JPH06247399A - Automatic flight safety operating device of spacecraft - Google Patents
Automatic flight safety operating device of spacecraftInfo
- Publication number
- JPH06247399A JPH06247399A JP3794993A JP3794993A JPH06247399A JP H06247399 A JPH06247399 A JP H06247399A JP 3794993 A JP3794993 A JP 3794993A JP 3794993 A JP3794993 A JP 3794993A JP H06247399 A JPH06247399 A JP H06247399A
- Authority
- JP
- Japan
- Prior art keywords
- data
- spacecraft
- flight
- destruction
- space equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、宇宙機器の搭載計算機
の機能に適用される自動飛行安全運用装置に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic flight safety operation device applied to the function of a computer mounted on space equipment.
【0002】[0002]
【従来の技術】宇宙機器の飛行安全運用は、従来では図
2に示すようにして行なわれていた。つまりロケット等
の宇宙機器01から送られた飛行状況データは地上レー
ダ局02で受信され、地上レーダ局02が取得したレー
ザ・データに基づき、地上の大型計算機03により飛行
状況の判断を行い、モニタ装置04により各種のモニタ
ー図に示す。宇宙機器01の破壊が必要な場合は、地上
より人間がボタン操作により指令破壊ボタン05を押
す。そうすると破壊信号が宇宙機器01に送られ、宇宙
機器01に搭載している破壊装置が作動して宇宙機器0
1を破壊していた。2. Description of the Related Art Flight safety operation of space equipment has been conventionally performed as shown in FIG. That is, the flight status data sent from the space device 01 such as a rocket is received by the ground radar station 02, and based on the laser data acquired by the ground radar station 02, the large-scale computer 03 on the ground determines the flight status and monitors it. Various monitor diagrams are shown by the device 04. When it is necessary to destroy the space device 01, a person pushes the command destruction button 05 from the ground by operating a button. Then, the destruction signal is sent to the space device 01, the destruction device mounted on the space device 01 operates, and the space device 0
I was destroying 1.
【0003】[0003]
【発明が解決しようとする課題】宇宙機器の飛行状況判
断は、リアルタイムモニタが必須のため、飛行状況の監
視が必要な期間は、地上レーダより宇宙機器の飛行デー
タが必ず取得できる範囲(可視範囲)に飛行するよう飛
行計画(位置,速度,姿勢)を設定する必要がある。A real-time monitor is essential for determining the flight status of space equipment. Therefore, during the period when the flight status needs to be monitored, the flight data of the space equipment can always be acquired from the ground radar (visible range). It is necessary to set the flight plan (position, velocity, attitude) so that the aircraft will fly to (1).
【0004】上記要件を満足するためには、宇宙機器の
ペイロード搭載能力を犠牲にする必要があり、また、飛
行計画作成時に多大な時間が必要となる。In order to satisfy the above requirements, it is necessary to sacrifice the payload loading capacity of space equipment, and a great deal of time is required when preparing a flight plan.
【0005】運用時には、地上レーダ,地上大型計算機
等のオペレーション用の人員がバックアップ用員も含め
て必要であり、そのデータ作成,練習等の期間も考慮す
ると高額の費用が必要となり宇宙機器打上げ価格が上昇
する一因となっている。また、上記レーダ,計算機は、
打ち上げがない期間のメンテナンスが必要であり、これ
も価格上昇の一因となる。During operation, it is necessary to have personnel for operations such as ground radar and ground-based computer, including backup personnel. Considering the period of data preparation, practice, etc., high cost is required, and space equipment launch price. Has contributed to the rise. In addition, the above radar and computer
Maintenance is required during the period without a launch, which also contributes to the price increase.
【0006】本発明は、上記従来技術に鑑み、宇宙機器
内で自動的に飛行安全運用を行うことのできる、宇宙機
器の自動飛行安全運用装置を提供することを目的とす
る。In view of the above-mentioned prior art, it is an object of the present invention to provide an automatic flight safety operation device for space equipment, which is capable of automatically performing flight safety operation in the space equipment.
