JPH0624780A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH0624780A
JPH0624780A JP4184063A JP18406392A JPH0624780A JP H0624780 A JPH0624780 A JP H0624780A JP 4184063 A JP4184063 A JP 4184063A JP 18406392 A JP18406392 A JP 18406392A JP H0624780 A JPH0624780 A JP H0624780A
Authority
JP
Japan
Prior art keywords
molded body
porous molded
optical fiber
eccentricity
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4184063A
Other languages
Japanese (ja)
Inventor
Tsugio Sato
継男 佐藤
Takeshi Yagi
健 八木
Takayuki Morikawa
孝行 森川
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4184063A priority Critical patent/JPH0624780A/en
Publication of JPH0624780A publication Critical patent/JPH0624780A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01282Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by pressing or sintering, e.g. hot-pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To provide a method for producing optical fiber preform free from detects and minimized in the eccentricity of its core by a hybrid method. CONSTITUTION:The production method comprises the steps of providing a clad material formed from the powder of quarts glass on the outer periphery of a core material to produce a porous molding; impregnating the porous molding with a resin; curing the resin; slicing or grinding the outer periphery of the porous molding to correct the eccentricity of the clad material on the basis of the core material; and defatting and transparently vitrifying the eccentricity- corrected porous molding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信に用いる光ファ
イバの母材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a base material of an optical fiber used for optical communication.

【0002】[0002]

【従来の技術】光ファイバ用母材の製造方法としては、
特に、コア材(コア材の外側にクラッド材を一部被覆さ
れたものも含む)を気相法で作製し、コア材の外側に形
成するクラッド材を粉末成形法で作製するハイブリッド
法を用いた方法が工業的に有利であると認められてい
る。しかしながら、このハイブリッド法には、コア材に
対するクラッド材の偏心という問題がある。
2. Description of the Related Art As a method of manufacturing an optical fiber preform,
In particular, the hybrid method is used in which the core material (including the one in which the clad material is partially covered on the outside of the core material) is produced by the vapor phase method, and the clad material formed on the outside of the core material is produced by the powder molding method. The existing method is recognized as industrially advantageous. However, this hybrid method has a problem of eccentricity of the clad material with respect to the core material.

【0003】コア材に対するクラッド材の偏心(以下、
単にコアの偏心という)は、光ファイバの特性に大きく
影響する。特に、光ファイバの中で最も多く使用されて
いるシングルモードファイバは、コア径が10μm程度
であるので偏心が大きな問題となる。この偏心は、光フ
ァイバ同士の接続あるいは光源と光ファイバとの接続に
おける接続損失を大きくする原因となる。このため、接
続損失を小さくするためには、コアの偏心量をできる限
り小さくする必要がある。コアの偏心量は、まったくな
いことが好ましいが、実用上0.5μm、好ましくは
0.3μm以下にすることが必要である。
Eccentricity of the clad material with respect to the core material (hereinafter,
The eccentricity of the core) has a great influence on the characteristics of the optical fiber. In particular, single-mode fibers, which are most frequently used among optical fibers, have a core diameter of about 10 μm, and thus eccentricity is a serious problem. This eccentricity causes a large connection loss in the connection between the optical fibers or the connection between the light source and the optical fiber. Therefore, in order to reduce the connection loss, it is necessary to reduce the eccentricity of the core as much as possible. It is preferable that the core has no eccentricity at all, but it is necessary to set it to 0.5 μm, preferably 0.3 μm or less for practical use.

【0004】従来、コアの偏心を修正する方法として
は、ハイブリッド法により得られた多孔質成形体を旋盤
に固定してダイヤモンド刃でクラッド材(多孔質成形
体)の外周を切削する方法が採用されている。
Conventionally, as a method of correcting the eccentricity of the core, a method of fixing the porous compact obtained by the hybrid method to a lathe and cutting the outer periphery of the clad material (porous compact) with a diamond blade is adopted. Has been done.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな方法により多孔質成形体を切削すると、破砕片、す
なわちシリカ粉が多孔質成形体の表面に残存したり、気
孔内に入り込む。このように表面に残存したり気孔内に
入り込んだ破砕片は、多孔質成形体を透明ガラス化した
ときに気泡を発生させる原因となる。
However, when the porous molded body is cut by such a method, crushed pieces, that is, silica powder, remains on the surface of the porous molded body or penetrates into the pores. The crushed pieces remaining on the surface or entering the pores in this manner cause bubbles to be generated when the porous molded body is made into transparent glass.

