JPH06249070A - Method and apparatus for cooling gas film in high temperature section - Google Patents

Method and apparatus for cooling gas film in high temperature section

Info

Publication number
JPH06249070A
JPH06249070A JP5466793A JP5466793A JPH06249070A JP H06249070 A JPH06249070 A JP H06249070A JP 5466793 A JP5466793 A JP 5466793A JP 5466793 A JP5466793 A JP 5466793A JP H06249070 A JPH06249070 A JP H06249070A
Authority
JP
Japan
Prior art keywords
coolant
high temperature
cooling
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5466793A
Other languages
Japanese (ja)
Other versions
JPH079222B2 (en
Inventor
Takeshi Karita
丈士 苅田
Goro Masutani
五郎 升谷
Fumie Ono
文衛 小野
Nobuo Chinzei
信夫 鎮西
Yoshio Wakamatsu
義男 若松
Toshihito Saito
俊仁 斎藤
Masahiro Takahashi
政浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP5466793A priority Critical patent/JPH079222B2/en
Publication of JPH06249070A publication Critical patent/JPH06249070A/en
Publication of JPH079222B2 publication Critical patent/JPH079222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve cooling efficiency, reduce flow of cooling medium and restrain engine performance from lowering by film cooling a position exposed to high temperature air current by the use of gas heated to high temperature. CONSTITUTION:Positions exposed to high temperature air current of a ramjet, rocket engine, etc., are film cooled by the use of gas heated to high temperature. For example, regenerative cooling is utilized for a heater 1 in a flow path of liquid hydrogen A. The liquid hydrogen A cools the wall surface of a combustion chamber, while it is heated and gasified to be jetted from a fuel injector 3 into the combustion chamber, mixed and burnt with air from an air intake port for jetting combustion gas C. A portion of high temperature gasified hydrogen is jetted from a film coolant injector 2 along the wall thereof to prevent the combustion gas contact with the wall of the injector and reduce the temperature rise of the wall. The flow of the coolant can be reduced by a simple constitution of disposing thus a heating source in a film coolant flow path.

Description

【発明の詳細な説明】Detailed Description of the Invention

【00001】[00001]

【産業上の利用分野】この発明は、ラムジェット、ロケ
ットエンジン等の高温ガスを用いる装置の冷却効率の向
上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of cooling efficiency of a device using a high temperature gas such as a ramjet and a rocket engine.

【0002】[0002]

【従来の技術】従来、高温ガスを用いるロケットエンジ
ン等においては、高温ガスから壁材料を保護するため
に、壁面に沿って液体、あるいは常温または低温のガス
を噴射し、高温ガスが直接壁面に接触することを防ぐい
わゆるフィルム冷却が行なわれてきた。この方法では、
局所的に壁温を低下させることには効果があるが、冷却
効率が低く、エンジン全体を冷却するためには多量の冷
却剤が必要であった。
2. Description of the Related Art Conventionally, in a rocket engine or the like using high temperature gas, a liquid or a room temperature or low temperature gas is injected along the wall surface to protect the wall material from the high temperature gas, and the high temperature gas is directly applied to the wall surface. So-called film cooling has been used to prevent contact. in this way,
Although it is effective to reduce the wall temperature locally, the cooling efficiency is low, and a large amount of coolant was required to cool the entire engine.

【0003】この冷却剤として燃料を用いる場合には、
燃焼器内部で燃料が過剰になり、燃焼にとっては不適切
な条件となる。冷却剤に燃焼とは関係ないガスを用いる
場合には推進剤が希釈され、やはり燃焼にとって不適切
な条件となる。またいずれの場合においても、燃焼に関
与しない冷却剤を大量に流すために、例えばロケットエ
ンジンでは、大幅な性能低下(比推力の低下)を招くと
いう問題があった。
When fuel is used as the coolant,
Excess fuel within the combustor is an unsuitable condition for combustion. If a non-combustion-related gas is used as the coolant, the propellant will be diluted, again making it unsuitable for combustion. Further, in any case, since a large amount of the coolant that is not involved in combustion is flowed, there is a problem that, for example, in a rocket engine, the performance is significantly reduced (specific thrust is reduced).

