JPH06248127A - Polyethylene resin composition - Google Patents

Polyethylene resin composition

Info

Publication number
JPH06248127A
JPH06248127A JP6294393A JP6294393A JPH06248127A JP H06248127 A JPH06248127 A JP H06248127A JP 6294393 A JP6294393 A JP 6294393A JP 6294393 A JP6294393 A JP 6294393A JP H06248127 A JPH06248127 A JP H06248127A
Authority
JP
Japan
Prior art keywords
ethylene
elution
density
intrinsic viscosity
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6294393A
Other languages
Japanese (ja)
Other versions
JP3375169B2 (en
Inventor
Toshifumi Morimoto
敏文 森本
Noboru Ikegami
昇 池上
Kunimichi Kubo
国道 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP06294393A priority Critical patent/JP3375169B2/en
Publication of JPH06248127A publication Critical patent/JPH06248127A/en
Application granted granted Critical
Publication of JP3375169B2 publication Critical patent/JP3375169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polyethylene resin compsn. excellent esp. in melting and optical charactristics and suitable for a large-size hollow molding by compounding three specific ethylene homopolymers or ethylene-alpha-olefin copolymers. CONSTITUTION:This resin compsn. has an intrinsic viscosity of 1.0-6.0dl/g, a density of 0.890-0.970g/cm<3>, and an N-value obtd. by forula III of 1.117-3.0 and comprises 1-50% ultrahigh-mol.-wt. ethylene homopolymer or ethylene-alpha- olefin copolymer having an intrinsic viscosity eta1 and a density d1 each in a specified range, 5-94% ethylene (co)polymer having an intrinsic viscosity eta2 and a density d2 each in a specified range, a ratio S [i.e., a ratio (Ib/Ia) of the area Ib under the elution temp.-elution amt. curve obtd. by temperature rising elution fractionation between the dissolution temps. of 25 deg.C and 90 deg.C to the area Ia under the cure in the range of the elution temp. of 90 deg.C or higher] not higher than S1 obtd. from formula I, and a content of o- dichlorobenzene solubles (W wt.%) at 25 deg.C not higher than W1 obtd. by formula II, and 5-50% ethylene (co)polymer obtd. by high-pressure free-radical polymn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融弾性(メルトテン
ション、ダイスウェル比等)、流動特性(加工特性
等)、機械特性(耐衝撃性、引張強度等)等に優れ、分
子量分布のきわめて広いエチレン重合体組成物に関し、
特に光学特性および低温時の機械的特性に優れ、メルト
テンション、ダイスウェル比が大きいところから、ガソ
リンタンクなどの大型中空成形品、大口径パイプなどの
押出成形品等に適するエチレン重合体組成物に関する。
INDUSTRIAL APPLICABILITY The present invention is excellent in melt elasticity (melt tension, die swell ratio, etc.), flow characteristics (processing characteristics, etc.), mechanical characteristics (impact resistance, tensile strength, etc.), and has an extremely high molecular weight distribution. With respect to a wide ethylene polymer composition,
Particularly, it relates to an ethylene polymer composition which is excellent in optical properties and mechanical properties at low temperature, and has a large melt tension and die swell ratio, and is suitable for large hollow molded products such as gasoline tanks and extrusion molded products such as large diameter pipes. .

【0002】[0002]

