d) capable of operating as a condenser, in sequence.
(17a to 17f), and connect the compressor (1
1) The first refrigerant temperature sensor (31) for detecting the temperature (Da) of the refrigerant sucked into 1) and the saturation temperature of the refrigerant corresponding to the low pressure
The heat pump type refrigerant circuit provided with the second refrigerant temperature sensor (32) for detecting (De) and the detection signals of the first and second refrigerant temperature sensors (31, 32) are set to have a predetermined value. In an air conditioner equipped with a control unit (1) for controlling the opening of an expansion valve (15) and the number of revolutions of a compressor (11), an outside air temperature sensor (34) for detecting the temperature of outside air and the outdoor heat A single heat exchanger temperature sensor (33) that detects the temperature of the exchanger, an outside air temperature sensor (34) and a heat exchanger temperature sensor during operation.
The difference between the outside air temperature (Do) and the outdoor heat exchanger temperature (Dc) is obtained based on both detection signals of (33) and it is determined whether or not this difference (Do-Dc) is less than a certain value (α). When the non-uniform flow determination means (1) and the non-uniform flow determination means (1) determine that the result is positive, instead of the detection signal of the heat exchanger temperature sensor (33), the detection signal of the second refrigerant temperature sensor (32) When the temperature (De) represented by is below a certain value (β), it is determined as positive,
An air conditioner comprising defrosting control starting means (1) for starting control for defrosting the outdoor heat exchanger (13).
JP5035237A 1993-02-24 1993-02-24 Air conditioning device Pending JPH06249484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035237A JPH06249484A (en) 1993-02-24 1993-02-24 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5035237A JPH06249484A (en) 1993-02-24 1993-02-24 Air conditioning device

Publications (1)

Publication Number Publication Date
JPH06249484A true JPH06249484A (en) 1994-09-06

Family

ID=12436241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035237A Pending JPH06249484A (en) 1993-02-24 1993-02-24 Air conditioning device

Country Status (1)

Country Link
JP (1) JPH06249484A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2156772A1 (en) * 1999-06-28 2001-07-01 Samsung Electronics Co Ltd Method of regulating minimum temperature of multiple type air-conditioner, has arrangement which prevents frost formation due to overcooling of area which already has low ambient temperature
KR100390219B1 (en) * 2000-11-27 2003-07-07 위니아만도 주식회사 Controller and method for defrosting operation of air-conditioner used both cooler and heater using electronic valve
WO2017002618A1 (en) * 2015-07-01 2017-01-05 三菱重工業株式会社 Air conditioning system, control method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2156772A1 (en) * 1999-06-28 2001-07-01 Samsung Electronics Co Ltd Method of regulating minimum temperature of multiple type air-conditioner, has arrangement which prevents frost formation due to overcooling of area which already has low ambient temperature
KR100390219B1 (en) * 2000-11-27 2003-07-07 위니아만도 주식회사 Controller and method for defrosting operation of air-conditioner used both cooler and heater using electronic valve
WO2017002618A1 (en) * 2015-07-01 2017-01-05 三菱重工業株式会社 Air conditioning system, control method, and program
JP2017015333A (en) * 2015-07-01 2017-01-19 三菱重工業株式会社 Air conditioning system, control method and program

Similar Documents

Publication Publication Date Title
EP2378215B1 (en) Air conditioner
US7770411B2 (en) System and method for using hot gas reheat for humidity control
EP2204625B1 (en) Air conditioner and defrosting operation method of the same
US4901534A (en) Defrosting control of air-conditioning apparatus
JP3750457B2 (en) Refrigeration air conditioner
CN109140725B (en) Multi-split air conditioning system and defrosting control method thereof
US20230074034A1 (en) Air conditioner
US11725855B2 (en) Air conditioning apparatus
JP3263579B2 (en) Multi-room type air conditioner and heating method
US20090044557A1 (en) Vapor compression system
JP2989491B2 (en) Air conditioner
JPH07151429A (en) Air conditioner
JPH06249484A (en) Air conditioning device
CN113167486A (en) Air conditioner
US11668482B2 (en) Air conditioning system with pipe search
JP3123873B2 (en) Air conditioner
JPH11142009A (en) Air conditioner
JPH0712439A (en) Binary refrigerator
US20230131781A1 (en) Refrigeration cycle apparatus
JPS6399472A (en) Air conditioner
JPH0611201A (en) Air conditioning apparatus
JPH0471139B2 (en)
JPS5825233Y2 (en) air conditioner
JPH06213541A (en) Heating-and-cooling machine
JPH0579894B2 (en)