【0004】[0004]

【発明が解決しようとする課題】この発明は、フィルム
冷却に用いる冷却剤の温度を高めることにより、冷却効
率を向上させ、冷却剤流量を減少させ、その結果、スク
ラムジェットやロケットエンジン等の噴流推進機関にお
いては、エンジン性能の低下を抑制することが出来るガ
スフィルム冷却方法とそのための装置を得ようとするも
のである。
SUMMARY OF THE INVENTION The present invention improves the cooling efficiency by reducing the coolant flow rate by increasing the temperature of the coolant used for film cooling, and as a result, the jet flow of scramjet, rocket engine, etc. In a propulsion engine, it is intended to obtain a gas film cooling method and a device therefor capable of suppressing deterioration of engine performance.

【0005】[0005]

【課題を解決するための手段】この発明のフィルム冷却
法は、ラムジェット、ロケットエンジン等の高温気流に
曝される部位を、加熱され高温になったガスを用いてフ
ィルム冷却を行なうことを特徴とする。
The film cooling method of the present invention is characterized in that a portion of a ramjet, a rocket engine or the like exposed to a high temperature air flow is cooled by using a gas which is heated to a high temperature. And

【0006】また、そのための装置は、冷却剤タンク、
および該冷却剤を、機器の高温気流に曝される部位表面
にフィルム状に流すための噴射器を有する冷却装置にお
いて、該噴射器上流に、冷却剤の加熱装置を備えること
を特徴とする。
A device therefor includes a coolant tank,
Further, in a cooling device having an injector for flowing the coolant in a film shape on a surface of a portion exposed to a high temperature air flow of a device, a heating device for the coolant is provided upstream of the injector.

【0007】[0007]

【作用】冷却のためには低温の冷却剤を用いるという常
識に反し、高温ガスを冷却剤として用いた場合、以下の
ような利点が生じる。 冷却剤を低温で噴射する場合に比べて冷却剤の噴射
速度が速まり、高温の主流ガスとの混合が抑制される結
果、フィルム冷却が有効である範囲が拡大する。 前記の効果とは別に、冷却効率は冷却剤の体積流量
に依存するが、高温にすることで密度が減少し、同一体
積流量における質量流量が減少し、必要な冷却剤流量を
更に減少させることができる。加熱源としては適当なも
のでよいが、高温ガスに曝される部位を再生冷却した後
のガスを利用することができる。また空気中の高速飛翔
体では、機体の空力加熱により加熱されたガスを利用す
ることができる。更に化学反応等の内部潜在エネルギ
ー、太陽熱、原子力エネルギー等の外部エネルギー等に
よって昇温させることも可能である。例えば化学反応等
の内部エネルギーの開放によって昇温、あるいは太陽熱
等の外部エネルギー源によって昇温させたガスを、噴流
推進機関のノズル部のフィルム冷却に用いる場合には、
推力の上昇が得られる。
In contrast to the common sense that a low temperature coolant is used for cooling, the use of a high temperature gas as the coolant has the following advantages. As compared with the case of injecting the coolant at a low temperature, the injection speed of the coolant is increased and the mixing with the high temperature mainstream gas is suppressed, so that the range in which the film cooling is effective is expanded. Apart from the above effects, the cooling efficiency depends on the volume flow rate of the coolant, but at high temperature, the density decreases, the mass flow rate at the same volume flow rate decreases, and the required coolant flow rate further decreases. You can Any suitable heating source may be used, but the gas after regenerating and cooling the portion exposed to the high temperature gas can be used. Further, for a high-speed flying object in the air, the gas heated by the aerodynamic heating of the airframe can be used. It is also possible to raise the temperature by internal latent energy such as chemical reaction, external heat such as solar heat, nuclear energy and the like. For example, when using a gas whose temperature has been raised by releasing internal energy such as a chemical reaction, or which has been raised by an external energy source such as solar heat for film cooling of the nozzle portion of a jet propulsion engine,
A thrust increase can be obtained.