【0006】また、多孔質成形体を切削したときに形成
される切削条痕は、クラックの起点となったり、多孔質
成形体を透明ガラス化したときに気泡を発生させる原因
となる。さらに、多孔質成形体は脆いため、切削により
表面にクラックが入る恐れがある。このクラックが大き
くなると多孔質成形体自体が破壊してしまう。
Further, the cutting scratches formed when the porous molded body is cut serve as a starting point of cracks and cause bubbles when the porous molded body is made into transparent glass. Further, since the porous molded body is brittle, there is a risk that the surface will be cracked by cutting. If this crack becomes large, the porous molded body itself will be destroyed.

【0007】このような気泡やクラックは、多孔質成形
体を透明ガラス化してなる光ファイバ用母材から光ファ
イバを作製した場合に、表面欠陥として現れる。この表
面欠陥は、光ファイバの特性を損ない、信頼性を低下さ
せる。
[0007] Such bubbles and cracks appear as surface defects when an optical fiber is manufactured from an optical fiber preform formed by making a porous molded body into transparent glass. The surface defects impair the characteristics of the optical fiber and reduce the reliability.

【0008】多孔質成形体の機械的強度を向上させるた
めに、コア材の外側に形成するクラッド材料のバインダ
ー量を増加することが考えられるが、バインダー等の成
形助材の増量に基づく不純物の混入が増加し、結果とし
て光ファイバの伝送特性を低下させることになる。
In order to improve the mechanical strength of the porous molded body, it is possible to increase the amount of binder in the clad material formed on the outer side of the core material. Inclusion increases, and as a result, the transmission characteristics of the optical fiber deteriorate.

【0009】本発明はかかる点に鑑みてなされたもので
あり、欠陥がなく、しかもコアの偏心が非常に少ない光
ファイバを製造するためのハイブリッド法を用いた光フ
ァイバ用母材の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method for producing an optical fiber preform using a hybrid method for producing an optical fiber having no defects and having a very small core eccentricity. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明は、コア材の外側
に石英ガラス粉末を成形してなるクラッド材を設けて多
孔質成形体を作製する工程、該多孔質成形体に樹脂を含
浸させる工程、該樹脂を硬化させる工程、該多孔質成形
体の外周を切削あるいは研削して該コア材に対する該ク
ラッド材の偏心を修正する工程、並びに偏心を修正した
後の該多孔質成形体を脱脂・透明ガラス化する工程を具
備することを特徴とする光ファイバ用母材の製造方法を
提供する。
According to the present invention, a step of producing a porous molded body by providing a clad material formed by molding quartz glass powder on the outside of a core material, and impregnating the porous molded body with a resin. Step, curing the resin, cutting or grinding the outer periphery of the porous molded body to correct the eccentricity of the clad material with respect to the core material, and degreasing the porous molded body after correcting the eccentricity -Providing a method for producing an optical fiber preform characterized by comprising a step of forming a transparent glass.

【0011】ここで、ハイブリット法とは、上述したよ
うに、コア材を気相法あるいは粉末成形法で作製し、必
要により、これを透明ガラス化した後、該コア材の外側
に形成するクラッド材を粉末成形法で作製し、両者を組
み合わせて多孔質成形体を得る方法であり、粉末成形法
とは、例えば、加圧法(特願昭2−244817号)、
MSP法(Journal of Optical Communications 誌、10
巻、1号、2〜5ページ、1989年)等の乾式成形法、鋳
込み法(特開昭64−56331号公報)、押出法(特
願平2−244815号)、泥漿塗布法(特願平2−2
44816号)等の湿式成形法を用いた方法をいう。気
相法のみで多孔質成形体を作製する方法を除く意味であ
る。なお、コア材とは、透明ガラス材の他、多孔質体も
含まれる。
As described above, the hybrid method is a clad formed on the outside of the core material after the core material is produced by the vapor phase method or the powder molding method, and if necessary, it is made into transparent glass. A material is produced by a powder molding method, and both are combined to obtain a porous molded body. The powder molding method is, for example, a pressing method (Japanese Patent Application No. 2-244817),
MSP method (Journal of Optical Communications, 10
Vol. 1, No. 1, pp. 2-5, 1989), etc., dry molding method, casting method (Japanese Patent Laid-Open No. 64-56331), extrusion method (Japanese Patent Application No. 2-244815), slurry coating method (Japanese patent application). Flat 2-2
44816) and the like using a wet molding method. It is meant to exclude the method of producing a porous molded body only by the vapor phase method. In addition to the transparent glass material, the core material includes a porous body.