【0007】[0007]
【課題を解決するための手段】上記課題を解決する本発
明では、航法計算結果(位置,速度,姿勢等)および機
体飛行データ(エンジン燃焼圧等)の飛行状況データと
飛行安全関連データ・ベース(ノミナル飛行計画、破壊
限界線データ等)を入力として飛行状況を判断する飛行
状況判断機能と、飛行状況判断機能での判断に基づき宇
宙機器を破壊するための破壊信号を送出する破壊判断実
施機能を、宇宙機器の搭載計算機に備え、更に判断した
飛行状況及び破壊信号を地上局へデータ転送するテレメ
トリ・データ送信装置を宇宙機器に備えたことを特徴と
する。According to the present invention for solving the above-mentioned problems, the flight situation data of the navigation calculation result (position, velocity, attitude, etc.) and the aircraft flight data (engine combustion pressure, etc.) and the flight safety-related data base. Flight status judgment function to judge the flight status by inputting (nominal flight plan, destruction limit line data, etc.) and destruction judgment execution function to send a destruction signal to destroy space equipment based on the judgment in the flight status judgment function Is equipped in a space-equipped computer, and the space equipment is further equipped with a telemetry / data transmission device for transferring the determined flight status and destruction signal to the ground station.
【0008】[0008]
【作用】航法計算結果から得られた位置,速度,姿勢等
のデータより、宇宙機器の落下予測点,軌道要素等を飛
行状況判断機能により計算する。これらのデータを飛行
安全関連データ・ベースのノミナル飛行計画等と比較
し、また機体状況データとも比較して、機体を破壊すべ
きかどうかが判断できるデータをそろえる。このデータ
に基づき、破壊すべき条件が成立した場合のみ機体に装
備されている破壊装置へ信号を送出する。これらの作業
状況は、地上の人間へ状況を伝える必要があるため、従
来の機体テレメトリ信号に追加して、地上へデータ転送
する。なお、これらの動作は宇宙機器が地上から直接確
認できない位置でも行うことが可能なため、その場合
は、静止軌道上のデータ中継衛星を介した衛星間通信に
より、データ転送できるようにした。[Operation] From the data of position, velocity, attitude, etc. obtained from the navigation calculation results, the predicted drop points of the space equipment, orbital elements, etc. are calculated by the flight status judgment function. These data will be compared with nominal flight plans, etc., based on flight safety-related data, and also compared with aircraft condition data to prepare data that can be used to judge whether the aircraft should be destroyed. Based on this data, a signal is sent to the destruction device mounted on the aircraft only when the conditions for destruction are satisfied. Since these working conditions need to be communicated to people on the ground, they are added to conventional airframe telemetry signals and data is transferred to the ground. Since these operations can be performed even at locations where space equipment cannot be directly confirmed from the ground, in that case, data transfer can be performed by inter-satellite communication via a data relay satellite in a geostationary orbit.
【0009】[0009]
【実施例】以下に本発明の実施例を図面に基づき詳細に
説明する。図1は、本発明の実施例を示す。本実施例で
は、ロケット等の宇宙機器1に、搭載計算機2,IMU
(Intertial Measuring Unit)3,破壊装置9,テレ
メトリ・データ送信装置10を備えている。IMU3は
慣性航法または誘導において、ある基準座標に対する飛
しょう体の速度および位置を求めるための加速度計およ
びジャイロなどからなり、またある種の計算機が含まれ
ることもある。搭載計算機2には、機体飛行データ8や
外部データ14が入力される。外部データとしてはGP
S(GolbalPositioning System )等がある。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention. In this embodiment, the space computer 1 such as a rocket is mounted on the on-board computer 2, IMU.