【0008】[0008]

【実施例】以下、図面を参照してこの発明を実施例によ
って詳細に説明する。この発明を実施した超音速ラムジ
ェット(スクラムジェット)のフィルム冷却サイクルの
例を図1(a)〜(d)に示す。図1(e)には、この
発明を実施したロケットエンジンのフィルム冷却サイク
ルの一例を示す。冷却剤Aは例えば液体水素である。従
来の冷却方法によれば、冷却剤Aは低温のまま、エンジ
ン壁面に沿って噴射される。この発明のフィルム冷却に
おいては、冷却剤Aは、図中1で示される、流路途中に
設けられた熱交換器、あるいは化学反応、外部エネルギ
ー等による加熱装置によって昇温される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. An example of a film cooling cycle of a supersonic ramjet (scramjet) embodying the present invention is shown in FIGS. FIG. 1 (e) shows an example of a film cooling cycle of a rocket engine embodying the present invention. The coolant A is, for example, liquid hydrogen. According to the conventional cooling method, the coolant A is injected along the engine wall surface at a low temperature. In the film cooling of the present invention, the coolant A is heated by a heat exchanger shown by 1 in the drawing, which is provided in the middle of the flow path, or a heating device by a chemical reaction, external energy or the like.

【0009】図1(a)の実施例においては、液体水素
Aの流路中に加熱装置1として再生冷却を利用した例で
あり、液体水素は燃焼室壁面を冷却する一方、加熱され
て気化し、燃料噴射器3から燃焼室内に噴射され、空気
取り入れ口からの空気と混合燃焼し、燃焼ガスCを噴出
する。気化した高温水素の一部は、フィルム冷却剤噴射
器2から器壁に沿って噴射され、燃焼ガスと器壁との接
触を防止し、器壁の温度上昇を減ずる。図1(b)に示
す実施例においては、加熱装置1は燃焼器であり、冷却
剤Aは反応剤A’と混合、燃焼し、冷却剤の温度を高め
る。Eは燃料である。図1(c)の実施例においては、
加熱装置1は触媒または原子力等の熱発生源を含み、冷
却剤Aを加熱する。図1(d)の実施例においては、冷
却剤Aの加熱装置は、空力加熱等で高温となっている機
体壁との熱交換器であり、機体の冷却装置としたもので
ある。
The embodiment of FIG. 1 (a) is an example in which regeneration cooling is used as the heating device 1 in the flow path of liquid hydrogen A. Liquid hydrogen cools the wall surface of the combustion chamber while being heated and vaporized. The fuel gas is injected into the combustion chamber from the fuel injector 3, mixed and burned with the air from the air intake port, and the combustion gas C is ejected. A part of the vaporized high-temperature hydrogen is injected from the film coolant injector 2 along the vessel wall to prevent contact between the combustion gas and the vessel wall and reduce the temperature rise of the vessel wall. In the embodiment shown in FIG. 1B, the heating device 1 is a combustor, and the coolant A mixes with the reactant A ′ and burns to raise the temperature of the coolant. E is the fuel. In the embodiment of FIG. 1 (c),
The heating device 1 includes a heat source such as a catalyst or nuclear power, and heats the coolant A. In the embodiment of FIG. 1 (d), the heating device for the coolant A is a heat exchanger for the airframe wall that is at a high temperature due to aerodynamic heating or the like, and is a device for cooling the airframe.

【0010】スクラムジェットにおいて、冷却剤として
水素を用いた場合を考える。主流総温を6500K、主
流マッハ数を4、エンジン長さを5m、エンジン周長を
3.5mとし、許容壁材温度を1500K、としたとき
の冷却流量を図2に示す。図中横軸は冷却剤水素の総温
を、縦軸は冷却用水素の当量比を表わす。このときの量
論混合比水素流量は18kg・s-1である。冷却剤総温
の上昇と共に、必要な冷却剤流量が減少することがわか
る。
Consider the case where hydrogen is used as the coolant in the scramjet. FIG. 2 shows the cooling flow rate when the total mainstream temperature is 6500 K, the mainstream Mach number is 4, the engine length is 5 m, the engine circumference is 3.5 m, and the allowable wall material temperature is 1500 K. In the figure, the horizontal axis represents the total temperature of the coolant hydrogen, and the vertical axis represents the equivalence ratio of the cooling hydrogen. At this time, the stoichiometric mixing ratio hydrogen flow rate is 18 kg · s −1 . It can be seen that the required coolant flow rate decreases with increasing coolant total temperature.

【0011】図1(e)はロケットエンジンにおける実
施例であり、液体水素等の燃料Aは燃焼室壁の冷却のた
めの熱交換器1によって加熱され、反応剤Bと共に推進
剤噴射器3から燃焼室内に噴射される。燃料Aの一部
は、冷却剤2として器壁に沿って噴射される。
FIG. 1 (e) shows an embodiment of a rocket engine, in which a fuel A such as liquid hydrogen is heated by a heat exchanger 1 for cooling a wall of a combustion chamber and is discharged from a propellant injector 3 together with a reactant B. It is injected into the combustion chamber. A part of the fuel A is injected as the coolant 2 along the vessel wall.