【0012】多孔質成形体に含浸させる樹脂としては、
粘性が低く、硬化物を加熱により完全に分解できるもの
であり、しかもSi以外の無機系不純物を含まないもの
が好ましい。このような樹脂としては、シリコーン系、
ビニル系、またはアクリル系等の熱硬化性樹脂、アクリ
ル系またはエポキシ系等の紫外線硬化性樹脂を用いるこ
とができる。
The resin to be impregnated into the porous molded article is
It is preferable that the viscosity is low and the cured product can be completely decomposed by heating, and that it does not contain inorganic impurities other than Si. Such resins include silicone-based,
A thermosetting resin such as a vinyl or acrylic resin, or an ultraviolet curable resin such as an acrylic or epoxy resin can be used.

【0013】多孔質成形体に樹脂を含浸させる方法とし
ては、液状の樹脂中に多孔質成形体を浸漬させる方法、
多孔質成形体に液状の樹脂を吹き付ける方法や塗布する
方法等を採用することができる。多孔質成形体に樹脂が
どの程度含浸するかは、樹脂の種類、分子量、表面張
力、および粘性、並びに多孔質成形体の気孔径および気
孔率に影響する。したがって、あらかじめ使用する多孔
質成形体と樹脂を用いて含浸試験を行い、含浸時間と含
浸厚さとの相関関係を確認して、その結果に基づいて実
際の含浸処理を行うことが望ましい。
As a method of impregnating the porous molded body with a resin, a method of immersing the porous molded body in a liquid resin,
A method of spraying a liquid resin onto the porous molded body, a method of applying the resin, or the like can be adopted. How much the resin is impregnated into the porous molded body affects the type of resin, the molecular weight, the surface tension, and the viscosity, and the pore diameter and the porosity of the porous molded body. Therefore, it is desirable to perform an impregnation test using a porous molded body and a resin to be used in advance, confirm the correlation between the impregnation time and the impregnation thickness, and perform the actual impregnation treatment based on the result.

【0014】樹脂を硬化させる手段としては、熱、紫外
線、電子線等を用いることができる。
As a means for curing the resin, heat, ultraviolet rays, electron beams or the like can be used.

【0015】本発明の方法において切削とは、多孔質成
形体の外周を刃物で削ることをいい、研削とは、多孔質
成形体の外周を砥石で研磨することをいい、いずれも多
孔質成形体の外周を一部除去することを目的とする。こ
の切削・研削は、偏心している多孔質成形体を修正する
ために行うので、切削・研削量は多孔質成形体の偏心の
状態に応じて決定する。実際に切削・研削を行う場合、
例えば、多孔質成形体の断面においてコア材の中心から
クラッド材の外周までの距離が等しくなるようにクラッ
ド材を除去する。また、より厳しいレベルで偏心を少な
くするためには、X線透過装置を切削・研削装置に接続
し、X線透過装置により多孔質成形体の偏心状態を検出
し、その検出情報を切削・研削装置の制御手段に送信し
てその情報に基づいて切削・研削を行う。
In the method of the present invention, cutting means cutting the outer periphery of the porous molded body with a cutting tool, and grinding means polishing the outer periphery of the porous molded body with a grindstone, both of which are porous molding. The purpose is to remove a part of the outer circumference of the body. Since this cutting / grinding is performed to correct the eccentric porous molded body, the amount of cutting / grinding is determined according to the eccentric state of the porous molded body. When actually cutting and grinding,
For example, the clad material is removed so that the distance from the center of the core material to the outer circumference of the clad material is equal in the cross section of the porous molded body. In order to reduce the eccentricity at a more severe level, the X-ray transmission device is connected to a cutting / grinding device, the eccentricity of the porous compact is detected by the X-ray transmission device, and the detection information is cut / ground. It transmits to the control means of the device and performs cutting and grinding based on the information.

【0016】切削・研削を行うときに、多孔質成形体に
悪影響を及ぼさない範囲で切削油等の潤滑剤を使用して
もよい。これにより、切削・研削時の摩擦を低減させる
ことができる。この結果、表面が平滑な多孔質成形体を
得ることができる。
When cutting and grinding, a lubricant such as cutting oil may be used as long as it does not adversely affect the porous compact. This can reduce friction during cutting and grinding. As a result, a porous molded body having a smooth surface can be obtained.