An (Intertial Measuring Unit) 3, a destruction device 9, and a telemetry / data transmission device 10 are provided. The IMU 3 is composed of an accelerometer and a gyro for determining the velocity and position of a vehicle with respect to a certain reference coordinate in inertial navigation or guidance, and may also include a certain type of computer. Aircraft flight data 8 and external data 14 are input to the onboard computer 2. GP as external data
S (Golbal Positioning System) etc.
【0010】搭載計算機2には、航法計算機能4,飛行
状況判断機能5,飛行安全関連データ・ベース6,破壊
判断実施機能7及び誘導制御機能15が備えられてい
る。The on-board computer 2 is equipped with a navigation calculation function 4, a flight status judgment function 5, a flight safety related data base 6, a destruction judgment execution function 7 and a guidance control function 15.
【0011】宇宙機器外の構成物としては、静止軌道上
のデータ中継衛星11,地上レーダ12,地上モニタ装
置13がある。As components outside the space equipment, there are a data relay satellite 11, a ground radar 12, and a ground monitor device 13 in geostationary orbit.
【0012】搭載計算機2内の飛行状況判断機能5,飛
行安全関連データ・ベース6,破壊判断実施機能7が本
発明により追加される機能であり、他構成物は従来の機
能もしくは若干の改修により機能達成可能である。The flight status judgment function 5, flight safety related data base 6, and destruction judgment execution function 7 in the on-board computer 2 are functions added by the present invention, and other components are conventional functions or slightly modified. Function can be achieved.
【0013】宇宙機器1に搭載されたIMU3の出力で
ある速度,角速度増分に基づく航法計算結果である位
置,速度,姿勢情報が、本追加機能への基本入力の1つ
となるが、現状の精度では十分とは言い難いため、本発
明では精度向上を目的として、GPS等の外部データ1
4による高精度な航法計算機能4を原則とする。Position, velocity, and attitude information, which are the navigation calculation results based on the velocity and angular velocity increments, which are the outputs of the IMU 3 mounted on the spacecraft 1, are one of the basic inputs to this additional function. Is not sufficient, the external data 1 such as GPS is used in the present invention for the purpose of improving accuracy.
In principle, the high-precision navigation calculation function 4 by 4 is used.
【0014】この位置,速度,姿勢情報より飛行状況判
断機能5において、飛行安全運用に必要なデータ(落下
予測点,機体現在位置,軌道近地点高度等)を求める。
このデータ及び従来の機能により取得できる機体飛行デ
ータ(エンジン燃焼圧等)8と、飛行安全関連データ・
ベース6にあらかじめ入力されている基準データ(ノミ
ナル・データ,正常範囲の分散データ,機体を破壊する
ための条件等)と比較し、機体を破壊するか否かの判断
データを作成する。From the position, velocity, and attitude information, the flight status judgment function 5 obtains data (predicted drop point, current position of the aircraft, orbital perigee altitude, etc.) necessary for flight safety operation.
This data and airframe flight data (engine combustion pressure etc.) 8 that can be acquired by conventional functions and flight safety related data
It is compared with reference data (nominal data, normal range dispersion data, conditions for destroying the aircraft, etc.) that have been entered in advance in the base 6, and data for determining whether or not to destroy the aircraft is created.
【0015】次に破壊判断実施機能7により今回の判断
データ及び過去数回の同データより破壊に対する最終判
断を行い、“破壊実行”の場合は、機体の破壊装置9へ
破壊信号を送出する。破壊信号を受けた破壊装置9は爆
発して宇宙機器1を破壊する。Next, the destruction judgment execution function 7 makes a final judgment on the destruction based on the present judgment data and the same data obtained several times in the past. The destruction device 9 receiving the destruction signal explodes and destroys the space device 1.