【従来の技術】従来、流動特性を改良する目的でエチレ
ン・α−オレフィン共重合体の分子量分布を広くする方
法が報告されている(例えば特開昭57−21409号
公報、特公昭63−47741号公報等)が、報告に記
載されているように単に分子量分布を広くするのみで
は、溶融弾性や機械的特性、特に低温時の機械的特性は
改善されず、かえって大幅に低下する。また機械的特性
および流動特性の改良については、高分子量成分と低分
子量成分とからなるエチレン・α−オレフィン共重合体
の高分子量成分の短鎖分岐度を特定し、かつ高分子量成
分に短鎖分岐を多く導入して、機械的特性、流動性のみ
ならず、耐環境応力亀裂性(ESCR)も改良する試み
がなされている(特開昭54−100444号公報、特
公昭64−7096号公報)。しかし、これらの改良に
おいても機械的特性、特に低温時の機械的特性や溶融弾
性は満足し得るものではない。更に、特開平2−305
811号公報においては、耐衝撃性、ESCR、ピンチ
オフ融着性を改良する目的で、触媒と2段重合の重合条
件を特定する方法が提案されているが、この方法では、
ESCRや溶融弾性の点で若干の改良がみられるが、機
械的特性、特に低温時の機械的特性を改良するには不十
分である。その他にも、中空成形用ポリエチレン組成物
として、耐ドローダウン性、ダイスウェルやESCRを
改良したもの(特開昭59−89341号、特開昭60
−20946号公報等)が開示され、また2段重合法の
欠点を改善する方法として3段重合法が提案されている
(特公昭59−10724号、特開昭62−25105
号、同62−25106号、同62−25107号、同
62−25108号、同62−25109号公報等)。
これらの提案においても、前記溶融弾性や流動特性の改
善は未だ不十分であり、特に光学特性および低温時の機
械的特性には改善がみられない。
2. Description of the Related Art Heretofore, a method of broadening the molecular weight distribution of an ethylene / α-olefin copolymer has been reported for the purpose of improving flow characteristics (for example, JP-A-57-21409 and JP-B-63-47741). However, if the molecular weight distribution is simply widened as described in the report, melt elasticity and mechanical properties, particularly mechanical properties at low temperature, are not improved, but rather greatly reduced. In addition, regarding the improvement of mechanical properties and flow properties, the short chain branching degree of the high molecular weight component of the ethylene / α-olefin copolymer consisting of the high molecular weight component and the low molecular weight component was specified and Attempts have been made to improve not only mechanical properties and fluidity but also environmental stress crack resistance (ESCR) by introducing many branches (Japanese Patent Laid-Open No. 54-10044 and Japanese Patent Publication No. 64-7096). ). However, even with these improvements, the mechanical properties, especially at low temperatures, and the melt elasticity are not satisfactory. Furthermore, JP-A-2-305
Japanese Patent No. 811 proposes a method of specifying a catalyst and polymerization conditions for two-step polymerization for the purpose of improving impact resistance, ESCR, and pinch-off fusion bondability.
Although there is some improvement in ESCR and melt elasticity, it is insufficient to improve mechanical properties, especially at low temperatures. In addition, a polyethylene composition for blow molding, which has improved drawdown resistance, die swell and ESCR (JP-A-59-89341 and JP-A-60).
No. 20946, etc.) and a three-stage polymerization method has been proposed as a method for improving the drawbacks of the two-stage polymerization method (Japanese Patent Publication No. 59-10724 and Japanese Patent Application Laid-Open No. 62-25105).
No. 62-25106, No. 62-25107, No. 62-25108, No. 62-25109, etc.).
Also in these proposals, the improvement of the melt elasticity and the flow characteristics is still insufficient, and in particular, the optical characteristics and the mechanical characteristics at low temperature are not improved.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、溶融弾性(メルトテンション、ダイスウェル比
等)、流動特性(加工特性等)、機械特性(耐衝撃性、
引張強度等)等の各種物性のバランスに優れ、分子量分
布のきわめて広いエチレン重合体組成物であって、特に
光学特性および低温時の機械的特性に優れ、メルトテン
ション、ダイスウェル比が大きいため、ガソリンタンク
などの大型中空成形品、大口径パイプなどの押出成形品
等に適する組成物を提供することを目的とするものであ
る。
In view of the above points, the present invention has melt elasticity (melt tension, die swell ratio, etc.), flow characteristics (processing characteristics, etc.), mechanical characteristics (impact resistance,
It is an ethylene polymer composition with an excellent balance of various physical properties such as tensile strength, etc., and an extremely wide molecular weight distribution. In particular, it has excellent optical properties and mechanical properties at low temperatures, and has a large melt tension and die swell ratio. It is an object of the present invention to provide a composition suitable for a large hollow molded product such as a gasoline tank and an extrusion molded product such as a large diameter pipe.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の目的
に沿って鋭意検討した結果、超高分子量成分、分子間の
短鎖分岐分布がきわめて広い特定のエチレン・α−オレ
フィン共重合体またはエチレン単独重合体、および高圧
ラジカル重合によるエチレン(共)重合体からなる3成
分を配合することにより、溶融弾性、流動特性、機械的
特性等の各種物性のバランスに優れ、特に光学特性およ
び低温時の機械的特性に優れたエチレン重合体組成物が
得られることを見出して本発明に到達した。 すなわち本発明は、(I)下記条件(a)および(b)を満
足する超高分子量のエチレン単独重合体またはエチレン
・α−オレフィン共重合体1〜50重量%、(a)極限粘
度(η1)9〜45dl/g、(b)密度(d1)0.890〜
0.935g/cm3、 (II)下記条件(c)から(f)を満足するエチレン単独重
合体またはエチレン・α−オレフィン共重合体5〜94
重量%、(c)極限粘度(η2)0.3〜3.0dl/g、(d)
密度(d2)0.890〜0.980g/cm3、(e)連続昇温
溶出分別法による溶出温度−溶出量曲線において、溶出
温度90℃以上の曲線下の面積Iaに対する溶出温度2
5〜90℃の曲線下の面積Ibの比S(Ib/Ia)が
次式から計算されるS1以下、 S1=20η2 -1exp[−50(d2−0.900)] (f)25℃オルソジクロロベンゼン可溶分W重量%が次
式から計算されるW1以下、 W1=100η2 -0.5exp[−50η2 0.5(d2−0.900)]、なら
びに (III)高圧ラジカル重合によるエチレン(共)重合体
5〜50重量%からなり、かつ前記成分(I)、(II)
および(III)の合計は100重量%であり、各成分
(I)から(III)の極限粘度がそれぞれ互いに異なる混
合物であって、同混合物の極限粘度が1.0〜6.0dl/
g、密度が0.890〜0.970g/cm3および次式数2か
ら計算されるN−値が1.7〜3.0であるエチレン重合
体組成物を提供するものである。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors in view of the above objects, a specific ethylene / α-olefin copolymer having an extremely high molecular weight component and an extremely wide short-chain branch distribution between molecules has been obtained. Alternatively, by blending three components consisting of an ethylene homopolymer and an ethylene (co) polymer obtained by high-pressure radical polymerization, excellent balance of various physical properties such as melt elasticity, flow characteristics, mechanical characteristics, etc., particularly optical characteristics and low temperature The present invention has been accomplished by finding that an ethylene polymer composition having excellent mechanical properties at the time is obtained. That is, the present invention comprises (I) 1 to 50% by weight of an ultrahigh molecular weight ethylene homopolymer or ethylene / α-olefin copolymer satisfying the following conditions (a) and (b), and (a) an intrinsic viscosity (η 1 ) 9 to 45 dl / g, (b) density (d 1 ) 0.890
0.935 g / cm 3 , (II) Ethylene homopolymer or ethylene / α-olefin copolymer 5 to 94 satisfying the following conditions (c) to (f):
% By weight, (c) intrinsic viscosity (η 2 ) 0.3 to 3.0 dl / g, (d)
Density (d 2 ) 0.890 to 0.980 g / cm 3 , (e) In the elution temperature-elution amount curve by the continuous temperature elution fractionation method, the elution temperature 2 for the area Ia under the curve at the elution temperature of 90 ° C. or higher
The ratio S (Ib / Ia) of the area Ib under the curve of 5 to 90 ° C. is S 1 or less calculated from the following equation, S 1 = 20η 2 −1 exp [−50 (d 2 −0.900)] (f) 25% ortho-dichlorobenzene soluble content W% by weight is W 1 or less calculated from the following formula, W 1 = 100 η 2 -0.5 exp [−50 η 2 0.5 (d 2 −0.900)], and (III) by high pressure radical polymerization 5 to 50% by weight of an ethylene (co) polymer, and the components (I) and (II)
The total of (III) and (III) is 100% by weight, and the components (I) to (III) have different intrinsic viscosities, and the intrinsic viscosity of the mixture is 1.0 to 6.0 dl /
It is intended to provide an ethylene polymer composition having g, a density of 0.890 to 0.970 g / cm 3 and an N-value of 1.7 to 3.0 calculated from the following equation.

【0005】[0005]

【数2】 [Equation 2]

【0006】以下に本発明の内容を詳述する。本発明の
超高分子量成分(I)とは、エチレン単独重合体または
エチレン・α−オレフィン共重合体であり、同共重合体
のα−オレフィンとしては、炭素数3〜18のものが用
いられ、特に炭素数4〜10のものが機械的特性の点か
ら好ましい。具体的には、1−ブテン、1−ペンテン、
1−ヘキセン、4−メチル−1−ペンテン、1−オクテ
ン、1−ノネン、1−デセン等が挙げられる。なおα−
オレフィンは2種以上併用しても差し支えない。
The details of the present invention will be described below. The ultrahigh molecular weight component (I) of the present invention is an ethylene homopolymer or an ethylene / α-olefin copolymer, and the α-olefin of the copolymer has a carbon number of 3-18. Particularly, those having 4 to 10 carbon atoms are preferable from the viewpoint of mechanical properties. Specifically, 1-butene, 1-pentene,
1-hexene, 4-methyl-1-pentene, 1-octene, 1-nonene, 1-decene and the like can be mentioned. Α-
Two or more olefins may be used in combination without any problem.

【0007】上記超高分子量成分(I)であるエチレン単
独重合体またはエチレン・α−オレフィン共重合体は、
(a)極限粘度(η1)が9〜45dl/g、好ましくは10〜
40dl/g、更に好ましくは12〜40dl/gの範囲のもの
が用いられる。η1が9dl/g未満では、得られた組成物
の溶融弾性および機械的特性が劣り、また45dl/gを超
えると、成形品の表面荒れやフィッシュアイが発生する
など成形加工性が低下する。また成分(I)の(b)密度
(d1)は、0.890〜0.935g/cm3の範囲、好まし
くは0.890〜0.930g/cm3の範囲のものが用いら
れる。d1が0.890g/cm3未満のものは製造が困難で
ある上に、得られた組成物がベタつく原因となるため好
ましくない。一方d1が0.935g/cm3を超えるとき
は、組成物の機械的特性、特に低温時の機械的特性が低
下するため好ましくない。
The above-mentioned ultrahigh molecular weight component (I), an ethylene homopolymer or an ethylene / α-olefin copolymer, is
(a) Intrinsic viscosity (η 1 ) is 9 to 45 dl / g, preferably 10
It is preferably 40 dl / g, more preferably 12 to 40 dl / g. When η 1 is less than 9 dl / g, the melt elasticity and mechanical properties of the obtained composition are poor, and when it is more than 45 dl / g, the molding processability is deteriorated, such as the surface roughness of the molded product and fish eyes. . The components (I) (b) Density (d 1) is in the range of 0.890~0.935g / cm 3, preferably is used in the range of 0.890~0.930g / cm 3. If d 1 is less than 0.890 g / cm 3 , it is not preferable because it is difficult to produce and the resulting composition becomes sticky. On the other hand, when d 1 exceeds 0.935 g / cm 3 , the mechanical properties of the composition, particularly at low temperature, are deteriorated, which is not preferable.