【0017】切削・研削後の多孔質成形体の表面に残存
した樹脂の除去は、成形助材を除去する、いわゆる脱脂
工程において同時に行うことができる。
The resin remaining on the surface of the porous molded body after cutting and grinding can be removed at the same time in the so-called degreasing step of removing the molding aid.

【0018】多孔質成形体の脱脂工程、透明ガラス化工
程は、通常行われている条件を採用する。
The degreasing step and the transparent vitrification step of the porous molded body are carried out under the conditions generally used.

【0019】[0019]

【作用】本発明の方法では、多孔質成形体に樹脂を含浸
させて硬化させて多孔質成形体の外周を切削あるいは研
削してコア材の偏心を修正している。
According to the method of the present invention, the eccentricity of the core material is corrected by cutting or grinding the outer periphery of the porous molded body by impregnating the porous molded body with a resin and curing the resin.

【0020】多孔質成形体に樹脂を含浸させることによ
り、多孔質成形体の気孔が塞がれる。このため、切削・
研削時の破砕片が多孔質成形体の気孔に入り込むことを
防止できる。また、多孔質成形体に樹脂を含浸させて硬
化させることにより、多孔質成形体における粒子間の密
着が強固となる。このため、多孔質成形体の機械的強度
が高くなり、切削・研削を施したときにクラックが生じ
ることを防止できる。
By impregnating the porous molded body with a resin, the pores of the porous molded body are closed. Therefore, cutting
It is possible to prevent crushed pieces during grinding from entering the pores of the porous molded body. Further, by impregnating the porous molded body with a resin and curing the resin, the adhesion between particles in the porous molded body becomes strong. For this reason, the mechanical strength of the porous molded body is increased, and it is possible to prevent cracks from occurring when cutting and grinding are performed.

【0021】この結果、多孔質成形体を透明ガラス化し
てなる光ファイバ用母材に欠陥が生じることを防止でき
る。したがって、欠陥がなく、しかもコアの偏心が非常
に少ない光ファイバを得られる光ファイバ用母材を作製
することができる。
As a result, it is possible to prevent the occurrence of defects in the optical fiber preform formed by making the porous molded body into transparent glass. Therefore, it is possible to manufacture an optical fiber preform that is free from defects and has an extremely small eccentricity of the core.

【0022】[0022]

【実施例】以下、本発明の実施例について図面を参照し
て具体的に説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

【0023】実施例1 平均粒径8μmのシリカ粉末100重量部に対してバイ
ンダーとしてメチルセルロース3重量部、純水22重量
部、および界面活性剤としてSNウェット366(サン
ノプコ社製、商品名)0.3重量部を混合し、均質に混
練して可塑性材料を調製した。
Example 1 To 100 parts by weight of silica powder having an average particle diameter of 8 μm, 3 parts by weight of methyl cellulose as a binder, 22 parts by weight of pure water, and SN Wet 366 (trade name, manufactured by San Nopco) as a surfactant were used. 3 parts by weight were mixed and kneaded uniformly to prepare a plastic material.

【0024】図1(a)および(b)に示すように、コ
ア/クラッド比が1/3であり、コア・クラッドの屈折
率差が0.3%であり、外径10.8mm、長さ300mm
であるコア用ロッド10をVAD法により作製し、これ
を脱水・透明ガラス化して形成した。これに上記可塑性
材料を真空押出成形してクラッド部11を形成して外径
50mm、長さ350mmの多孔質成形体1を作製した。そ
の後、この多孔質成形体1を110℃で5時間乾燥し
た。この多孔質成形体について気孔径および気孔率を測
定したところ、気孔径は0.8μm、気孔率は35%で
あった。また、この多孔質成形体の偏心量(図1に示す
A)は0.7mmであった。これは、この多孔質成形体を
用いて光ファイバを作製した場合に偏心量が約1.6μ
mとなることを意味する。
As shown in FIGS. 1 (a) and 1 (b), the core / cladding ratio is 1/3, the refractive index difference between the core and the cladding is 0.3%, the outer diameter is 10.8 mm, and the length is long. 300 mm
The core rod 10 was prepared by the VAD method, and was dehydrated and made into a transparent vitreous material. The above-mentioned plastic material was vacuum extruded and formed into a clad portion 11 to produce a porous molded body 1 having an outer diameter of 50 mm and a length of 350 mm. Then, the porous molded body 1 was dried at 110 ° C. for 5 hours. When the pore diameter and the porosity of this porous molded article were measured, the pore diameter was 0.8 μm and the porosity was 35%. The eccentric amount (A shown in FIG. 1) of this porous molded body was 0.7 mm. This is because when an optical fiber is manufactured using this porous molded body, the eccentricity is about 1.6 μm.
It means that it becomes m.