【0016】上記一連の操作は、航法計算が行われる毎
に実施され、その結果は常時他の機体テレメトリ・デー
タと共にテレメトリ・データ送信装置10により地上へ
送信し、地上の人間が常時モニタできるようにする。な
お、この送信では地上レーダ12から直接宇宙機器1が
見えない(可視できない)飛行範囲においても行われる
ため、その際には静止軌道上のデータ中継衛星11を介
した送信を行う。地上へ送られたデータは、地上のモニ
タ装置13により宇宙機器の状況を常にモニタできるこ
とになる。The above series of operations is carried out each time navigation calculation is carried out, and the result is always transmitted to the ground by the telemetry data transmitter 10 together with other airframe telemetry data so that a person on the ground can constantly monitor it. To Since this transmission is also performed in a flight range where the spacecraft 1 cannot be seen (visible) from the ground radar 12, the transmission is performed via the data relay satellite 11 in the geostationary orbit at that time. With the data sent to the ground, the status of the space equipment can be constantly monitored by the ground monitoring device 13.
【0017】[0017]
【発明の効果】本発明によれば次のような効果が得られ
る。According to the present invention, the following effects can be obtained.
【0018】(1)宇宙機器の飛行安全運用を搭載計算
機内で自動的に行うことにより、飛行状況の監視が必要
な飛行区間においても地上レーダ局から可視である必要
がなくなり、飛行計画の柔軟性が増すと共に、飛行計画
作成の時間短縮となる。また、ペイロード搭載能力も上
記制約条件がなくなることにより増加する。(1) By automatically performing the flight safety operation of the space equipment in the on-board computer, it becomes unnecessary to be visible from the ground radar station even in the flight section where the flight situation needs to be monitored, and the flight plan can be flexible. As a result, flight planning time is shortened. Also, the payload loading capacity will increase as the above constraint conditions are eliminated.
【0019】(2)従来地上で行ってきた飛行安全運用
に必要な人員,大型計算機(含維持),作業が不要とな
るため、宇宙機器打ち上げ価格の大幅な削減となる。(2) Since the personnel, the large-scale computer (including maintenance), and the work required for the flight safety operation conventionally performed on the ground are not required, the launch cost of space equipment is greatly reduced.
【0020】(3)静止軌道上のデータ中継衛星を介し
たデータ転送を行うことにより(1)と同様の効果が期
待できる。(3) The same effect as (1) can be expected by performing data transfer via a data relay satellite on a geostationary orbit.
【図1】本発明の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.
【図2】従来技術を示す構成図。FIG. 2 is a configuration diagram showing a conventional technique.
1 宇宙機器 2 搭載計算機 3 IMU 4 航法計算機能 5 飛行状況判断機能 6 飛行安全関連データ・ベース 7 破壊判断実施機能 8 機体飛行データ 9 破壊装置 10 テレメトリ・データ送信装置 11 データ中継衛星 12 地上データ 13 地上モニタ装置 1 Space Equipment 2 On-board Computer 3 IMU 4 Navigation Calculation Function 5 Flight Status Judgment Function 6 Flight Safety Related Data Base 7 Destruction Judgment Execution Function 8 Aircraft Flight Data 9 Destruction Device 10 Telemetry Data Transmission Device 11 Data Relay Satellite 12 Ground Data 13 Ground monitor
Claims (1)
法計算機能と、航法計算機能で求めたデータ及び機体飛
行データと飛行安全関連データ・ベースに入力されてい
る基準データとを比較して宇宙機器を破壊するか否かの
判断データを作成する飛行状況判断機能と、前記判断デ
ータを基に破壊するか否かを決定し破壊するときには破
壊信号を出力する破壊判断実施機能を有し、宇宙機器に
搭載されている搭載計算機と、 宇宙機器に備えられており、前記破壊信号を受けると宇
宙機器を破壊する破壊装置と、 宇宙機器に備えられており、前記判断データや前記破壊
信号を地上に送るテレメトリ・データ送信装置を具備す
ることを特徴とする宇宙機器の自動飛行安全運用装置。1. A navigation calculation function for obtaining the position, velocity, and attitude of space equipment, and a comparison of the data and airframe flight data obtained by the navigation calculation function with reference data input to a flight safety-related data base. It has a flight situation judgment function that creates judgment data whether to destroy space equipment, and a destruction judgment execution function that decides whether to destroy based on the judgment data and outputs a destruction signal when destroying, On-board computer mounted on space equipment, equipped on space equipment, destruction device that destroys space equipment when receiving the destruction signal, equipped on space equipment, the judgment data and the destruction signal An automatic flight safety operation device for space equipment, which is equipped with a telemetry / data transmission device for sending to the ground.