【0012】図3には、ロケットエンジンにおける冷却
効果の上昇を示す。主流マッハ数は0.01、主流総温
は3500K、エンジン長さは0.4m、エンジン半径
は0.2mである。やはり冷却剤温度の上昇と共に、必
要冷却剤流量が減少していることがわかる。スクラムジ
ェットの場合と異なり、主流速度が速くないために最適
な冷却剤温度が存在するが、液温よりもはるかに高い温
度であり、冷却剤を高温にする効果が現われている。
FIG. 3 shows the increase of the cooling effect in the rocket engine. The mainstream Mach number is 0.01, the total mainstream temperature is 3500 K, the engine length is 0.4 m, and the engine radius is 0.2 m. Again, it can be seen that the required coolant flow rate decreases as the coolant temperature rises. Unlike in the case of scramjet, the optimum coolant temperature exists because the main flow velocity is not high, but it is much higher than the liquid temperature, and the effect of increasing the temperature of the coolant appears.

【0013】図4には、図1(a)に示した、再生冷却
で加熱された冷却剤をフィルム冷却に用いる場合のスク
ラムジェットの水素流量を当量比の形で示す。再生冷却
との併用であるので、燃焼に用いる水素で冷却を行なっ
ており、当量比1を超過する水素流量が、冷却のために
必要な余分の水素流量である。低マッハ数域で当量比が
一定なのは、エンジンを量論混合比燃焼させるためであ
る。フィルム冷却単独の場合、あるいは再生冷却単独の
場合に比べ、再生冷却後の高温の水素を冷却に用いるフ
ィルム冷却では、必要な水素流量がはるかに少量である
ことがわかる。なお、図4中のフィルム冷却単独の場合
の水素流量は、図に示すように10分の1の値を描いて
ある。例えば飛行マッハ数8では当量比は9である。
FIG. 4 shows the hydrogen flow rate of the scramjet in the form of an equivalence ratio when the coolant heated in the regenerative cooling shown in FIG. 1A is used for film cooling. Since it is used in combination with regeneration cooling, cooling is performed with hydrogen used for combustion, and the hydrogen flow rate exceeding the equivalence ratio of 1 is the extra hydrogen flow rate required for cooling. The equivalence ratio is constant in the low Mach number region because the engine is burned in stoichiometric mixture ratio. It can be seen that, compared with the case of film cooling alone or the case of reproduction cooling alone, the required film hydrogen flow rate is much smaller in film cooling using high-temperature hydrogen after reproduction cooling for cooling. Note that the hydrogen flow rate in the case of film cooling alone in FIG. 4 is one tenth as shown in the figure. For example, when the flight Mach number is 8, the equivalence ratio is 9.

【0014】このときの正味比推力を図5に示す。余分
な冷却剤流量が減ったために、フィルム冷却単独の場
合、あるいは再生冷却単独の場合に比べて、比推力が上
昇していることがわかる。図6にはこのときの冷却剤、
すなわち燃料供給圧力を示す。冷却剤流量が減少したた
めに、冷却剤供給圧力も低下している。これによって、
エンジンの軽量化を図ることができる。また冷却剤供給
系の動力も小さくてすみ、タービン排気などの比推力へ
の影響も小さくなる。
The net specific thrust at this time is shown in FIG. It can be seen that the specific thrust is increased as compared with the case of the film cooling alone or the case of the regenerative cooling alone because the excess coolant flow rate is reduced. Fig. 6 shows the coolant at this time,
That is, it indicates the fuel supply pressure. The coolant supply pressure is also reduced due to the reduced coolant flow rate. by this,
The weight of the engine can be reduced. Also, the power of the coolant supply system can be small, and the influence on the specific thrust of the turbine exhaust etc. can be reduced.