【0025】次いで、この多孔質成形体を粘度100cp
s である液状のアクリル系樹脂に20秒間浸漬し、その
後これに80℃、2時間の加熱処理を施してアクリル系
樹脂を硬化させた。このとき、樹脂は多孔質成形体の表
面から約2mmの深さのところまで含浸していた。
Then, the porous molded body was treated with a viscosity of 100 cp.
It was immersed in a liquid acrylic resin of s 2 for 20 seconds, and then heat-treated at 80 ° C. for 2 hours to cure the acrylic resin. At this time, the resin was impregnated to a depth of about 2 mm from the surface of the porous molded body.

【0026】この多孔質成形体1を図2に示す旋盤20
に取り付けた。旋盤20は、載置台21と、載置台21
に移動可能に取り付けられた旋盤本体22、該旋盤本体
22に対して移動可能に装着された側壁22a(側壁2
2aのいずれか一方のみが移動可能であればよい)とか
ら構成されている。旋盤本体22の側壁22aには、穴
部22bが形成されており、多孔質成形体1のコア用ロ
ッド10が挿入されるようになっている。また、側壁2
2aの外側には、コア用チャック23が取り付けられて
いる。また、側壁22aの内側には、クラッド用チャッ
ク24が取り付けられている。コア用チャック23およ
びクラッド用チャック24は、図示しない駆動手段に接
続されており、コア用ロッド10およびクラッド部11
を把持した状態で一体的に回転可能になっている。
The lathe 20 shown in FIG.
Attached to. The lathe 20 includes a mounting table 21 and a mounting table 21.
Lathe body 22 movably attached to the lathe, and side wall 22 a (side wall 2 movably attached to the lathe body 22.
It suffices if only one of 2a is movable). A hole 22b is formed in the side wall 22a of the lathe body 22 so that the core rod 10 of the porous molded body 1 can be inserted therein. Also, the side wall 2
A core chuck 23 is attached to the outside of 2a. A clad chuck 24 is attached to the inside of the side wall 22a. The core chuck 23 and the clad chuck 24 are connected to a driving unit (not shown), and the core rod 10 and the clad portion 11 are connected.
It is possible to rotate integrally while gripping.

【0027】次いで、駆動手段を駆動させることにより
多孔質成形体を回転させながら、ダイヤモンド刃25で
クラッド部11の外周を多孔質成形体1の軸心が旋盤2
0の回転軸心と一致するまで切削した。
Next, while the porous molded body is rotated by driving the driving means, the axis of the porous molded body 1 is turned on the lathe 2 around the outer periphery of the clad portion 11 by the diamond blade 25.
Cutting was performed until it coincided with the axis of rotation of 0.

【0028】次いで、切削後の多孔質成形体1にN2
空気等の清浄なガスを吹き付けて破砕片を除去し、これ
に大気中で600℃、5時間の脱脂処理を施した。次い
で、常法によりHe雰囲気中で1600℃の透明ガラス
化処理を施して、外径45mm、長さ250mmの光ファイ
バ用母材を作製した。得られた光ファイバ用母材を線引
きして外径125μmの光ファイバを作製し、その偏心
量を調べたところ、0.12μmであった。
Next, N 2 was added to the porous molded body 1 after cutting,
A crushed piece was removed by blowing a clean gas such as air, and this was subjected to a degreasing treatment at 600 ° C. for 5 hours. Then, a transparent vitrification treatment was performed at 1600 ° C. in a He atmosphere by an ordinary method to prepare an optical fiber preform having an outer diameter of 45 mm and a length of 250 mm. The obtained base material for an optical fiber was drawn to prepare an optical fiber having an outer diameter of 125 μm, and the eccentricity thereof was examined, and it was 0.12 μm.

【0029】上記の方法により10本の光ファイバ用母
材を作製して、これらを線引きして光ファイバを作製し
てそれらを評価したところ、いずれの光ファイバも切削
時の破損による欠陥や気泡の発生は認められなかった。
また、光ファイバの偏心量はすべて0.3μm以下であ
った。さらに、光ファイバの外径変動は1μm以下であ
り、ゲージ長さ10m、歪速度5%で測定したときの機
械的強度は5kgf であって、十分に実用できるものであ
ることが確認された。
Ten optical fiber preforms were produced by the above-mentioned method, and these were drawn to produce optical fibers, which were evaluated. All optical fibers were found to have defects or bubbles caused by breakage during cutting. Was not observed.
The eccentricity of the optical fibers was 0.3 μm or less. Further, it was confirmed that the fluctuation of the outer diameter of the optical fiber was 1 μm or less, the mechanical strength was 5 kgf when measured with a gauge length of 10 m and a strain rate of 5%, which was sufficiently practical.

