JPH06248374A - Production of super-hard aluminum composite material - Google Patents

Production of super-hard aluminum composite material

Info

Publication number
JPH06248374A
JPH06248374A JP7608293A JP7608293A JPH06248374A JP H06248374 A JPH06248374 A JP H06248374A JP 7608293 A JP7608293 A JP 7608293A JP 7608293 A JP7608293 A JP 7608293A JP H06248374 A JPH06248374 A JP H06248374A
Authority
JP
Japan
Prior art keywords
composite material
aluminum
aluminum composite
boride
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7608293A
Other languages
Japanese (ja)
Inventor
Takao Cho
隆郎 長
Makoto Kobashi
真 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7608293A priority Critical patent/JPH06248374A/en
Publication of JPH06248374A publication Critical patent/JPH06248374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the production of aluminum composite material and to produce super-hard aluminum composite material which is obtained by in situ forming and dispersing fine nitride and boride particles in aluminum. CONSTITUTION:Aluminum or an aluminum alloy is melted on a powdery mixture consisting of powdery boron nitride and powdery metal such as Hf, Zr, Tl or Ta under an argon or nitrogen atmosphere to impregnate the molten metal into the powdery mixture. At this time, the boron nitride is decomposed to react with Al, or Hf, Zr, Tl or Ta and the boride and nitride particles are in-situ formed and dispersed. Thus the production process of the aluminum composite material is simplified and the aluminum composite material which contains fine boride and AlN paticles and therefore has an extremely high hardness of 650 Vickers hardness Hv on the average, can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明によれば、粒子分散強化ア
ルミニウム複合材料を簡単に製造できる。また、微細粒
子を2種類以上アルミニウム中にてin situ生成
・分散するので、これまでにない高硬度なアルミニウム
材料となり、比硬度が高いので、輸送機器をはじめ多く
の機器の構造部品材料に適用できる。
INDUSTRIAL APPLICABILITY According to the present invention, a particle dispersion strengthened aluminum composite material can be easily manufactured. In addition, since two or more kinds of fine particles are generated and dispersed in situ in aluminum, it becomes an unprecedentedly high hardness aluminum material and has a high specific hardness, so it can be applied to structural parts materials of many equipment including transportation equipment. it can.

【0002】[0002]

【従来の技術】これまで、粒子分散強化型アルミニウム
複合材料の製造法としてはアルミニウム粉末およびセラ
ミック粉末を混合・成形・焼結する粉末冶金法、あるい
は高粘度の半凝固アルミニウム中に粒子を混入するコン
ポ・キャスティング法が見られるが、いずれも濡れ性が
悪いセラミック粉末を強制的にメタル中に分散する方法
であり、高いコストが避けられない。また、フォルテッ
クス法あるいは溶湯攪拌法では濡れ性向上のための合金
添加が不可避であり、また高強度発揮に必要な微細粒子
の分散が難しい。
2. Description of the Related Art Heretofore, as a method for producing a particle dispersion-strengthened aluminum composite material, a powder metallurgy method of mixing, molding, and sintering aluminum powder and ceramic powder, or mixing particles in high-viscosity semisolid aluminum. Although the component casting method can be seen, all of them are methods of forcibly dispersing ceramic powder having poor wettability in the metal, and high cost is unavoidable. Further, in the case of the Fortex method or the molten metal stirring method, it is unavoidable to add an alloy for improving the wettability, and it is difficult to disperse the fine particles necessary for exhibiting high strength.

【0003】[0003]