【0015】[0015]

【発明の効果】この発明のフィルム冷却では、上記のよ
うにフィルム冷却剤流路に加熱源を配置するという簡単
な構成によって、冷却剤流量を低減させることができ、
比推力等のエンジン性能を向上させるだけではなく、そ
の波及効果として、エンジン構造の軽量化にも寄与し得
るものである。なお、この技術はエンジンに限らず、高
温で流れるガスを用いる装置に応用可能である。
In the film cooling of the present invention, the flow rate of the coolant can be reduced by the simple structure of arranging the heating source in the film coolant channel as described above.
Not only can engine performance such as specific thrust be improved, but its ripple effect can also contribute to weight reduction of the engine structure. It should be noted that this technology is applicable not only to the engine but also to an apparatus using a gas flowing at high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を実施したスクラムジェットエンジン
とロケットエンジンの、冷却剤サイクルの実施例を示す
作動概念図である。(a)は再生冷却を行なった例、
(b)は冷却剤用燃焼器を用いて昇温した例、(c)は
触媒あるいは原子力等の熱発生源を用いた例、(d)は
空力加熱等の外部からのエネルギーによって昇温した
例、(e)はロケットエンジンにおいて再生冷却後の燃
料である冷却剤を用いた例である。
FIG. 1 is an operation conceptual diagram showing an example of a coolant cycle of a scramjet engine and a rocket engine embodying the present invention. (A) is an example of regenerative cooling,
(B) is an example in which the temperature is increased by using a coolant combustor, (c) is an example in which a heat source such as a catalyst or nuclear power is used, and (d) is increased by external energy such as aerodynamic heating. For example, (e) is an example using a coolant which is a fuel after regeneration cooling in a rocket engine.

【図2】超音速における冷却剤温度と必要冷却剤流量と
の関係の1例を示すグラフである。
FIG. 2 is a graph showing an example of the relationship between the coolant temperature and the required coolant flow rate at supersonic speed.

【図3】亜音速における冷却剤温度と必要冷却剤流量と
の関係の1例を示すグラフである。
FIG. 3 is a graph showing an example of a relationship between a coolant temperature and a required coolant flow rate at a subsonic speed.

【図4】図1(a)の実施例に示した冷却剤サイクルに
おける飛行速度と水素流量の関係の1例を示すグラフで
ある。
FIG. 4 is a graph showing an example of the relationship between flight speed and hydrogen flow rate in the coolant cycle shown in the embodiment of FIG. 1 (a).

【図5】図4に示した場合における飛行速度と正味比推
力の関係の1例を示すグラフである。
5 is a graph showing an example of the relationship between flight speed and net specific thrust in the case shown in FIG.

【図6】図4に示した場合における飛行速度と水素供給
圧力の関係の1例を示すグラフである。
6 is a graph showing an example of the relationship between the flight speed and the hydrogen supply pressure in the case shown in FIG.

【符号の説明】[Explanation of symbols]

1 加熱装置 2 フィルム冷却剤噴射器 3
燃料噴射器 A 冷却剤 B 空気あるいは反応剤 C
燃焼ガス E 燃料
1 Heating Device 2 Film Coolant Injector 3
Fuel injector A Coolant B Air or reactant C
Combustion gas E fuel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鎮西 信夫 宮城県角田市君萱字小金沢1番地 科学技 術庁航空宇宙技術研究所角田支所内 (72)発明者 若松 義男 宮城県角田市君萱字小金沢1番地 科学技 術庁航空宇宙技術研究所角田支所内 (72)発明者 斎藤 俊仁 宮城県角田市君萱字小金沢1番地 科学技 術庁航空宇宙技術研究所角田支所内 (72)発明者 高橋 政浩 宮城県角田市君萱字小金沢1番地 科学技 術庁航空宇宙技術研究所角田支所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Jinzai Kimigata, Kakuda City, Miyagi Prefecture Koganazawa 1 Kanazawa, Kakuda Branch, Institute of Aerospace Engineering, Japan Science and Technology Agency (72) Yoshio Wakamatsu Kimiyo, Kakuda City, Miyagi Prefecture Koganazawa No. 1 within the Kakuda branch of the Institute of Aeronautics and Space Technology, Science and Technology Agency (72) Inventor Toshihito Saito Kimigata, Kakuda City, Miyagi Prefecture Koganezawa No. 1 inside the Kakuda branch of the Institute of Aerospace Engineering (72) Inventor Takahashi Masahiro No.1 Kanazawa, Kanagata, Kakuda City, Miyagi Prefecture Kakuda Branch, Aerospace Research Institute, Science and Technology Agency