【0008】本発明の成分(II)はエチレン単独重合体
またはエチレン・α−オレフィン共重合体である。エチ
レン・α−オレフィン共重合体のα−オレフィンとして
は、成分(I)の場合と同様に炭素数3〜18のものが
使用され、好ましくは炭素数4〜10であり、特に前記
同様1−ブテン、1−ペンテン、1−ヘキセン、4−メ
チル−1−ペンテン、1−オクテン、1−ノネン、1−
デセン等が機械的特性などの点で好ましい。なおα−オ
レフィンは2種以上併用しても差し支えない。
The component (II) of the present invention is an ethylene homopolymer or an ethylene / α-olefin copolymer. As the α-olefin of the ethylene / α-olefin copolymer, those having 3 to 18 carbon atoms are used as in the case of the component (I), preferably 4 to 10 carbon atoms, and particularly 1- Butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-nonene, 1-
Decene and the like are preferable in terms of mechanical properties and the like. It should be noted that two or more α-olefins may be used in combination.

【0009】上記成分(II)の(c)極限粘度(η2)は
0.3〜3.0dl/gの範囲であり、好ましくは0.6〜3.
0dl/gの範囲である。η2が0.3dl/g未満では、得られ
た組成物の機械的特性、特に低温時の機械的特性が劣
り、一方3.0dl/gを超えると、その流動特性が低下す
るのでいずれも好ましくない。また成分(II)の(d)密
度(d2)は、0.890〜0.980g/cm3の範囲、好ま
しくは0.900〜0.975g/cm3の範囲のものが用い
られる。d2が0.890g/cm3未満のものは製造が困難
である上に、得られた組成物のベタつきの原因となるの
で好ましくない。他方0.980g/cm3を超えるときは、
製造が困難であるのみならず、得られた組成物の機械的
特性が低下するため同様に好ましくない。
The intrinsic viscosity (η 2 ) of component (II) (c) is in the range of 0.3 to 3.0 dl / g, preferably 0.6 to 3.0.
It is in the range of 0 dl / g. When η 2 is less than 0.3 dl / g, the mechanical properties of the obtained composition, particularly at low temperature, are poor, and when it exceeds 3.0 dl / g, the flow properties are deteriorated, and therefore, in any case. Not preferable. The components (II) (d) Density (d 2) is in the range of 0.890~0.980g / cm 3, preferably is used in the range of 0.900~0.975g / cm 3. Those having d 2 of less than 0.890 g / cm 3 are not preferable because they are difficult to produce and cause stickiness of the obtained composition. On the other hand, when it exceeds 0.980 g / cm 3 ,
Not only is it difficult to manufacture, but also the mechanical properties of the resulting composition deteriorate, which is likewise undesirable.

【0010】本発明で用いる成分(II)に関する前記の
条件(e)は、短鎖分岐を多く含む高分岐度成分は溶剤中
へ低温で溶解するが、短鎖分岐の少ない低分岐度成分は
高温でなければ溶剤に溶解しない性質を利用して、分岐
分布を定量的に規定したものである。すなわち溶剤への
溶解温度から分岐分布を測定する L. Wild らの連続昇
温溶出分別法(Temperature Rising Elution Fractiona
tion(TREF);Journal of Polymer Science:Polymer
Physics Edition, Vol.20, 441-455(1982))による溶出
温度−溶出量曲線において、溶出温度90℃以上の曲線
下の面積Iaと溶出温度25〜90℃の曲線下の面積I
bとの間に特定の関係が成立することが必要であり、本
発明においては図1の模式図に示される面積比S=Ib
/Iaの値が、次式から求められるS1以下でなければ
ならない。 S1=20η2 -1exp[−50(d2−0.900)] Sの値がS1を超えると、分岐分布がほぼ均一に近づく
結果、機械的特性、特に低温時の機械的特性に対してき
わめて有効な高分岐度成分が相対的に減少することとな
り好ましくない。
The above condition (e) relating to the component (II) used in the present invention is that the high branching component containing many short chain branches dissolves in the solvent at low temperature, but the low branching component containing few short chain branches is The branch distribution is quantitatively defined by utilizing the property that it does not dissolve in a solvent unless the temperature is high. That is, L. Wild et al.'S continuous temperature rising elution fractionation method (Temperature Rising Elution Fractiona)
tion (TREF); Journal of Polymer Science: Polymer
Physics Edition, Vol.20, 441-455 (1982)), in the elution temperature-elution amount curve, the area Ia under the curve at an elution temperature of 90 ° C or higher and the area I under the curve at an elution temperature of 25 to 90 ° C.
It is necessary to establish a specific relationship with b, and in the present invention, the area ratio S = Ib shown in the schematic view of FIG.
The value of / Ia must be less than or equal to S 1 obtained from the following equation. S 1 = 20 η 2 -1 exp [−50 (d 2 −0.900)] When the value of S exceeds S 1 , the branch distribution becomes almost uniform, resulting in mechanical characteristics, especially at low temperature. The extremely effective high branching component is relatively decreased, which is not preferable.

【0011】本発明で使用する成分(II)の(f)25℃
オルソジクロロベンゼン可溶分は、溶出温度が低過ぎて
上記の連続昇温溶出分別法では定量され得ない程度に、
きわめて多量の分岐を有する成分の量を表すもので、極
限粘度および密度に対応した特定の値であることが必要
である。しかしながら、これはまた有用でない低分子量
成分の存在を示すものでもあり、この低分子量成分はで
きるだけ排除することが必要である。このためには、同
可溶分W重量%が次式から求められるW1以下でなけれ
ばならない。好ましくはW3以下である。 W1=100η2 -0.5exp[−50η2 0.5(d2−0.900)] W3= 90η2 -0.5exp[−50η2 0.5(d2−0.900)] Wの値がW1以上では、きわめて多量の分岐を有する成
分の外に有用でない低分子量成分が存在することを示し
ており、機械的特性、特に低温時の機械的特性が劣るこ
とになる。
Component (II) (f) 25 ° C. used in the present invention
The ortho-dichlorobenzene-soluble content is so low that the elution temperature is too low to be quantified by the continuous temperature-rising elution fractionation method described above.
It represents the amount of a component having an extremely large amount of branching, and needs to be a specific value corresponding to the intrinsic viscosity and the density. However, this also indicates the presence of a non-useful low molecular weight component, which should be eliminated as much as possible. For this purpose, the same soluble content W% by weight must be W 1 or less obtained from the following equation. It is preferably W 3 or less. W 1 = 100 η 2 -0.5 exp [−50 η 2 0.5 (d 2 −0.900)] W 3 = 90 η 2 −0.5 exp [−50 η 2 0.5 (d 2 −0.900)] When the value of W is W 1 or more, it is extremely high. It shows that in addition to the components having a large amount of branching, there is a non-useful low-molecular weight component, resulting in poor mechanical properties, especially at low temperatures.