【0030】実施例2 平均粒径8μmのシリカ粉末100重量部に対してバイ
ンダーとしてポリビニルアルコール(信越化学社製、P
A−05)3重量部、および純水67重量部を混合して
スラリーを作製し、このスラリーをスプレードライ法に
より造粒して平均粒径100μmの造粒粉末を得た。
Example 2 Polyvinyl alcohol (manufactured by Shin-Etsu Chemical Co., Ltd., P
A-05) 3 parts by weight and 67 parts by weight of pure water were mixed to prepare a slurry, and this slurry was granulated by a spray drying method to obtain a granulated powder having an average particle size of 100 μm.

【0031】一方、コア/クラッド比が1/3であり、
コア・クラッドの屈折率差が0.3%であり、外径12
mm、長さ300mmであるコア用ロッドをVAD法により
作製し、これを脱水・透明ガラス化して形成した。この
コア用ロッドを外径70mmの管状成形型のキャビティー
の中央に設置し、成形型に振動を加えながらキャビティ
ー内に上記造粒粉末を充填し、成形型を1000kgf/cm
2 の静水圧で加圧して外径60mm、長さ300mmの多孔
質成形体を作製した。この多孔質成形体について気孔径
および気孔率を測定したところ、気孔径は0.08μ
m、気孔率は35%であった。また、この多孔質成形体
の偏心量は0.5mmであった。これは、この多孔質成形
体を用いて光ファイバを作製した場合に偏心量が約1.
3μmとなることを意味する。
On the other hand, the core / cladding ratio is 1/3,
The refractive index difference between the core and the cladding is 0.3%, and the outer diameter is 12
A core rod having a length of 300 mm and a length of 300 mm was prepared by the VAD method, and dehydrated / transparent vitrified to form the rod. This core rod is placed in the center of the cavity of a tubular mold with an outer diameter of 70 mm, the above granulated powder is filled in the cavity while applying vibration to the mold, and the mold is set to 1000 kgf / cm.
A hydrostatic pressure of 2 was applied to produce a porous molded body having an outer diameter of 60 mm and a length of 300 mm. When the pore diameter and the porosity of this porous molded article were measured, the pore diameter was 0.08 μm.
m, and the porosity was 35%. The eccentricity of this porous molded body was 0.5 mm. This is because when an optical fiber is manufactured using this porous molded body, the amount of eccentricity is about 1.
It means that it becomes 3 μm.

【0032】次いで、この多孔質成形体を粘度100cp
s である液状のビニル系樹脂に60秒間浸漬し、その後
これに80℃、2時間の加熱処理を施してビニル系樹脂
を硬化させた。このとき、樹脂は多孔質成形体の表面か
ら約1.5mmの深さのところまで含浸していた。
Then, the porous molded body was treated with a viscosity of 100 cp.
It was immersed for 60 seconds in a liquid vinyl-based resin, which was s, and then subjected to heat treatment at 80 ° C. for 2 hours to cure the vinyl-based resin. At this time, the resin was impregnated to a depth of about 1.5 mm from the surface of the porous molded body.

【0033】次に、この多孔質成形体を図2に示す旋盤
20に取り付け、クラッド部の外周を多孔質成形体の軸
心が旋盤の回転軸心と一致するまで切削した。
Next, this porous compact was attached to the lathe 20 shown in FIG. 2, and the outer periphery of the clad portion was cut until the axis of the porous compact coincided with the axis of rotation of the lathe.

【0034】次いで、切削後の多孔質成形体にN2 、空
気等の清浄なガスを吹き付けて破砕片を除去し、これに
大気中で500℃、5時間の脱脂処理を施した。次い
で、常法によりHe雰囲気中で1600℃の透明ガラス
化処理を施して、外径50mm、長さ270mmの光ファイ
バ用母材を作製した。得られた光ファイバ用母材を線引
きして外径125μmの光ファイバを作製し、その偏心
量を調べたところ、0.1μmであった。
Then, a clean gas such as N 2 or air was blown to the cut porous molded article to remove the crushed pieces, and this was subjected to degreasing treatment at 500 ° C. for 5 hours. Then, a transparent vitrification treatment was performed at 1600 ° C. in a He atmosphere by an ordinary method to produce an optical fiber preform having an outer diameter of 50 mm and a length of 270 mm. The obtained base material for an optical fiber was drawn to prepare an optical fiber having an outer diameter of 125 μm, and the eccentricity thereof was examined. As a result, it was 0.1 μm.