【発明が解決しようとする課題】本発明では、以下の2
点を解決しようとしている。 微細粒子を均一に分散することが材料特性向上に欠
かせないので、微細粒子を均一に分散させ、機械的特性
向上を計る。 製造プロセスを簡単化する。
According to the present invention, the following 2
I am trying to resolve the point. Since it is indispensable to improve the material properties to uniformly disperse the fine particles, the fine particles are uniformly dispersed to improve the mechanical properties. Simplify the manufacturing process.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
にそれぞれ次のような手段を用いる。 まず、微細粒子を均一に分散するために、ほう化物
標準生成自由エネルギの値が負に大きい金属、Hf、Z
r、Ti、TaあるいはNbの粉末と窒化ほう素粉末を
混合して、坩堝に装填する。次に、この上部にアルミニ
ウムあるいはアルミニウム合金を置き、アルゴンまたは
窒素雰囲気下において加熱・溶解する。溶融アルミニウ
ムあるいはアルミニウム合金は混合粉末中に含浸し、こ
の時、窒化ほう素は分解して、Alあるいは混合粉末中
のHf、Zr、Ti、TaあるいはNbと反応し、ほう
化物および窒化物粒子をin situ生成する。これ
ら粒子はin situ生成されるので、微細になりや
すく、しかも、窒化ほう素の分解位置が均一に行なわれ
るので、in situ生成粒子も均一に分散され、複
合材料の機械的特性向上につながる。 本発明では、金属粉末と窒化ほう素からなる混合粉
末の上で、単にアルミニウムあるいはアルミニウム合金
を同一坩堝中、アルゴンまたは窒素雰囲気下にて加熱・
溶解・保持するのみであり、製造プロセスは簡単化され
る。
To solve the above problems, the following means are used. First, in order to uniformly disperse fine particles, a metal having a large negative free energy of standard boride formation, Hf, Z
A powder of r, Ti, Ta or Nb and a powder of boron nitride are mixed and loaded into a crucible. Next, aluminum or an aluminum alloy is placed on top of this and heated and melted in an argon or nitrogen atmosphere. Molten aluminum or aluminum alloy is impregnated in the mixed powder, and at this time, boron nitride decomposes and reacts with Al or Hf, Zr, Ti, Ta or Nb in the mixed powder to form boride and nitride particles. Generate in situ. Since these particles are generated in situ, they are likely to become fine, and since the decomposition position of boron nitride is evenly distributed, the particles generated in situ are uniformly dispersed, which leads to improvement in mechanical properties of the composite material. In the present invention, on a mixed powder consisting of metal powder and boron nitride, simply heat aluminum or aluminum alloy in the same crucible in an argon or nitrogen atmosphere.
It only dissolves and holds it, simplifying the manufacturing process.

【0005】[0005]

【作用と実施例】次に、本発明の実施方法とその製品に
ついて、実験結果を例にあげて説明する。
Next, the method of carrying out the present invention and the product thereof will be described with reference to experimental results.

【0006】マグネシア製タンマン管(内径17mm,
高さ100mm)に、窒化ほう素粉末4.25gおよび
チタン粉末4.25gの混合粉末を装填し、その上に純
アルミニウムインゴット5.082gを置き、窒素雰囲
気中で加熱し、温度1473Kに1時間保持した。得ら
れた複合材料についてX線回折を行なった結果、図1に
示すように、TiBおよびAlNの生成を確認するこ
とが出来た。また、この時の組織は図2に示すように、
微細白色TiB粒子および灰色のAlN粒子がアルミ
ニウム中に分散している。さらに,材料のビッカース硬
さHを荷重500gfにて測定した結果、平均H
650の硬度が得られ、超硬アルミニウム複合材料を製
造することができた。
Tamman tube made of magnesia (inner diameter 17 mm,
(Height 100 mm) is charged with a mixed powder of 4.25 g of boron nitride powder and 4.25 g of titanium powder, 5.082 g of pure aluminum ingot is placed thereon, and heated in a nitrogen atmosphere for 1 hour at a temperature of 1473K. Held As a result of performing X-ray diffraction on the obtained composite material, it was possible to confirm the production of TiB 2 and AlN as shown in FIG. 1. Further, the organization at this time is as shown in FIG.
Fine white TiB 2 particles and gray AlN particles are dispersed in aluminum. Further, the Vickers hardness H V of the material was measured at a load of 500 gf, and the average H V =
A hardness of 650 was obtained and a super hard aluminum composite material could be produced.

【0007】[0007]

【発明の効果】本発明による複合材料製造法は簡便であ
る。また、得られた材料の硬度は極めて高く、軽量にし
て高硬度な材料として優れている。したがって、輸送機
器部品をはじめ、多くの機器部品に適用され、省エネル
ギー対策に大きな効果を発揮すると考えられる。
The composite material manufacturing method according to the present invention is simple. Further, the hardness of the obtained material is extremely high, and it is excellent as a material that is lightweight and has high hardness. Therefore, it is considered to be applied to many equipment parts including transportation equipment parts, and to exert a great effect on energy saving measures.

【0008】[0008]

【図面の簡単な説明】[Brief description of drawings]

【図1】製造した超硬アルミニウム複合材料断面でのX
線回折結果を示し、アルミニウム(図中□印)、TiB
(図中○印)およびAlN(図中△印)のピークが明
確に見られる。
FIG. 1 X in cross section of manufactured cemented carbide composite material
Line diffraction results are shown for aluminum (□ in the figure), TiB
The peaks of 2 (○ in the figure) and AlN (Δ in the figure) are clearly seen.

【図2】製造した複合材料の組織を示す。組織はアルミ
ニウムのマトリックス内に微細白色のTiB粒子およ
び灰色のAlN粒子が分散した組織を示している。
FIG. 2 shows the structure of the manufactured composite material. The structure shows a structure in which fine white TiB 2 particles and gray AlN particles are dispersed in an aluminum matrix.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルゴンまたは窒素ガス雰囲気下にて、
金属粉末と窒化ほう素粉末からなる混合粉末中に、溶融
アルミニウムあるいはアルミニウム合金を含浸させ、ほ
う化物および窒化物粒子を同時にin situ生成分
散した超硬アルミニウム複合材料の製造法。
1. Under an atmosphere of argon or nitrogen gas,
A method for producing a super hard aluminum composite material in which molten aluminum or aluminum alloy is impregnated in a mixed powder composed of a metal powder and a boron nitride powder, and boride and nitride particles are simultaneously generated and dispersed in situ.
【請求項2】 第1項の金属粉末はHf、Zr、Ti、
TaおよびNbのいずれか1種または2種以上であるこ
とを特徴とする特許請求の範囲第1項の複合材料製造
法。
2. The metal powder according to claim 1 is Hf, Zr, Ti,
The method for producing a composite material according to claim 1, wherein any one or more of Ta and Nb is used.
【請求項3】 第1項の窒化ほう素は溶融アルミニウム
あるいはアルミニウム合金の含浸によって分解し、Al
あるいは第2項の金属Hf、Zr、Ti、Taあるいは
Nbのいずれか1種または2種以上と反応し、窒化物お
よびほう化物をin situ生成することを特徴とす
る特許請求の範囲第1項の複合材料製造法。
3. The boron nitride according to claim 1 is decomposed by impregnation with molten aluminum or aluminum alloy to form Al
Alternatively, it reacts with any one or more of the metals Hf, Zr, Ti, Ta, and Nb of the second item to form a nitride and a boride in situ. Composite material manufacturing method.
JP7608293A 1993-02-24 1993-02-24 Production of super-hard aluminum composite material Pending JPH06248374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7608293A JPH06248374A (en) 1993-02-24 1993-02-24 Production of super-hard aluminum composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7608293A JPH06248374A (en) 1993-02-24 1993-02-24 Production of super-hard aluminum composite material

Publications (1)

Publication Number Publication Date
JPH06248374A true JPH06248374A (en) 1994-09-06

Family

ID=13594908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7608293A Pending JPH06248374A (en) 1993-02-24 1993-02-24 Production of super-hard aluminum composite material

Country Status (1)

Country Link
JP (1) JPH06248374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397576B1 (en) * 2001-03-06 2003-09-17 한국기계연구원 Composition and Method for making high volume reinforced Al composite by using dipping process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397576B1 (en) * 2001-03-06 2003-09-17 한국기계연구원 Composition and Method for making high volume reinforced Al composite by using dipping process

Similar Documents

Publication Publication Date Title
Das et al. A review on the various synthesis routes of TiC reinforced ferrous based composites
US6852273B2 (en) High-strength metal aluminide-containing matrix composites and methods of manufacture the same
US5019539A (en) Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
US5640666A (en) Composite silicide/silicon carbide mechanical alloy
US5382405A (en) Method of manufacturing a shaped article from a powdered precursor
CN100453666C (en) Pressure-free impregnation preparation method for Al2O3 particle reinforced aluminum base composite material
US5368812A (en) Metal carbides and derived composites made by milling to obtain a particular nanostructural composite powder
EP1715070B1 (en) Method of producing titanium composite parts by means of casting
NO177487B (en) Process for making a metal matrix composite and thermoforming the same
US5690889A (en) Production method for making rare earth compounds
JPH07207381A (en) Production of particle reinforced composite material
US5397533A (en) Process for producing TiB2 -dispersed TiAl-based composite material
Nie Patents of methods to prepare intermetallic matrix composites: A Review
JP2004346368A (en) Method for manufacturing composite material, and composite material
US6852275B2 (en) Process for production of intermetallic compound-based composite material
KR20030042425A (en) Composite material and method for production of the same
JPH06248374A (en) Production of super-hard aluminum composite material
Mota et al. Preparation of aluminium boride by powder technology
JP2002356754A (en) Method for manufacturing composite material, and composite material manufactured by the same
WO2023286407A1 (en) Method for producing high metal powder content aluminum composite body, method for preparing preform, and high metal powder content aluminum composite body
JP4289867B2 (en) Composite material manufacturing method and composite material manufactured by the manufacturing method
US5556486A (en) Composite material having an intermetallic matrix of AlNi reinforced by silicon carbide particles
JPH01263233A (en) Production of beta type silicon nitride whisker-reinforced metallic composite material
CN1375368A (en) Casting with in-situ generated surface cermet layer and its productino process
JP2004353087A (en) Method for producing composite material