【0012】本発明の成分(III)の高圧ラジカル重合
によるエチレン(共)重合体とは、低密度ポリエチレ
ン;エチレン−酢酸ビニル共重合体等のエチレン−ビニ
ルエステル共重合体;エチレン−メタクリル酸共重合
体、エチレン−アクリル酸共重合体、エチレン−無水マ
レイン酸共重合体等のエチレン−α,β−不飽和カルボ
ン酸共重合体;エチレン−メタクリル酸メチル共重合
体、エチレン−アクリル酸メチル共重合体、エチレン−
メタクリル酸エチル共重合体、エチレン−アクリル酸エ
チル共重合体、エチレン−グリシジルメタクリレート共
重合体等のエチレン−α,β−不飽和カルボン酸エステ
ル共重合体などが挙げられる。これらの中でも低密度ポ
リエチレン、エチレン−酢酸ビニル共重合体、エチレン
−アクリル酸エチル共重合体等が好ましい。
The ethylene (co) polymer by the high pressure radical polymerization of the component (III) of the present invention means low density polyethylene; ethylene-vinyl ester copolymer such as ethylene-vinyl acetate copolymer; ethylene-methacrylic acid copolymer. Ethylene-α, β-unsaturated carboxylic acid copolymers such as polymers, ethylene-acrylic acid copolymers, ethylene-maleic anhydride copolymers; ethylene-methyl methacrylate copolymers, ethylene-methyl acrylate copolymers Polymer, ethylene
Examples thereof include ethylene-α, β-unsaturated carboxylic acid ester copolymers such as ethyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-glycidyl methacrylate copolymer and the like. Among these, low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer and the like are preferable.

【0013】成分(III)の高圧ラジカル重合によるエ
チレン(共)重合体のメルトフロー(MFR)は、0.
05〜100g/10分、好ましくは0.1〜50g/10分で
ある。成分(III)として低密度ポリエチレンを用いる
場合に、その密度は0.91〜0.94g/cm3、好ましく
は0.91〜0.935g/cm3の範囲である。また成分(I
II)としてエチレン−酢酸ビニル共重合体を用いる場合
に、酢酸ビニルの含量は1〜40重量%、好ましくは3
〜30重量%である。エチレン−アクリル酸エチル共重
合体の場合にも、アクリル酸エチルの含量は1〜40重
量%、好ましくは3〜30重量%である。
The melt flow (MFR) of the ethylene (co) polymer by the high pressure radical polymerization of the component (III) is 0.
The amount is 05 to 100 g / 10 minutes, preferably 0.1 to 50 g / 10 minutes. When low density polyethylene is used as the component (III), its density is in the range of 0.91 to 0.94 g / cm 3 , preferably 0.91 to 0.935 g / cm 3 . In addition, the component (I
When an ethylene-vinyl acetate copolymer is used as II), the content of vinyl acetate is 1 to 40% by weight, preferably 3%.
~ 30% by weight. Also in the case of ethylene-ethyl acrylate copolymer, the content of ethyl acrylate is 1 to 40% by weight, preferably 3 to 30% by weight.

【0014】本発明における成分(I)、(II)および
(III)の配合割合は、成分(I)1〜50重量%、成分
(II)5〜94重量%および成分(III)5〜50重量
%であり、好ましくはそれぞれ(I)5〜40重量%、
(II)5〜90重量%および(III)5〜40重量%であ
り、ただし成分(I)、(II)および(III)の合計量は
100重量%であって、組成物に対する要求性能により
これらの配合割合が選択される。上記成分のうち、特に
成分(I)が本発明において重要な役割をもつことか
ら、成分(I)の特性を考慮して組成物の配合割合を選
択することが好ましい。成分(I)の量が1重量%未満
では、溶融弾性および機械的特性、特に低温時の機械的
特性が十分でなく、一方、50重量%を超えるときは流
動特性が低くなる。なお、成分(I)から(III)の極限
粘度はそれぞれ互いに異なることが肝要であり、これが
満足されない場合には、本発明の目的の1つである流動
特性を向上することができない。
The proportions of the components (I), (II) and (III) in the present invention are 1 to 50% by weight of the component (I), 5 to 94% by weight of the component (II) and 5 to 50% of the component (III). % By weight, preferably (I) 5-40% by weight,
(II) 5 to 90% by weight and (III) 5 to 40% by weight, provided that the total amount of the components (I), (II) and (III) is 100% by weight, depending on the performance required for the composition. These compounding ratios are selected. Among the above components, since the component (I) plays an important role in the present invention, it is preferable to select the blending ratio of the composition in consideration of the characteristics of the component (I). When the amount of the component (I) is less than 1% by weight, melt elasticity and mechanical properties, particularly mechanical properties at low temperature, are insufficient, while when it exceeds 50% by weight, the flow properties become poor. It is important that the intrinsic viscosities of the components (I) to (III) are different from each other, and if this is not satisfied, the flow characteristics, which is one of the objects of the present invention, cannot be improved.

【0015】本発明のエチレン重合体組成物は、上記の
ように(I)、(II)および(III)成分の配合により得
られ、同組成物の極限粘度は1.0〜6.0dl/gであり、
好ましくは1.5〜5.0dl/gである。極限粘度が1.0d
l/g未満では溶融粘度および機械的特性、特に低温時の
機械的特性が不十分であり、一方、6.0dl/gを超える
ときは流動特性が低くなるため、いずれも好ましくな
い。上記組成物の密度は0.890〜0.970g/cm3
あり、好ましくは0.900〜0.970g/cm3である。
密度が0.890g/cm3未満では製造が困難である上に同
組成物のベタつきの原因となり、また0.970g/cm3
超えるときは、機械的特性が低くなる。更に、同組成物
のN−値が1.7〜3.0であることが必要であり、好ま
しくは1.7〜2.8である。N−値が1.7未満では高
速成形性が低く、3.0を超えるときはメルトフラクチ
ャーが生じやすくなる。
The ethylene polymer composition of the present invention is obtained by blending the components (I), (II) and (III) as described above, and the composition has an intrinsic viscosity of 1.0 to 6.0 dl / g,
It is preferably 1.5 to 5.0 dl / g. Intrinsic viscosity 1.0d
If it is less than 1 / g, the melt viscosity and mechanical properties, especially at low temperature, are insufficient, while if it exceeds 6.0 dl / g, the flow properties are poor, so neither is preferable. Density of the composition is 0.890~0.970g / cm 3, preferably 0.900~0.970g / cm 3.
If the density is less than 0.890 g / cm 3, it is difficult to produce and the composition becomes sticky, and if it exceeds 0.970 g / cm 3 , the mechanical properties are low. Further, it is necessary that the N-value of the composition is 1.7 to 3.0, and preferably 1.7 to 2.8. When the N-value is less than 1.7, the high speed moldability is low, and when it exceeds 3.0, melt fracture tends to occur.