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高温気流に曝される部位を、加熱され高
温になったガスを用いてフィルム冷却を行なうことを特
徴とするガスフィルム冷却方法。
1. A method for cooling a gas film, which comprises cooling a film exposed to a high-temperature air flow with a gas heated to a high temperature.
【請求項2】 冷却剤タンク、および該冷却剤を、機器
の高温気流に曝される部位表面にフィルム状に流すため
の噴射器を有する冷却装置において、該噴射器上流に、
冷却剤の加熱装置を備えることを特徴とするガスフィル
ム冷却装置。
2. A cooling device having a coolant tank and an injector for causing the coolant to flow in a film form on a surface of a portion of the device exposed to a high temperature air flow, in the upstream of the injector,
A gas film cooling device comprising a heating device for a coolant.
JP5466793A 1993-02-22 1993-02-22 Method and apparatus for cooling high temperature gas film Expired - Lifetime JPH079222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5466793A JPH079222B2 (en) 1993-02-22 1993-02-22 Method and apparatus for cooling high temperature gas film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5466793A JPH079222B2 (en) 1993-02-22 1993-02-22 Method and apparatus for cooling high temperature gas film

Publications (2)

Publication Number Publication Date
JPH06249070A true JPH06249070A (en) 1994-09-06
JPH079222B2 JPH079222B2 (en) 1995-02-01

Family

ID=12977135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5466793A Expired - Lifetime JPH079222B2 (en) 1993-02-22 1993-02-22 Method and apparatus for cooling high temperature gas film

Country Status (1)

Country Link
JP (1) JPH079222B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989550A (en) * 2015-07-22 2015-10-21 北京航空航天大学 Liquid-nitrogen cooling system of scramjet engine
US10072611B2 (en) 2013-10-11 2018-09-11 Ihi Corporation Gas generator
CN111636966A (en) * 2020-05-28 2020-09-08 清华大学 Engine and cooling system thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10072611B2 (en) 2013-10-11 2018-09-11 Ihi Corporation Gas generator
CN104989550A (en) * 2015-07-22 2015-10-21 北京航空航天大学 Liquid-nitrogen cooling system of scramjet engine
CN104989550B (en) * 2015-07-22 2018-01-30 北京航空航天大学 Scramjet engine liquid nitrogen cooling system
CN111636966A (en) * 2020-05-28 2020-09-08 清华大学 Engine and cooling system thereof
CN111636966B (en) * 2020-05-28 2021-06-25 清华大学 Engine and cooling system thereof

Also Published As

Publication number Publication date
JPH079222B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
Blllig et al. A unified analysis of gaseous jet penetration
EP1009927B1 (en) Ejector ramjet engine
US6786040B2 (en) Ejector based engines
US7963100B2 (en) Cooling system for high-speed vehicles and method of cooling high-speed vehicles
Sato et al. Development study of a precooled turbojet engine
JPH0656132B2 (en) Gas compressor for jet engine
Tsujikawa et al. Effects of hydrogen active cooling on scramjet engine performance
CA3042943A1 (en) Precooled air breathing engine
Tomioka et al. System Analysis of a Hydrocarbon-fueled RBCC engine applied to a TSTO Launch Vehicle
CA1313457C (en) Gas compressor for jet engine
AU2020100803A4 (en) Reusable, accelerating, hydrogen fuelled Scramjet with Fixed Geometry and Shape Transition
US6532728B1 (en) Reducing skin friction drag
JPH06249070A (en) Method and apparatus for cooling gas film in high temperature section
JPH0341668B2 (en)
US3241310A (en) Lightweight power plant
JP3205126B2 (en) Combustion heater
US3253405A (en) Combustion cooled rocket nozzle
Baxter et al. Weak extinction limits of large-scale flameholders
Penner On the development of rational scaling procedures for liquid-fuel rocket engines
Boden Heat transfer in rocket motors and the application of film and sweat cooling
Abramson Investigation of Internal Film Cooling of Exhaust Nozzle of a 1000-pound-thrust Liquid-ammonia Liquid-oxygen Rocket
JP2998405B2 (en) Scrumjet engine
Daines et al. Computational analysis of mixing and jet pumping in rocket ejector engines
Xu et al. Numerical simulation on flow and heat transfer characteristics of film/regenerative compound cooling process
Daines et al. Computational Fluid Dynamic Modeling of Racket; Based Combined Cycle Engine Flowfields

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19950718

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term