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3794993A JPH06247399A (en) | 1993-02-26 | 1993-02-26 | Automatic flight safety operating device of spacecraft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3794993A JPH06247399A (en) | 1993-02-26 | 1993-02-26 | Automatic flight safety operating device of spacecraft |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06247399A true JPH06247399A (en) | 1994-09-06 |
Family
ID=12511805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3794993A Withdrawn JPH06247399A (en) | 1993-02-26 | 1993-02-26 | Automatic flight safety operating device of spacecraft |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06247399A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182456A1 (en) * | 2014-05-28 | 2015-12-03 | 株式会社Ihi | Control device for rocket |
-
1993
- 1993-02-26 JP JP3794993A patent/JPH06247399A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182456A1 (en) * | 2014-05-28 | 2015-12-03 | 株式会社Ihi | Control device for rocket |
JP2015223958A (en) * | 2014-05-28 | 2015-12-14 | 株式会社Ihi | Rocket control device |
EP3150495A4 (en) * | 2014-05-28 | 2018-02-14 | IHI Corporation | Control device for rocket |
RU2652356C1 (en) * | 2014-05-28 | 2018-04-25 | АйЭйчАй КОРПОРЕЙШН | Rocket control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7271740B2 (en) | System and process for providing improved aircraft operational safety | |
Denis et al. | Thousand times through the atmosphere of Mars: Aerobraking the ExoMars trace gas orbiter | |
Oda | ETS-VII: achievements, troubles and future | |
US5158248A (en) | Modular earth-return space vehicle | |
Hanaway | Space shuttle avionics system | |
JPH06247399A (en) | Automatic flight safety operating device of spacecraft | |
Personne | ATV GNC synthesis: overall design, operations and main performances | |
Goodman | Space shuttle navigation in the GPS era | |
Dennehy et al. | A comprehensive analysis of the X-15 Flight 3-65 accident | |
Gay et al. | Historical Retrospective on Orion GNC Design | |
Evans et al. | Flight tests of an unmanned air vehicle with integrated multi-antenna GPS receiver and IMU: towards a testbed for distributed control and formation flight | |
Mueller et al. | Unifled GN&C System for the Space Rapid Transit Launch Vehicle | |
Cavrois et al. | ATV GNC and Safety functions synthesis: overall design, main performances and operations | |
Fudge et al. | Non-traditional Flight Safety Systems and Integrated Vehicle Health Management Systems:. | |
Carter et al. | Vehicle Management System for single stage rocket | |
Whitsett | MMU applications for automated rendezvous and capture | |
Alves Jr et al. | A GPS-Based Autonomous Onboard Destruct System | |
Howell et al. | The NASA Urban Air Mobility Testbed Flight Research Aircraft | |
CARRIER et al. | Space Shuttle orbiter avionics | |
Schiesser | Use of radio equipment for space shuttle navigation | |
Alves, F, Jr et al. | Autonomous Range safety using GPS-based systems | |
MILLER et al. | Apollo guidance and control system flight experience | |
Miyazawa et al. | Flight Testing of ALFLEX Guidance, Navigation and Control System | |
BRANCH | APOllO 9 CREW TECHNICAl DEBR IEFING | |
Miller et al. | Fault tolerant integrated inertial navigation/global positioning systems for next generation spacecraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000509 |