【0016】本発明のエチレン重合体組成物を製造する
方法について、特に制限はない。例えば成分(I)、成
分(II)および成分(III)をそれぞれ1段重合で単独
に製造した後、公知の方法で両者を混合してもよく、ま
たは2段もしくはそれ以上の多段重合により、公知の重
合方法で製造してもよい。前者の混合により製造する場
合には、一軸もしくは二軸押出機またはバンバリーミキ
サーなどで混練する方法、あるいは溶液混合法など公知
の方法を使用することができる。
The method for producing the ethylene polymer composition of the present invention is not particularly limited. For example, after the components (I), (II) and (III) are each independently produced by one-step polymerization, they may be mixed by a known method, or by two-step or more multi-step polymerization, It may be produced by a known polymerization method. In the case of the former mixing, a known method such as a method of kneading with a single-screw or twin-screw extruder or a Banbury mixer, or a solution mixing method can be used.

【0017】後者の多段重合による方法とは、複数個の
反応器を使用して重合を行うものであり、例えば2段重
合の場合であれば、第1段の反応器を成分(I)を製造
する重合条件に保持し、第2段の反応器を成分(II)の
重合条件に保持して、第1段で生成した重合体を連続的
に第2段に流通させエチレン重合体組成物を製造するこ
とができる。この場合に(I)および(II)の各成分は
いずれの反応器において製造されてもよく、製造順序・
段数は特に限定されるものではない。上記いずれの場合
も、反応形式については特に制限はなく、スラリー法、
気相法、溶液法、高圧イオン法など各種の重合方法を用
いることができる。
The latter method by multi-stage polymerization is one in which the polymerization is carried out using a plurality of reactors. For example, in the case of two-stage polymerization, the first stage reactor is charged with the component (I). An ethylene polymer composition is prepared by maintaining the polymerization conditions for production, maintaining the second stage reactor under the polymerization conditions of component (II), and continuously flowing the polymer produced in the first stage to the second stage. Can be manufactured. In this case, the components (I) and (II) may be produced in any reactor,
The number of stages is not particularly limited. In any of the above cases, the reaction form is not particularly limited, and the slurry method,
Various polymerization methods such as a gas phase method, a solution method and a high pressure ion method can be used.

【0018】また重合触媒も特に制限はなく、例えば、
チタンおよび/またはバナジウム等の遷移金属を主体と
するチーグラー型触媒、クロム系触媒を主体とするフィ
リップス型触媒、メタロセン等を主体とするカミンスキ
ー型触媒などいずれも使用することができる。触媒のう
ちで特に好ましいものは固体担体に担持された高活性を
有するチーグラー型触媒であり、以下にその詳細を述べ
る。
The polymerization catalyst is also not particularly limited, and for example,
Any of a Ziegler type catalyst mainly containing a transition metal such as titanium and / or vanadium, a Phillips type catalyst mainly containing a chromium catalyst, a Kaminsky type catalyst mainly containing a metallocene and the like can be used. Among the catalysts, particularly preferred is a Ziegler-type catalyst having a high activity, which is supported on a solid support, and the details thereof will be described below.

【0019】高活性チーグラー型触媒は、無機質固体担
体、例えば金属マグネシウム、水酸化マグネシウム、炭
酸マグネシウム、酸化マグネシウム、各種アルミナ、シ
リカ、シリカアルミナ、塩化マグネシウム等、またはマ
グネシウムと、ケイ素、アルミニウム、カルシウムから
選ばれる元素とを含む複塩、複酸化物、含水炭酸塩、含
水ケイ酸塩等、更にはこれらの無機質固体担体を含酸素
化合物、含硫黄化合物、炭化水素、ハロゲン含有物質で
処理または反応させたものなどの無機質固体担体に、遷
移金属化合物、例えばチタン、バナジウム、ジルコニウ
ム、クロム等の金属のハロゲン化物、アルコキシハロゲ
ン化物、酸化物、ハロゲン化酸化物等を担持させたもの
を固体成分として用い、これに第 I〜IV 族金属の有機
化合物、好ましくは亜鉛またはアルミニウムの有機金属
化合物を組み合わせたもの、あるいはこれらを更にα−
オレフィンと接触させて前処理したものなどであり、通
常触媒活性が50g-ポリマー/g-触媒・hr・kg/cm2-オレ
フィン圧以上、好ましくは100g-ポリマー/g-触媒・h
r・kg/cm2-オレフィン圧以上のものである。以上の中で
も、ハロゲン化マグネシウムを含む高活性のチーグラー
型触媒が特に好ましい。
The highly active Ziegler type catalyst is an inorganic solid support such as magnesium metal, magnesium hydroxide, magnesium carbonate, magnesium oxide, various aluminas, silica, silica-alumina, magnesium chloride or the like, or magnesium and silicon, aluminum or calcium. Double salts containing selected elements, double oxides, hydrous carbonates, hydrous silicates, etc., and further these inorganic solid carriers are treated or reacted with oxygen-containing compounds, sulfur-containing compounds, hydrocarbons, halogen-containing substances. As a solid component, an inorganic solid carrier such as a metal oxide, a transition metal compound, for example, a metal halide such as titanium, vanadium, zirconium, or chromium supported thereon, an alkoxy halide, an oxide, or a halogenated oxide is used. An organic compound of a Group I-IV metal, preferably Combinations of lead or organometallic compounds of aluminum, or these further α-
Pretreated by contacting with olefin, etc., and usually has a catalytic activity of 50 g-polymer / g-catalyst · hr · kg / cm 2 -olefin pressure or more, preferably 100 g-polymer / g-catalyst · h
r · kg / cm 2 -Olefin pressure or higher. Among the above, a highly active Ziegler type catalyst containing magnesium halide is particularly preferable.

【0020】本発明のエチレン重合体組成物において
は、本発明の要旨を逸脱しない範囲で他のオレフィン系
重合体、ゴム等または酸化防止剤、紫外線吸収剤、光安
定剤、滑剤、帯電防止剤、防曇剤、ブロッキング防止
剤、加工助剤、着色顔料、架橋剤、発泡剤、無機・有機
充填剤、難燃剤等の公知の添加剤を配合して用いること
ができる。
In the ethylene polymer composition of the present invention, other olefinic polymers, rubbers or the like or antioxidants, ultraviolet absorbers, light stabilizers, lubricants, antistatic agents are included within the scope of the present invention. Well-known additives such as anti-fog agents, anti-blocking agents, processing aids, color pigments, cross-linking agents, foaming agents, inorganic / organic fillers, flame retardants and the like can be blended and used.