【0035】上記の方法により10本の光ファイバ用母
材を作製して、これらを線引きして光ファイバを作製し
てそれらを評価したところ、いずれの光ファイバも切削
時の破損による欠陥や気泡の発生は認められなかった。
また、光ファイバの偏心量はすべて0.3μm以下であ
った。さらに、光ファイバの外径変動は±1μm以下で
あり、ゲージ長さ10m、歪速度5%で測定したときの
機械的強度は5kgf であって、十分に実用できるもので
あることが確認された。
Ten optical fiber preforms were produced by the above-mentioned method, and these were drawn to produce optical fibers, which were evaluated. As a result, all the optical fibers had defects and bubbles caused by breakage during cutting. Was not observed.
The eccentricity of the optical fibers was 0.3 μm or less. Furthermore, it was confirmed that the fluctuation of the outer diameter of the optical fiber was ± 1 μm or less, and the mechanical strength was 5 kgf when measured at a gauge length of 10 m and a strain rate of 5%, which was sufficiently practical. .

【0036】比較例 実施例1と同様にして多孔質成形体を10本作製した。
この多孔質成形体を110℃で5時間乾燥した。次に、
この多孔質成形体を図2に示す旋盤20に取り付け、ク
ラッド部の外周を多孔質成形体の軸心が旋盤の回転軸心
と一致するまで切削した。
Comparative Example Ten porous molded bodies were produced in the same manner as in Example 1.
This porous molded body was dried at 110 ° C. for 5 hours. next,
This porous molded body was attached to the lathe 20 shown in FIG. 2, and the outer periphery of the clad portion was cut until the axis of the porous molded body coincided with the rotation axis of the lathe.

【0037】その結果、3本の多孔質成形体は切削時に
クラックが発生した。残りの多孔質成形体を実施例1と
同様にして脱脂・透明ガラス化を行って光ファイバ用母
材を作製した。このとき、得られた光ファイバ用母材の
表面には気泡が確認された。また、この光ファイバ用母
材を線引きして光ファイバを作製したところ、光ファイ
バの外径変動は±3μm程度と大きく、ゲージ長さ10
m、歪速度5%で測定したときの機械的強度は4kgf で
あって、実用上問題がある結果であった。
As a result, cracks occurred in the three porous compacts during cutting. The remaining porous molded body was subjected to degreasing and transparent vitrification in the same manner as in Example 1 to prepare a preform for optical fibers. At this time, bubbles were confirmed on the surface of the obtained optical fiber preform. Further, when an optical fiber was manufactured by drawing this optical fiber preform, the variation of the outer diameter of the optical fiber was as large as about ± 3 μm, and the gauge length was 10 mm.
The mechanical strength when measured at m and a strain rate of 5% was 4 kgf, which was a problem in practical use.

【0038】[0038]

【発明の効果】本発明は、欠陥がなく、しかもコアの偏
心が非常に少ない光ファイバを得ることができる光ファ
イバ用母材を作製することができるものである。これに
より、伝送損失が小さい光ファイバを得ることができ
る。
INDUSTRIAL APPLICABILITY The present invention is capable of producing an optical fiber preform capable of obtaining an optical fiber having no defects and having a very small core eccentricity. Thereby, an optical fiber with a small transmission loss can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はハイブリッド法により得られる多孔質
成形体を示す正面図、(b)は(a)の側面図。
1A is a front view showing a porous molded body obtained by a hybrid method, and FIG. 1B is a side view of FIG.

【図2】本発明にかかる方法の一実施例において使用さ
れる装置の概略説明図。
FIG. 2 is a schematic illustration of an apparatus used in an embodiment of the method according to the present invention.