【0021】[0021]

【実施例】次に本発明を実施例によって詳細に説明する
が、本発明はそれらに限定されるものではない。まず、
本発明で使用する試験法を示す。 (1)極限粘度[η] 135℃デカリン溶液中で測定する。 (2)密度 JIS K6760の規定による密度勾配管法(23
℃)で測定する。 (3)連続昇温溶出分別法(TREF) 前記の通り、L. Wild らの方法に従った。測定法の詳細
は次の通りである。セライト545を充填した容量8.
5リットルのステンレス鋼製カラム内に、試料を濃度
0.05重量%となるように135℃で加熱溶解して調
製したオルソジクロロベンゼン溶液5mlを注入した後、
4℃/minの冷却速度で25℃まで冷却し、試料をセライ
ト表面に沈着させる。次にこのカラムにオルソジクロロ
ベンゼンを1ml/minの一定速度で流しながら50℃/hr
の一定速度で昇温し、試料を順次溶出する。この際、溶
剤中に溶出する試料について、メチレンの非対称伸縮振
動の波数2925cm-1に対する吸収を赤外検出器で検出
し、記録することにより溶出温度と溶出量の関係すなわ
ち組成分布を求める。 (4)連続昇温溶出分別法による面積比(S) 前記および図1の通り。 (5)25℃オルソジクロロベンゼン可溶分(W) 試料0.5gを20mlのオルソジクロロベンゼン(ODC
B)中において、135℃で2時間加熱し、試料を完全
に溶解した後、25℃まで2時間で冷却する。この溶液
を25℃で一晩放置した後、テフロン製フィルターで濾
過して濾液を採取し、赤外分光光度計でメチレンの非対
称伸縮振動の波数2950cm-1に対する吸収を測定し、
この結果からあらかじめ作成した検量線により濾液中の
試料濃度を定量する。 (6)N−値 高化式フローテスター(島津製作所製)を使用し樹脂温
度210℃で2mmφ×40mmのダイから押出し、低位試
験圧力20kg/cm2および高位試験圧力150kg/cm2での
見かけの剪断速度を求め、次式数3により算出する。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. First,
The test methods used in the present invention are shown. (1) Intrinsic viscosity [η] Measured in a 135 ° C decalin solution. (2) Density Density gradient tube method (23
℃). (3) Continuous temperature rising elution fractionation method (TREF) As described above, the method of L. Wild et al. Was followed. The details of the measuring method are as follows. Volume filled with Celite 545 8.
After injecting 5 ml of an orthodichlorobenzene solution prepared by heating and dissolving the sample at 135 ° C. to a concentration of 0.05% by weight into a 5 liter stainless steel column,
Cool to 25 ° C at a cooling rate of 4 ° C / min to deposit the sample on the Celite surface. Next, while flowing ortho-dichlorobenzene through this column at a constant rate of 1 ml / min, 50 ° C / hr.
The temperature is raised at a constant rate, and the samples are sequentially eluted. At this time, with respect to the sample eluted in the solvent, the absorption at a wave number of 2925 cm −1 of the asymmetric stretching vibration of methylene is detected by an infrared detector and recorded to obtain the relationship between the elution temperature and the elution amount, that is, the composition distribution. (4) Area ratio (S) by continuous temperature rising elution fractionation method As described above and in FIG. (5) Orthodichlorobenzene soluble content (W) at 25 ° C. 0.5 g of a sample was added to 20 ml of orthodichlorobenzene (ODC).
In B), heat at 135 ° C. for 2 hours to completely dissolve the sample, and then cool to 25 ° C. in 2 hours. After leaving this solution overnight at 25 ° C., it was filtered with a Teflon filter to collect the filtrate, and the absorption of the asymmetric stretching vibration of methylene at a wave number of 2950 cm −1 was measured with an infrared spectrophotometer.
From this result, the concentration of the sample in the filtrate is quantified by a calibration curve prepared in advance. (6) N-value Extruded from a die of 2 mmφ × 40 mm at a resin temperature of 210 ° C. using a high flow tester (manufactured by Shimadzu Corporation) and apparently at a low test pressure of 20 kg / cm 2 and a high test pressure of 150 kg / cm 2. The shear rate of is calculated and calculated by the following equation 3.

【数3】 (7)ハイロードメルトフロレート(HLMFR) JIS K6760に準拠して測定。(測定温度190
℃、荷重21.6kg) (8)引張降伏強さ(YTS) JIS K6760の規定による。(引張速度50mm/mi
n、試験片厚み2mm) (9)引張衝撃値(TIS) ASTM D1822に準拠して測定。(試験片厚み1.
5mm) (10)アイゾット衝撃値(IIS) JIS K7110に準拠し、−40℃で以下の方法に
より測定する。試料からプレスにより、厚み3mmのシー
トを作製する。試験片の形状は2号Aとする。試料の調
整はいずれも23℃、湿度50%で88時間行った後、
更に−40℃に温度調節した低温室内に約3時間保持し
た後、低温室内で−40℃で測定する。試験片はそれぞ
れ5個作製し、5回の測定の平均値を用いる。 (11)メルトテンション(MT) 東洋精機(株)製のメルトテンションテスターにより測
定。(測定温度190℃) (12)ダイスウェル比(DSR) 高化式フローテスターを用いて温度210℃で試料を押
出し、ストランドの径とダイの内径との比を求める。剪
断速度が100sec-1に相当する押出速度で測定する。 (13)臨界剪断速度(γc) INTESCO(株)製のキャピラリーレオメーターによ
り測定する。 (測定温度190℃) (14)耐環境応力亀裂性(ESCR) JIS K6760による定ひずみESCRのF50の値
を求める。 (15)曇り度(ヘイズ;%) 試料からプレスにより厚み50μmのシートを作製し
(冷却速度40℃/min)、JIS K7105の規定に
よる直読ヘイズコンピューター(商品名:HGH−2D
P、スガ試験機社製)で測定した曇り度を示す。
[Equation 3] (7) High load melt flow rate (HLMFR) Measured in accordance with JIS K6760. (Measurement temperature 190
(° C, load 21.6 kg) (8) Tensile yield strength (YTS) According to JIS K6760. (Pulling speed 50mm / mi
n, test piece thickness 2 mm) (9) Tensile impact value (TIS) Measured in accordance with ASTM D1822. (Test piece thickness 1.
5 mm) (10) Izod impact value (IIS) Based on JIS K7110, measured at -40 ° C by the following method. A sheet having a thickness of 3 mm is produced from the sample by pressing. The shape of the test piece is No. 2A. After adjusting the sample at 23 ° C and 50% humidity for 88 hours,
After the temperature is kept at -40 ° C for about 3 hours in the low temperature chamber, the temperature is measured at -40 ° C in the low temperature chamber. Five test pieces are prepared, and the average value of five measurements is used. (11) Melt tension (MT) Measured with a melt tension tester manufactured by Toyo Seiki Co., Ltd. (Measurement temperature: 190 ° C.) (12) Die swell ratio (DSR) A sample is extruded at a temperature of 210 ° C. using a high-performance flow tester, and the ratio between the strand diameter and the die inner diameter is determined. The shear rate is measured at an extrusion rate corresponding to 100 sec -1 . (13) Critical shear rate (γc) Measured with a capillary rheometer manufactured by INTESCO. (Measurement temperature 190 ° C.) (14) Environmental stress crack resistance (ESCR) The value of F 50 of constant strain ESCR according to JIS K6760 is obtained. (15) Haze (% haze) A sheet having a thickness of 50 μm was prepared from a sample by pressing (cooling rate 40 ° C./min), and a direct reading haze computer (trade name: HGH-2D according to JIS K7105 was specified.
P, manufactured by Suga Test Instruments Co., Ltd.).

【0022】〔成分(I)および(II)の製造〕まず、
内容積50リットルの撹拌型反応器を使用し、無水塩化
マグネシウムを一成分とする固体担体に四塩化チタンを
担持した固体触媒とトリエチルアルミニウム(TEA)
の助触媒とを用いて、窒素雰囲気下で1段重合を行い、
成分(I)の重合物A1およびA2ならびに成分(II)の
重合物B1〜B3を製造した。それらの重合条件および得
られた重合物の物性を表1に示す。
[Production of Components (I) and (II)] First,
Using a stirred reactor with an internal volume of 50 liters, a solid catalyst having titanium tetrachloride supported on a solid carrier containing anhydrous magnesium chloride as one component, and triethylaluminum (TEA)
Using the co-catalyst of 1-stage polymerization in a nitrogen atmosphere,
Polymers A1 and A2 of component (I) and polymers B1 to B3 of component (II) were produced. Table 1 shows the polymerization conditions and the physical properties of the obtained polymer.

【0023】[0023]

【表1】 [Table 1]

【0024】〔組成物の調製〕前記重合物のうち、成分
(I)と成分(II)とを溶液混合法により以下のブレン
ド条件で混合調製した。 〈ブレンド条件〉 雰囲気: 窒素 溶 媒: キシレン(4.5リットル) 試料量: 合計200g 温 度: 200℃ 時 間: 2時間 析出溶媒:−20℃メタノール(8リットル) 洗浄溶媒:ヘキサン 洗 浄: キシレン臭がなくなるまで 乾 燥: 室温から110℃まで ポリマー回収率:ほぼ100%
[Preparation of Composition] Of the above-mentioned polymer, the component (I) and the component (II) were mixed and prepared by the solution mixing method under the following blending conditions. <Blend conditions> Atmosphere: Nitrogen Solvent: Xylene (4.5 liters) Sample amount: Total 200g Temperature: 200 ° C Time: 2 hours Deposition solvent: -20 ° C Methanol (8 liters) Cleaning solvent: Hexane Cleaning: Dry until xylene odor disappears: From room temperature to 110 ° C Polymer recovery rate: Almost 100%

【0025】更に、上記混合物と成分(III)の下記の
高圧ラジカル重合によるエチレン(共)重合体とを窒素
雰囲気下において、試料合計量70g、回転数20rpm、
混練時間7分間、混練温度160℃で混合し、実施例お
よび比較例の組成物を得た。高圧ラジカル重合によるエ
チレン(共)重合体: (1)低密度ポリエチレン(1) MFR1.0g/10min、密度0.924g/cm3;商品名:日
石レクスロンF22、日本石油化学(株)製(以下、「L
DPE−1」という) (2)低密度ポリエチレン(2) MFR2.0g/10min、密度0.924g/cm3;商品名:日
石レクスロンF311、日本石油化学(株)製(以下、
「LDPE−2」という) (3)エチレン−酢酸ビニル共重合体 MFR1.0g/10min、酢酸ビニル(VA)含量10重量
%;商品名:日石レクスロンV260、日本石油化学
(株)社製(以下、「EVA」という) (4)エチレン−アクリル酸エチル共重合体 MFR1.0g/10min、アクリル酸エチル(EA)含量5
重量%;商品名:日石レクスロンEEA A2050、
日本石油化学株社製(以下、「EEA」という)
Further, the above mixture and an ethylene (co) polymer obtained by the following high pressure radical polymerization of the component (III) under a nitrogen atmosphere, the total amount of the sample was 70 g, the rotation speed was 20 rpm,
Mixing was carried out at a kneading temperature of 160 ° C. for a kneading time of 7 minutes to obtain compositions of Examples and Comparative Examples. Ethylene (co) polymer by high-pressure radical polymerization: (1) Low density polyethylene (1) MFR 1.0g / 10min, density 0.924g / cm 3 ; Trade name: Nisseki Lexlon F22, manufactured by Nippon Petrochemical Co., Ltd. ( Below, "L
DPE-1 ") (2) Low density polyethylene (2) MFR 2.0g / 10min, density 0.924g / cm 3 ; Trade name: Nisseki Lexlon F311, manufactured by Nippon Petrochemical Co., Ltd. (hereinafter,
("LDPE-2") (3) Ethylene-vinyl acetate copolymer MFR 1.0g / 10min, vinyl acetate (VA) content 10% by weight; Trade name: Nisseki Lexlon V260, Nippon Petrochemical
Co., Ltd. (hereinafter referred to as "EVA") (4) Ethylene-ethyl acrylate copolymer MFR 1.0 g / 10 min, ethyl acrylate (EA) content 5
% By weight; Product name: Nisseki Lexron EEA A2050,
Made by Nippon Petrochemical Co., Ltd. (hereinafter referred to as "EEA")

【0026】<実施例1〜6>実施例の組成物の配合割
合および物性の評価結果を表2に示す。
<Examples 1 to 6> Table 2 shows the blending ratios of the compositions of Examples and the evaluation results of the physical properties.

【0027】[0027]

【表2】 [Table 2]