【符号の説明】[Explanation of symbols]

1…多孔質成形体、10…コア用ロッド、11…クラッ
ド部、20…旋盤、21…載置台、22…旋盤本体、2
2a…側壁、22b…穴部、23…コア用チャック、2
4…クラッド用チャック、25…ダイヤモンド刃。
DESCRIPTION OF SYMBOLS 1 ... Porous molded object, 10 ... Core rod, 11 ... Clad part, 20 ... Lathe, 21 ... Mounting stand, 22 ... Lathe body, 2
2a ... Side wall, 22b ... Hole, 23 ... Core chuck, 2
4 ... Clad chuck, 25 ... Diamond blade.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 和昭 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kazuaki Yoshida 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コア材の外側に石英ガラス粉末を成形し
てなるクラッド材を設けて多孔質成形体を作製する工
程、該多孔質成形体に樹脂を含浸させる工程、該樹脂を
硬化させる工程、該多孔質成形体の外周を切削あるいは
研削して該コア材に対する該クラッド材の偏心を修正す
る工程、並びに偏心を修正した後の該多孔質成形体を脱
脂・透明ガラス化する工程を具備することを特徴とする
光ファイバ用母材の製造方法。
1. A step of producing a porous molded body by providing a clad material formed by molding quartz glass powder on the outside of a core material, a step of impregnating the porous molded body with a resin, and a step of curing the resin. A step of cutting or grinding the outer periphery of the porous molded body to correct the eccentricity of the clad material with respect to the core material, and a step of degreasing and transparent vitrifying the porous molded body after correcting the eccentricity A method for manufacturing a preform for an optical fiber, comprising:
JP4184063A 1992-07-10 1992-07-10 Production of optical fiber preform Pending JPH0624780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4184063A JPH0624780A (en) 1992-07-10 1992-07-10 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4184063A JPH0624780A (en) 1992-07-10 1992-07-10 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH0624780A true JPH0624780A (en) 1994-02-01

Family

ID=16146731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4184063A Pending JPH0624780A (en) 1992-07-10 1992-07-10 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH0624780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029072A (en) * 2001-07-11 2003-01-29 Fujikura Ltd Plane-of-polarization preservation type optical fiber
KR100782393B1 (en) * 2000-10-26 2007-12-07 신에쓰 가가꾸 고교 가부시끼가이샤 A method of manufacturing a preform ingot for optical fiber
CN110114320A (en) * 2016-12-28 2019-08-09 住友电气工业株式会社 Method for manufacturing fibre-optical preform

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782393B1 (en) * 2000-10-26 2007-12-07 신에쓰 가가꾸 고교 가부시끼가이샤 A method of manufacturing a preform ingot for optical fiber
JP2003029072A (en) * 2001-07-11 2003-01-29 Fujikura Ltd Plane-of-polarization preservation type optical fiber
CN110114320A (en) * 2016-12-28 2019-08-09 住友电气工业株式会社 Method for manufacturing fibre-optical preform
CN110114320B (en) * 2016-12-28 2021-11-30 住友电气工业株式会社 Method for manufacturing optical fiber preform

Similar Documents

Publication Publication Date Title
CA2067260C (en) Method of manufacturing a silica glass preform
US5090980A (en) Method of producing glass bodies with simultaneous doping and sintering
US6422042B1 (en) Rit method of making optical fiber having depressed index core region
US3933453A (en) Flame hydrolysis mandrel and method of using
ATE37100T1 (en) MONOMODE OPTICAL FIBER AND METHOD OF MANUFACTURE.
AU700828B2 (en) Method of making optical fiber having depressed index core region
JPS6054893B2 (en) How to form preforms for optical waveguides
RU2599390C2 (en) Soot radial pressing for optical fibre overcladding
JPH0624780A (en) Production of optical fiber preform
CA1277819C (en) Method of and arrangements for manufacturing glass bodies
EP0652184B1 (en) Process of making a preform for multi-ferrules of silica glass and preform so obtained
DK472384D0 (en) PROCEDURE FOR SHAPING LAMINATED, SINGLE-POLARIZED FIBERS
US5026409A (en) Preparation of fluoride glass optical preforms and fibers
JPH11199260A (en) Production of preform of constant polarization optical fiber
JPH0648757A (en) Production of preformed material for optical fiber
EP1171395B1 (en) Method of applying protective coating to silica-containing article
JPH0680434A (en) Production of optical fiber preform
JP2871829B2 (en) Forming method of quartz-based porous glass body
JP3207345B2 (en) Ferrule for optical connector
JPH06247734A (en) Production of preform for polarizing plane maintaining optical fiber
JPH05254869A (en) Production of porous preform for optical fiber
JPH05170470A (en) Production of quartz glass perform
JPH0881232A (en) Production of preform for eccentric core optical fiber
JPH06247733A (en) Production of constant-polarization optical fiber preform
JPH0692683A (en) Optical fiber of fluoride