【0028】<比較例1〜6>比較例の組成物の配合割
合および物性の評価結果を表3に示す。
<Comparative Examples 1 to 6> Table 3 shows the blending ratios and the evaluation results of physical properties of the compositions of Comparative Examples.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】本発明のポリエチレン樹脂組成物は、超
高分子量成分、分子間の短鎖分岐分布がきわめて広い特
定のエチレン・α−オレフィン共重合体またはエチレン
単独重合体、および高圧ラジカル重合によるエチレン
(共)重合体の3成分を配合することにより得られ、溶
融弾性、流動特性、機械特性等のバランスに優れた分子
量分布の極めて広い組成物であり、具体的には次の特徴
を有する。 (1)メルトテンション、ダイスウェル比等の溶融弾性
に優れている。 (2)低温アイゾット衝撃値などの低温時の機械的特
性、耐寒性に優れている。 (3)臨界剪断速度などの流動特性に優れている。 (4)曇り度などの光学特性に優れている。 (5)このため高速成形性などの成形加工性が良好であ
る。 上記の長所を有する結果、各種フィルム、シート、パイ
プ、中空容器、各種被覆材料、発泡材料等に使用される
が、特に溶融弾性と光学特性が著しく優れているため、
大型中空容器用組成物として有用である。
INDUSTRIAL APPLICABILITY The polyethylene resin composition of the present invention is produced by an ultra-high molecular weight component, a specific ethylene / α-olefin copolymer or ethylene homopolymer having an extremely wide distribution of short chain branches between molecules, and high-pressure radical polymerization. A composition obtained by blending three components of an ethylene (co) polymer and having an extremely wide molecular weight distribution, which is excellent in balance of melt elasticity, flow characteristics, mechanical characteristics, etc., and specifically has the following characteristics. . (1) Excellent melt elasticity such as melt tension and die swell ratio. (2) Excellent mechanical properties at low temperature such as low temperature Izod impact value and cold resistance. (3) Excellent flow characteristics such as critical shear rate. (4) It has excellent optical characteristics such as haze. (5) Therefore, the molding processability such as high-speed molding property is good. As a result of having the above advantages, it is used for various films, sheets, pipes, hollow containers, various coating materials, foaming materials, etc., in particular because of its excellent melt elasticity and optical properties,
It is useful as a composition for large hollow containers.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続昇温溶出分別法(TREF)による溶出温
度−溶出量の関係を示す図である。
FIG. 1 is a diagram showing a relationship between an elution temperature and an elution amount by a continuous temperature rising elution fractionation method (TREF).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (I)下記条件(a)および(b)を満足す
る超高分子量のエチレン単独重合体またはエチレン・α
−オレフィン共重合体1〜50重量%、 (a)極限粘度(η1)9〜45dl/g、 (b)密度(d1)0.890〜0.935g/cm3、 (II)下記条件(c)から(f)を満足するエチレン単独重
合体またはエチレン・α−オレフィン共重合体5〜94
重量%、 (c)極限粘度(η2)0.3〜3.0dl/g、 (d)密度(d2)0.890〜0.980g/cm3、 (e)連続昇温溶出分別法による溶出温度−溶出量曲線に
おいて、溶出温度90℃以上の曲線下の面積Iaに対す
る溶出温度25〜90℃の曲線下の面積Ibの比S(I
b/Ia)が次式から計算されるS1以下、 S1=20η2 -1exp[−50(d2−0.900)] (f)25℃オルソジクロロベンゼン可溶分W重量%が次
式から計算されるW1以下、 W1=100η2 -0.5exp[−50η2 0.5(d2−0.900)]、なら
びに (III)高圧ラジカル重合によるエチレン(共)重合体
5〜50重量%からなり、かつ前記成分(I)、(II)
および(III)の合計は100重量%であり、各成分
(I)から(III)の極限粘度がそれぞれ互いに異なる混
合物であって、該混合物の極限粘度が1.0〜6.0dl/
g、密度が0.890〜0.970g/cm3および次式数1か
ら計算されるN−値が1.7〜3.0であるエチレン重合
体組成物。 【数1】
1. An ultra-high molecular weight ethylene homopolymer or ethylene.α which satisfies the following conditions (a) and (b):
-Olefin copolymer 1 to 50% by weight, (a) intrinsic viscosity (η 1 ) 9 to 45 dl / g, (b) density (d 1 ) 0.890 to 0.935 g / cm 3 , (II) the following conditions Ethylene homopolymers or ethylene / α-olefin copolymers 5 to 94 satisfying (c) to (f)
% By weight, (c) intrinsic viscosity (η 2 ) 0.3 to 3.0 dl / g, (d) density (d 2 ) 0.890 to 0.980 g / cm 3 , (e) continuous temperature rising elution fractionation method In the elution temperature-elution amount curve according to, the ratio S (I of the area Ib under the curve of the elution temperature of 25 to 90 ° C. to the area Ia under the curve of the elution temperature of 90 ° C. or more
b / Ia) is S 1 or less calculated from the following equation, S 1 = 20 η 2 -1 exp [−50 (d 2 −0.900)] (f) 25 ° C. ortho-dichlorobenzene soluble content W weight% is calculated from the following equation. Calculated W 1 or less, W 1 = 100 η 2 −0.5 exp [−50 η 2 0.5 (d 2 −0.900)], and (III) 5 to 50 wt% of ethylene (co) polymer by high pressure radical polymerization, And the above-mentioned components (I) and (II)
The total of (III) and (III) is 100% by weight, and the components (I) to (III) have different intrinsic viscosities, and the intrinsic viscosity of the mixture is 1.0 to 6.0 dl /
An ethylene polymer composition having g, a density of 0.890 to 0.970 g / cm 3 and an N-value of 1.7 to 3.0 calculated from the following formula 1. [Equation 1]
JP06294393A 1993-02-26 1993-02-26 Polyethylene resin composition Expired - Fee Related JP3375169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06294393A JP3375169B2 (en) 1993-02-26 1993-02-26 Polyethylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06294393A JP3375169B2 (en) 1993-02-26 1993-02-26 Polyethylene resin composition

Publications (2)

Publication Number Publication Date
JPH06248127A true JPH06248127A (en) 1994-09-06
JP3375169B2 JP3375169B2 (en) 2003-02-10

Family

ID=13214898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06294393A Expired - Fee Related JP3375169B2 (en) 1993-02-26 1993-02-26 Polyethylene resin composition

Country Status (1)

Country Link
JP (1) JP3375169B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022920A1 (en) * 2001-09-06 2003-03-20 Mitsui Chemicals, Inc. Polyethylene resin composition
JP2006008836A (en) * 2004-06-25 2006-01-12 Mitsui Chemicals Inc Ethylene polymer resin composition and molded product obtained from the same
JP2007045897A (en) * 2005-08-09 2007-02-22 Japan Polypropylene Corp Polypropylene resin composition
JP2011219678A (en) * 2010-04-13 2011-11-04 Tosoh Corp Polyethylene-based resin composition, foam, and method for manufacturing the same
JP2016502046A (en) * 2012-12-17 2016-01-21 ボレアリス エージー Process for producing high density polyethylene blends
JP2016507601A (en) * 2012-12-17 2016-03-10 ボレアリス エージー Process for producing high density polyethylene blends

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022920A1 (en) * 2001-09-06 2003-03-20 Mitsui Chemicals, Inc. Polyethylene resin composition
JP2006008836A (en) * 2004-06-25 2006-01-12 Mitsui Chemicals Inc Ethylene polymer resin composition and molded product obtained from the same
JP2007045897A (en) * 2005-08-09 2007-02-22 Japan Polypropylene Corp Polypropylene resin composition
JP4714526B2 (en) * 2005-08-09 2011-06-29 日本ポリプロ株式会社 Polypropylene resin composition
JP2011219678A (en) * 2010-04-13 2011-11-04 Tosoh Corp Polyethylene-based resin composition, foam, and method for manufacturing the same
JP2016502046A (en) * 2012-12-17 2016-01-21 ボレアリス エージー Process for producing high density polyethylene blends
JP2016507601A (en) * 2012-12-17 2016-03-10 ボレアリス エージー Process for producing high density polyethylene blends

Also Published As

Publication number Publication date
JP3375169B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
JP3045548B2 (en) Polyethylene composition
CA2142733C (en) Impact modification of thermoplastics
US9006342B2 (en) Bimodal polyethylene composition and articles made therefrom
EP0095253B1 (en) Polyethylene blend and film
JPH0565373A (en) Polyethylene composition
WO2009148487A1 (en) Bimodal polyethylene process and products
WO2001085839A1 (en) Polyolefin compositions having improved low temperature toughness and methods therefor
JP3372057B2 (en) Ethylene polymer composition
JP3375169B2 (en) Polyethylene resin composition
JP3375167B2 (en) Ethylene polymer composition
JP3372074B2 (en) Polyethylene composition
JP3375168B2 (en) Polyethylene composition
JP3372059B2 (en) Ethylene / α-olefin copolymer composition
JP3375187B2 (en) Polyethylene composition
JPS61243842A (en) Polypropylene composition
JP3375149B2 (en) Ethylene polymer composition
JP3372056B2 (en) Ethylene / α-olefin copolymer composition
JP3375150B2 (en) Ethylene resin composition
JP3372060B2 (en) Ethylene polymer composition
JP2001206994A (en) Thermoplastic elastomer composition and molded article
JPH0649288A (en) Polyethylene composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees