JPH06245600A - Frequency detecting device - Google Patents

Frequency detecting device

Info

Publication number
JPH06245600A
JPH06245600A JP5030213A JP3021393A JPH06245600A JP H06245600 A JPH06245600 A JP H06245600A JP 5030213 A JP5030213 A JP 5030213A JP 3021393 A JP3021393 A JP 3021393A JP H06245600 A JPH06245600 A JP H06245600A
Authority
JP
Japan
Prior art keywords
frequency
phase
signal
output
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5030213A
Other languages
Japanese (ja)
Other versions
JP2946152B2 (en
Inventor
Minoru Manjo
実 萬城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5030213A priority Critical patent/JP2946152B2/en
Publication of JPH06245600A publication Critical patent/JPH06245600A/en
Application granted granted Critical
Publication of JP2946152B2 publication Critical patent/JP2946152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect a frequency high accurately at a high speed by a rough sampling period similar to the control period of a controller. CONSTITUTION:From each phase voltage (ea, eb, ec) and current (ia, ib, ic) of a synchronous machine, a signal (ea'', eb'', ec'') in proportion to a number of interlinkage magnetic fluxes is detected, and by a value of the signal as an input, a sum of products of a value at time (t) and a signal before 1 sampling period, obtained through delay circuits 11, to 13, is detected by multipliers 14 to 22 and adders 23 to 25, to detect a frequency (f) from these values. Thus in no relation to operation and external conditions of the synchronous machine, a frequency can be realized by a rough sampling period high accurately at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は同期機励磁装置において
波形歪・負荷変化などの影響を受けずに高精度・高速に
周波数を検出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a frequency with high accuracy and high speed in a synchronous machine excitation device without being affected by waveform distortion, load change and the like.

【0002】[0002]

【従来の技術】従来同期励磁装置の周波数検出を行うの
には、同期機端子電圧波形を用いて電圧波形がプラス側
又はマイナス側に存在する時間を高周波パルスによって
測定することにより周波数検出を行っていた。この方法
では電圧波形歪(特に零クロス点近傍における点)によ
る誤差が大きい問題があった。このため同期機負荷近傍
にサイリスタ負荷又はSVA(Static Voltage Adju
ster)などの波形歪の発生を伴う負荷がある場合には、
波形歪により正しい周波数を高速・高精度に検出するこ
とができなかった。
2. Description of the Related Art Conventionally, in order to detect the frequency of a synchronous excitation device, the frequency is detected by measuring the time during which the voltage waveform exists on the plus side or the minus side by using a high frequency pulse using the synchronous machine terminal voltage waveform. Was there. This method has a problem that the error due to the voltage waveform distortion (particularly the point near the zero cross point) is large. For this reason, a thyristor load or SVA (Static Voltage Adju
If there is a load such as ster) that causes waveform distortion,
The correct frequency could not be detected with high speed and high accuracy due to waveform distortion.

【0003】またタービン側に電磁ピックアップ装置を
設けて周波数を検出する方法も用いられているが、この
方法ではタービンの軸ねじれの影響もひろってしまうた
め、この信号を電力系統安定化信号に用いると、タービ
ン軸の軸ねじれ励動を助長してしまうという不具合があ
った。
A method of detecting the frequency by providing an electromagnetic pickup device on the turbine side is also used. However, since this method spreads the influence of shaft twist of the turbine, this signal is used as a power system stabilization signal. Then, there was a problem that the shaft torsional excitation of the turbine shaft was promoted.

【0004】また上述した同期機端子電圧波形の波形歪
を改善する方法として多段のフィルタを用いる方法があ
るが、フィルタによる時間遅れがあるため高速性を要求
する電力系統安定化装置(PSS)などの入力信号に用
いることができなかった。
As a method of improving the waveform distortion of the synchronous machine terminal voltage waveform described above, there is a method of using a multistage filter. However, since there is a time delay due to the filter, a power system stabilizer (PSS) or the like which requires high speed is used. Could not be used for the input signal of.

【0005】さらに従来の周波数検出方式では高精度の
周波数検出を行うのに高周波パルスを印加し、電圧波形
がプラス側又はマイナス側にあるパルス数を計数して周
波数検出を行う必要があり、最高速のコントローラを用
いても十分な精度で周波数を検出することが不可能であ
ったため、DSP(Digital Signal Processor)な
どの専用の信号処理用プロセッサを設ける必要があっ
た。
Further, in the conventional frequency detection method, it is necessary to apply a high frequency pulse in order to detect the frequency with high accuracy, and to count the number of pulses whose voltage waveform is on the plus side or the minus side to detect the frequency. Since it was impossible to detect the frequency with sufficient accuracy even by using a high-speed controller, it was necessary to provide a dedicated signal processing processor such as a DSP (Digital Signal Processor).

【0006】[0006]

【発明が解決しようとする課題】上述した従来の周波数
検出方式では、同期機端子電圧の電圧波形歪の影響につ
いて全く考慮されておらず、近くに大きなサイリスタ負
荷又はSVC(StaticVoltage Controller)が存在
することに起因する波形歪がある場合には正確な周波数
を高速に検出することができなかった。
In the above-mentioned conventional frequency detection method, the influence of the voltage waveform distortion of the synchronous machine terminal voltage is not considered at all, and a large thyristor load or SVC (Static Voltage Controller) is present nearby. If there is a waveform distortion due to this, an accurate frequency could not be detected at high speed.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、周波数を検出するための信号源として、同
期機の内部磁束数に比例する直軸次過渡リアクタンスx
d″の背後電圧E″を検出し、さらにこの正弦波電圧波
形E″を用いてサンプリング周期に関係なく正確な周波
数を高速に検出することにある。
The present invention has been made in view of the above circumstances, and as a signal source for detecting a frequency, a direct-axis transient transient reactance x proportional to the number of internal magnetic fluxes of a synchronous machine.
The purpose is to detect the back voltage E ″ of d ″, and to detect an accurate frequency at high speed by using this sine wave voltage waveform E ″.

【0008】[0008]

【課題を解決するための手段】本発明の周波数検出装置
は、同期機の直軸次過渡リアクタンスxd″の背後電圧
E″を三相の各相毎に検出する背後電圧検出手段と、該
背後電圧検出手段により検出された背後電圧に基づいて
同期機励磁装置の周波数を検出する周波数検出手段とを
有することを特徴とする。
The frequency detecting device of the present invention comprises back voltage detecting means for detecting the back voltage E "of the direct-axis transient transient xd" of the synchronous machine for each of the three phases, and the back voltage detecting means. Frequency detecting means for detecting the frequency of the synchronous machine exciting device based on the back voltage detected by the voltage detecting means.

【0009】また本発明の周波数検出装置は、前記周波
数検出手段は、前記背後電圧検出手段の三相の各相の出
力を1サンプリング周期(H)だけ、遅延させる信号遅延
手段と、前記背後電圧検出手段の各相の検出出力と前記
信号遅延手段の出力との内積または、内積及び外積を求
め、これらの演算結果に基づいて周波数を算出する演算
手段とを有することを特徴とする。
Further, in the frequency detecting apparatus of the present invention, the frequency detecting means delays the output of each of the three phases of the back voltage detecting means by one sampling period (H), and the back voltage detecting means. The present invention is characterized by further comprising arithmetic means for obtaining an inner product or an inner product and an outer product of the detection output of each phase of the detection means and the output of the signal delay means, and calculating the frequency based on the operation result of these.

【0010】更に本発明の周波数検出装置は、前記周波
数検出手段は、前記背後電圧検出手段の三相の各相の出
力を1サンプリング周期、遅延させる信号遅延手段と、
前記背後電圧検出手段の各相の検出出力と前記信号遅延
手段の出力との内積または、内積及び外積を求め、これ
らの演算結果に基づいてcosωH,sinωH,tanωHに比例
する量を求めると共に、これらの各三角関数値から周波
数を算出する演算手段とを有することを特徴とする。
Further, in the frequency detecting device of the present invention, the frequency detecting means includes signal delay means for delaying the output of each of the three phases of the back voltage detecting means by one sampling period,
The inner product of the detection output of each phase of the back voltage detecting means and the output of the signal delay means, or the inner product and the outer product are obtained, and the amount proportional to cos ωH, sin ωH, tan ωH is obtained based on these calculation results, And a calculating means for calculating the frequency from each trigonometric function value of.

【0011】また本発明の周波数検出装置は、前記周波
数検出手段は、前記背後電圧検出手段の三相の各相の出
力の位相をπ/2だけシフトさせるπ/2移相手段と、
該π/2移相手段の各相の出力を1サンプリング周期、
遅延させる信号遅延手段と、前記背後電圧検出手段の各
相の出力、π/2移相手段の出力及び信号遅延手段の出
力に基づいて周波数を算出する演算手段とを有すること
を特徴とする。
Further, in the frequency detecting device of the present invention, the frequency detecting means comprises π / 2 phase shifting means for shifting the phase of the output of each of the three phases of the back voltage detecting means by π / 2.
The output of each phase of the π / 2 phase shift means is set to one sampling period,
It is characterized by including a signal delay means for delaying, and a computing means for calculating a frequency based on the output of each phase of the back voltage detecting means, the output of the π / 2 phase shifting means and the output of the signal delaying means.

【0012】更に本発明の周波数検出装置は、基準正弦
波信号を生成する基準周波数発生手段と、前記背後電圧
検出手段及び基準周波数発生手段の出力を取り込み、背
後電圧検出手段より得られる背後電圧と前記基準正弦波
信号の周波数偏差を有する正弦波信号を出力する正弦波
信号検出手段とを有することを特徴とする。
Further, the frequency detecting device of the present invention includes a reference frequency generating means for generating a reference sine wave signal, a back voltage obtained by the back voltage detecting means by taking in the outputs of the back voltage detecting means and the reference frequency generating means. And a sine wave signal detecting means for outputting a sine wave signal having a frequency deviation of the reference sine wave signal.

【0013】また本発明の周波数検出装置は、原信号で
ある単相正弦波信号の振幅値を求める振幅値算出手段
と、原信号を前記振幅値算出手段の出力で除算して振幅
値が一定の正弦波信号を求める除算器と、該除算器の出
力信号に基づいて周波数を算出する演算手段とを有する
ことを特徴とする。
Further, the frequency detecting device of the present invention has an amplitude value calculating means for obtaining an amplitude value of a single-phase sine wave signal which is an original signal, and an amplitude value constant by dividing the original signal by the output of the amplitude value calculating means. And a calculating means for calculating the frequency based on the output signal of the divider.

【0014】更に本発明の周波数検出装置は、同期機の
直軸次過渡リアクタンスxd″の背後電圧E″を三相の
各相毎に検出する背後電圧検出手段と、該背後電圧検出
手段により検出された各相の背後電圧をそれぞれ取り込
み、周波数を検出する各相毎に設けられた請求項6に記
載の周波数検出手段と、これら各相毎に設けられた周波
数検出手段により検出された周波数の平均値を算出する
平均値演算手段と、該平均値演算手段の演算出力と前記
各周波数検出手段との偏差の絶対値を求め、これらの各
偏差値が所定値以内にあるか否かにより異常判定を行な
い、正常相のみにより検出された周波数の平均値を検出
周波数とする演算手段とを有することを特徴とする。
The frequency detecting device of the present invention further includes a backside voltage detecting means for detecting the backside voltage E "of the direct-axis transient transient reactance xd" of the synchronous machine for each of the three phases, and the backside voltage detecting means. 7. The frequency detecting means according to claim 6, which is provided for each phase to detect the frequency by taking in the respective background voltage of each phase, and the frequency detected by the frequency detecting means provided for each phase. An average value calculating means for calculating an average value, an absolute value of a deviation between the output of the average value calculating means and each of the frequency detecting means is obtained, and it is determined whether or not each deviation value is within a predetermined value. And an arithmetic means for making an average value of frequencies detected only in the normal phase as a detection frequency.

【0015】すなわち、本発明では、上記目的を達成す
るために、同期機の運転状態及び外部負荷の影響を受け
ずに常に理想的な正弦波信号と見なすことができる直軸
次過渡リアクタンスxd″の背後電圧であるE″を各相
毎に検出する。
That is, according to the present invention, in order to achieve the above object, a direct-axis-order transient reactance xd ″ which can be always regarded as an ideal sinusoidal signal without being affected by the operating state of the synchronous machine and the external load. The background voltage E ″ is detected for each phase.

【0016】さらにサンプリング周期に関係なく正確な
周波数を求めるために、各相(a,b,c相)の時刻t
−H(但し、Hはサンプリング周期である。)及びtに
おける直軸次過渡リアクタンスxd″の背後電圧E″を
求める。これらの値から内積及び外積の組み合せを検出
し、周波数fをサンプリング周期Hを制御周期と同様に
粗く設定しても高速な周波数検出を行うことができる。
Further, in order to obtain an accurate frequency regardless of the sampling period, the time t of each phase (a, b, c phase)
−H (where H is the sampling period) and the back voltage E ″ of the direct-axis transient reactance xd ″ at t are obtained. Even if the combination of the inner product and the outer product is detected from these values and the frequency f is roughly set to the sampling period H as in the control period, high-speed frequency detection can be performed.

【0017】[0017]

【作用】同期機の直軸次過渡リアクタンスxd″の背後
電圧E″は、鎖交磁束数に比例する量であるため同期機
の運転状態及び負荷の種類に関係なく常に理想的な正弦
波信号となる。
The back voltage E "of the direct-axis transient reactance xd" of the synchronous machine is an amount proportional to the number of interlinkage magnetic fluxes, so that an ideal sine wave signal is always produced regardless of the operating state of the synchronous machine and the type of load. Becomes

【0018】この正弦波信号を入力信号として周波数検
出装置を構成することにより、入力信号の時刻t−H及
びtにおける検出値を用いて高速・高精度なる周波数検
出を行うことができる。
By configuring the frequency detection device using this sine wave signal as an input signal, it is possible to perform high-speed and high-accuracy frequency detection using the detection values at the times t-H and t of the input signal.

【0019】特に3相正弦波信号の積和・積差をとるこ
とにより、時刻t、t−Hにおける振幅値及び cosω
H,sinωH,tanωH をリップル値を含まずに高速、かつ
正確に求めることができる。
Particularly, by taking the product sum and product difference of the three-phase sine wave signals, the amplitude value and cosω at the times t and t-H are obtained.
H, sinωH, and tanωH can be obtained quickly and accurately without including ripple values.

【0020】さらに基準正弦波信号を発生させ、これと
入力信号との積差から周波数偏差を正弦波信号とする信
号を検出し、これを周波数検出装置の入力信号とするこ
とで周波数の微小変化を検出することを可能としてい
る。
Further, a reference sine wave signal is generated, a signal having a frequency deviation as a sine wave signal is detected from a product difference between the reference sine wave signal and the input signal, and this signal is used as an input signal of the frequency detecting device, whereby a slight change in frequency It is possible to detect.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】まず同期機の鎖交磁束数が理想的な正弦波
波形になることに着目し、この鎖交磁束数に比例する直
軸次過渡リアクタンスxd″の背後電圧E″を求める。
図1には背後電圧検出装置の構成が示されている。同図
において背後電圧検出装置1は、加算器2A,2B,2
Cと、乗算器3A,3B,3Cと、加算器4A,4B,
4Cとを有している。
First, paying attention to the fact that the number of interlinkage magnetic flux of the synchronous machine has an ideal sinusoidal waveform, the back voltage E ″ of the direct-axis-order transient reactance xd ″ proportional to this number of interlinkage magnetic flux is obtained.
FIG. 1 shows the configuration of the backside voltage detection device. In the figure, the backside voltage detection device 1 includes adders 2A, 2B, 2
C, multipliers 3A, 3B and 3C, and adders 4A and 4B,
4C and.

【0023】同期機端子電圧の相電圧eaと相電圧ea
より90°位相進みの電流ib−icを加算器2Aによ
り検出し、この検出電流に同期機直軸次過渡リアクタン
スxd″を1/√3倍したものとの積を乗算器3Aによ
り演算する。この値と同期機相電圧eaとを加算器4A
により加算し、a相の直軸次過渡リアクタンスxd″の
背後電圧ea″を求める。このようにして検出した背後
電圧ea″はea,iaに波形歪があったとしても、鎖
交磁束数に比例する量であるため常に理想的な正弦波形
となる。
Phase voltage ea of synchronous machine terminal voltage and phase voltage ea
The current ib-ic having a 90 ° phase lead is detected by the adder 2A, and the product of this detected current multiplied by 1 / √3 of the synchronous machine direct axis secondary transient reactance xd ″ is calculated by the multiplier 3A. This value and the synchronous machine phase voltage ea are added to the adder 4A.
To obtain the back voltage ea ″ of the a-phase direct-axis transient reactance xd ″. The back voltage ea ″ thus detected is always an ideal sinusoidal waveform because the back voltage ea ″ is an amount proportional to the number of interlinkage magnetic fluxes, even if the ea and ia have waveform distortion.

【0024】b,c相についても同様にして背後電圧e
b″,ec″を求めることが出来る。このようにして検
出した同期機の直軸次過渡リアクタンスxd″の背後電
圧ea″,eb″,ec″は位相が互いに120°(2
/3 π)づつ異なる理想的な正弦波形となる。以後、
簡単の為3相平衡正弦波形をVAS,VBS,VCSと
表わすことにする。
The back voltage e is similarly applied to the b and c phases.
b ″ and ec ″ can be obtained. The backside voltages ea ″, eb ″, and ec ″ of the direct-axis transient reactance xd ″ of the synchronous machine detected in this manner have phases of 120 ° (2
It becomes an ideal sine waveform that differs by / 3 π). After that,
For the sake of simplicity, the three-phase balanced sine waveform will be represented as VAS, VBS, VCS.

【0025】次に図2に本発明に係る周波数検出装置の
一実施例の構成を示す。
Next, FIG. 2 shows the configuration of an embodiment of the frequency detecting apparatus according to the present invention.

【0026】時刻tにおけるA相,b相,c相における
入力電圧をそれぞれVAS,VBS,VCSとし、遅延
回路11〜13を用いて検出した1サンプリング周期H
以前の時刻t−Hにおける値をVAS0,VBS0,V
CS0とする。
One sampling period H detected by using the delay circuits 11 to 13 with the input voltages of the A phase, the b phase, and the c phase at time t as VAS, VBS, and VCS, respectively.
The values at the previous time t-H are VAS0, VBS0, V
Set as CS0.

【0027】VAS,VBS,VCS,VAS0,VB
S0,VCS0は理想的な正弦波信号波形のサンプル値
であるから VAS=√2A(t)sin(ωt+φ) ……(1a) VBS=√2A(t)sin(ωt+φ−2/3 π) ……(1b) VCS=√2A(t)sin(ωt+φ−4/3 π) ……(1c) VAS0=√2A(t0)sin(ωt+φ−ωH) ……(2a) VBS0=√2A(t0)sin(ωt+φ−2/3 π−ωH) ……(2b) VCS0=√2A(t0)sin(ωt+φ−4/3 π−ωH) ……(2c) と表わすことができるここでA(t)及びA(t0)は
それぞれ時刻t及びt−Hにおける振幅値とする。
VAS, VBS, VCS, VAS0, VB
Since S0 and VCS0 are ideal sample values of the sine wave signal waveform, VAS = √2A (t) sin (ωt + φ) (1a) VBS = √2A (t) sin (ωt + φ-2 / 3π) ... (1b) VCS = √2A (t) sin (ωt + φ−4 / 3π) (1c) VAS0 = √2A (t 0 ) sin (ωt + φ−ωH) (2a) VBS0 = √2A (t) 0 ) sin (ωt + φ−2 / 3 π−ωH) (2b) VCS0 = √2A (t 0 ) sin (ωt + φ−4 / 3 π−ωH) (2c) where A (T) and A (t 0 ) are amplitude values at times t and t-H, respectively.

【0028】次にこれらの3相正弦波信号を E1=(VAS,VBS,VCS) E0=(VAS0,VBS0,VCS0) なるベクトル量と見なし、これらの内積を求める。Next, these three-phase sine wave signals are regarded as vector quantities of E 1 = (VAS, VBS, VCS) E 0 = (VAS0, VBS0, VCS0), and the inner product of them is obtained.

【0029】乗算器14〜22及び加算器23〜25を
用いて内積を検出すると(5)〜(7)の出力を得る。
When the inner product is detected using the multipliers 14 to 22 and the adders 23 to 25, the outputs (5) to (7) are obtained.

【0030】 内積(E1,E1)=AA =VAS・VAS+VBS・VBS+VCS・VCS=3A(t)2 ……(5) 内積(E0,E0)=BB =VAS0×VAS0+VBS0・VBS0+VCS0・VCS0 =3A(t02 ……(6) 内積(E0,E1)=CC =VAS・VAS0+VBS・VBS0+VCS・VCS0 =3A(t)A(t0)cosωH ……(7) ここで、A(t)、A(t0)は未知の量であるため、
(5)(6)式で検出したA(t)2,A(t02から
A(t)×A(t0)を乗算器26及び平方根器27に
て算出し、これにより(7)式のCCを除算器28にて
除算すると(8)式を得る。
Inner product (E 1 , E 1 ) = AA = VAS · VAS + VBS · VBS + VCS · VCS = 3A (t) 2 (5) Inner product (E 0 , E 0 ) = BB = VAS0 × VAS0 + VBS0 · VBS0 + VCS0 · VCS0 = 3A (t 0 ) 2 (6) Inner product (E 0 , E 1 ) = CC = VAS · VAS0 + VBS · VBS0 + VCS · VCS0 = 3A (t) A (t 0 ) cosωH …… (7) where A Since (t) and A (t 0 ) are unknown quantities,
(5) A (t) × A (t 0 ) is calculated from A (t) 2 and A (t 0 ) 2 detected by the equations (6) by the multiplier 26 and the square root unit 27, and by this, (7 (8) is obtained by dividing the CC of the equation) by the divider 28.

【0031】 CC/√(AA・BB)=cos(ωH) ……(8) 式(8)で検出した値を余弦関数の逆関数29を介し、
さらにこれを円周率πとサンプリング周期Hの逆数30
を乗算することにより周波数fを検出することができ
る。つまり ωH=cos~1{CC/√(AA・BB)} となり、ω=2πf(π:円周率 fは周波数[H
z])なる関係を用いて f=1/2πHcos~1(CC/√(AA・BB)) ……(9) により周波数fを検出することができる。
CC / √ (AA · BB) = cos (ωH) (8) The value detected by equation (8) is passed through the inverse function 29 of the cosine function,
In addition, the reciprocal 30 of the pi and the sampling period H
The frequency f can be detected by multiplying by. In other words, ωH = cos ~ 1 {CC / √ (AA · BB)}, and ω = 2πf (π: circle ratio f is the frequency [H
z]) formed by using the relationship f = 1 / 2πHcos ~ 1 ( CC / √ (AA · BB)) by ... (9) it is possible to detect the frequency f.

【0032】本実施例によれば、サンプリング周期Hを
コントローラの制御周期と等しくとっても良いため粗い
サンプリング周期で周波数fを高速にかつ精度良く求め
ることができる。
According to this embodiment, the sampling period H may be equal to the control period of the controller, so that the frequency f can be obtained at high speed and with high precision in a coarse sampling period.

【0033】本実施例では、3相平衡正弦波信号の特長
を利用してその各瞬時値における振幅値A(t)、A
(t0)及びA(t)・A(t0)cosωHをリップル
分を含まない直流値として時間遅れなく正確に求める。
これらの値からcosωHを各サンプリング同期毎に正
確に時間遅れのない高速検出を実現した。
In this embodiment, the amplitude values A (t), A at each instantaneous value are utilized by utilizing the characteristics of the three-phase balanced sine wave signal.
(T 0 ) and A (t) · A (t 0 ) cosωH are accurately obtained as a DC value that does not include a ripple component without a time delay.
From these values, cosωH was accurately detected at high speed without delay for each sampling synchronization.

【0034】次にVAS,VBS,VCSと互いに90
°位相の進んだ3相平衡正弦波信号を検出し、これらを
用いて周波数を検出する実施例を図3及び図4に基づい
て説明する。
Next, the VAS, VBS, and VCS are connected to each other at 90 degrees.
An embodiment in which a three-phase balanced sine wave signal with advanced phase is detected and the frequency is detected using these signals will be described with reference to FIGS. 3 and 4.

【0035】時刻tにおけるa相,b相,c相と互いに
位相の120°異なる正弦波信号から各々の信号と位相
が90°異なる信号を90°移相回路を用いて検出す
る。90°移相回路の構成を図3に示す。同図におい
て、90°移相回路40は、加算器41,42と、乗算
器43〜45とを有している。例えば三相の正弦波信号
VAS,VBS,VCSを VAS=√2×A(t)sin(ωt+φ) ……(1a) VBS=√2×A(t)sin(ωt+φ−2/3 π) ……(1b) VCS=√2×A(t)sin(ωt+φ−4/3 π) ……(1c) とすると、VAC=(VC−VB)/√3=√2×A(t)
sin(ωt+ π/2 +φ)=√2×A(t)cos(ωt+φ)と
なり、(VC−VB)/√3はVAに対して位相が90°
進んだ信号となっている。即ち VAC=√2×A(t)cos(ωt+φ) ……(3a) VBC=√2×A(t)cos(ωt+φ−2/3 π) ……(3b) VCC=√2×A(t)cos(ωt+φ−4/3 π) ……(3c) となるから、VAS,VBS,VCSに対してそれぞ
れ、90°位相が進んだ信号を検出することができる。
A sine wave signal having a phase difference of 120 ° with respect to the a-phase, b-phase, and c-phase at time t is used to detect a signal having a phase difference of 90 ° from each signal using a 90-degree phase shift circuit. The configuration of the 90 ° phase shift circuit is shown in FIG. In the figure, the 90 ° phase shift circuit 40 has adders 41 and 42 and multipliers 43 to 45. For example, the three-phase sine wave signals VAS, VBS, VCS are VAS = √2 × A (t) sin (ωt + φ) (1a) VBS = √2 × A (t) sin (ωt + φ−2 / 3π) ... (1b) VCS = √2 × A (t) sin (ωt + φ−4 / 3π) (1c) VAC = (VC−VB) / √3 = √2 × A (t)
sin (ωt + π / 2 + φ) = √2 × A (t) cos (ωt + φ), and (VC−VB) / √3 has a phase of 90 ° with respect to VA.
It is an advanced signal. That is, VAC = √2 × A (t) cos (ωt + φ) (3a) VBC = √2 × A (t) cos (ωt + φ−2 / 3π) (3b) VCC = √2 × A (t) ) Cos (ωt + φ−4 / 3π) (3c), it is possible to detect signals with a 90 ° phase advance with respect to VAS, VBS, and VCS.

【0036】(3a),(3b),(3c)の各式において
1サンプリング周期H前のデータを VAC0=√2×A(t0)cos(ω(t−H)+φ) ……(4a) VBC0=√2×A(t0)cos(ω(t−H)−φ−2/3 π)……(4b) VCC0=√2×A(t0)cos(ω(t−H)−φ−4/3 π)……(4c) とする。次にこれらの検出値を用いて周波数検出を行う
周波数検出装置の構成を図4に示す。同図において、周
波数検出装置50は、遅延回路51〜53と、乗算器5
4〜62,66と、加算器63〜65と、平方根器67
と、除算器68と、逆関数演算器69と、乗算器70と
を有している。
In each of the equations (3a), (3b), and (3c), the data before one sampling period H is VAC0 = √2 × A (t 0 ) cos (ω (t−H) + φ) (4a ) VBC0 = √2 × A (t 0 ) cos (ω (t−H) −φ−2 / 3π) (4b) VCC0 = √2 × A (t 0 ) cos (ω (t−H) -Φ-4 / 3 π) (4c). Next, FIG. 4 shows the configuration of a frequency detection device that performs frequency detection using these detection values. In the figure, the frequency detection device 50 includes delay circuits 51 to 53 and a multiplier 5
4 to 62, 66, adders 63 to 65, and square root device 67
And a divider 68, an inverse function calculator 69, and a multiplier 70.

【0037】(2a),(2b),(2c)式及び(4
a),(4b),(4c)式で与えられる信号を E1=(VAS,VBS,VCS) E3=(VAC,VBC,VCC) E4=(VAC0,VBC0,VCC0) なるベクトルと見なすと、図4に示した乗算器54〜6
2及び加算器63〜65を用いて AA=内積(E3,E3)=VAC*VAC+VBC*VBC+VCC*VCC =3A(t)2 ……(5−1) BB=内積(E4,E4)=VAC0*VAC0+VBC0*VBC0+ VCC0*VCC0=3A(t02……(6−1) CC=内積(E1,E4)=VAS*VAC0+VBS*VBC0+VCS* VCC0=3・A(t)A(t0)sin(ωH) ……(7−1) と検出できる。
Equations (2a), (2b), (2c) and (4
The signals given by the equations a), (4b), and (4c) are regarded as a vector of E 1 = (VAS, VBS, VCS) E 3 = (VAC, VBC, VCC) E 4 = (VAC0, VBC0, VCC0) And the multipliers 54 to 6 shown in FIG.
2 and the adders 63 to 65 AA = inner product (E 3 , E 3 ) = VAC * VAC + VBC * VBC + VCC * VCC = 3A (t) 2 (5-1) BB = inner product (E 4 , E 4) ) = VAC0 * VAC0 + VBC0 * VBC0 + VCC0 * VCC0 = 3A (t 0) 2 ...... (6-1) CC = inner product (E 1, E 4) = VAS * VAC0 + VBS * VBC0 + VCS * VCC0 = 3 · A (t) A It can be detected as (t 0 ) sin (ωH) (7-1).

【0038】ここでA(t),A(t0)は未知の量で
あるためA(t)とA(t0)の積を図4に示した乗算
器66を介して平方根器67にて検出し、この検出値に
より(7−1)式のCCを除算器68にて除算すると CC/√(AA・BB)=sin(ωH) ……(8−1) を得る。
[0038] Here, A (t), A (t 0) is the square root device 67 through the multiplier 66 shown in FIG. 4 the product of A (t) and A (t 0) for an unknown amount When the CC of the equation (7-1) is divided by the divider 68 by this detected value, CC / √ (AA · BB) = sin (ωH) (8-1) is obtained.

【0039】(8−1)式で求めた値を逆関数演算器6
9を介し、さらにこれを円周率πとサンプリング周期H
の逆数を乗算器70乗算することによりfが求まる。
The value obtained by the equation (8-1) is used as the inverse function calculator 6
9 and the pi and sampling period H
F is obtained by multiplying the reciprocal of 1 by the multiplier 70.

【0040】 ωH=sin~1{CC/√(AA・BB)} f=1/2πHsin~1{CC/√(AA・BB)} ……(9−1) にて周波数fを検出できる。[0040] can detect the ωH = sin ~ 1 {CC / √ (AA · BB)} f = 1 / 2πHsin ~ 1 {CC / √ (AA · BB)} ...... at (9-1) frequency f.

【0041】第3の周波数検出方式として時刻t及びt
−Hにおける正弦波振号の振幅値A(t),A(t0
を直接求めないで周波数を検出する周波数検出装置の実
施例を図5にを示す。同図において、周波数検出装置8
0は、遅延回路81〜83と、乗算器84〜89と、加
算器90,91と、除算器92と、逆関数演算器93
と、乗算器94とを有している。
As a third frequency detection method, the times t and t
Amplitude values A (t), A (t 0 ) of the sine wave vibration at −H
FIG. 5 shows an embodiment of the frequency detecting device for detecting the frequency without directly obtaining the value. In the figure, the frequency detection device 8
0 is the delay circuits 81 to 83, the multipliers 84 to 89, the adders 90 and 91, the divider 92, and the inverse function calculator 93.
And a multiplier 94.

【0042】まず、図5に示す周波数検出装置で使用す
る信号を再度示す。
First, the signals used in the frequency detecting device shown in FIG. 5 are shown again.

【0043】 VAS=√2・A(t)・sin(ωt+φ) ……(1a) VBS=√2・A(t)・sin(ωt+φ−2/3 π) ……(1b) VCS=√2・A(t)・sin(ωt+φ−4/3 π) ……(1c) VAC=√2×A(t)・cos(ωt+φ) ……(3a) VBC=√2×A(t)・cos(ωt+φ−2/3 π) ……(3b) VBC=√2×A(t)・cos(ωt+φ−4/3 π) ……(3c) VAC0=√2×A(t0)cos(ω(t−H+φ) ……(4a) VBC0=√2×A(t0)cos(ω(t−H+φ−2/3π) ……(4b) VCC0=√2×A(t0)cos(ω(t−H+φ−4/3π) ……(4c) E1=(VAS, VBS, VCS) E2=(VAS0,VBS0,VCS0) E3=(VAC, VBC, VCC) E4=(VAC0,VBC0,VCC0) E1,E4の内積AA,E3,E4の内積BBを乗算器84
〜89、加算器90,91を用いて検出する。
VAS = √2 · A (t) · sin (ωt + φ) …… (1a) VBS = √2 · A (t) · sin (ωt + φ−2 / 3π) …… (1b) VCS = √2・ A (t) ・ sin (ωt + φ−4 / 3π) ・ ・ ・ (1c) VAC = √2 × A (t) ・ cos (ωt + φ) ・ ・ ・ (3a) VBC = √2 × A (t) ・ cos (Ωt + φ−2 / 3π) (3b) VBC = √2 × A (t) · cos (ωt + φ−4 / 3π) (3c) VAC0 = √2 × A (t 0 ) cos (ω) (t−H + φ) (4a) VBC0 = √2 × A (t 0 ) cos (ω (t−H + φ−2 / 3π) (4b) VCC0 = √2 × A (t 0 ) cos (ω) (t-H + φ-4 / 3π) ...... (4c) E 1 = (VAS, VBS, VCS) E 2 = (VAS0, VBS0, VCS0) E 3 = (VAC, VBC, VCC) E 4 = (V C0, VBC0, VCC0) E 1 , the inner product AA of E 4, E 3, the inner product BB of E 4 multiplier 84
˜89 and adders 90 and 91 are used for detection.

【0044】 AA=(E1,E4)=VAS*VAC0+VBS*VBC0+VCS*VCC0 =3A(t)A(t0)sinωH BB=(E3,E4)=VAC*VAC0+VBC*VBC0+VCC*VCC0 =3A(t)A(t0)cosωH これらAA,BBから未知の振幅値A(t)A(t0
を消去するためにAAの値をBBにより除算器92を用
いて除算するとtanωHを検出できる。
[0044] AA = (E 1, E 4 ) = VAS * VAC0 + VBS * VBC0 + VCS * VCC0 = 3A (t) A (t 0) sinωH BB = (E 3, E 4) = VAC * VAC0 + VBC * VBC0 + VCC * VCC0 = 3A (T) A (t 0 ) cosωH Unknown amplitude value A (t) A (t 0 ) from these AA and BB
Tan ωH can be detected by dividing the value of AA by BB using the divider 92 in order to eliminate the value of.

【0045】AA/BB=tan(ωH) tan(ωH)が検出できたので、tanの逆関数ta
n~1を逆関数演算器93により求め、この演算結果に1
/2πHを乗算器94により乗算することにより f=(1/2πH)tan~1(AA/BB) と周波数fを検出できる。
Since AA / BB = tan (ωH) tan (ωH) was detected, the inverse function ta of tan ta
n to 1 is calculated by the inverse function calculator 93, and 1 is added to this calculation result.
By multiplying / 2πH by the multiplier 94, f = (1 / 2πH) tan ~ 1 (AA / BB) and the frequency f can be detected.

【0046】本実施例によれば、第1、第2の周波数検
出方式と比較して少ない計算量で同精度の周波数を求め
ることが出来る。
According to the present embodiment, it is possible to obtain the frequency with the same accuracy with a smaller calculation amount as compared with the first and second frequency detection methods.

【0047】第4の周波数検出方式としてベクトル
0,E4の外積を求め、これから周波数を検出する実施
例を示す。これらの各成分をd1,d2,d3とすると、 d1=VAS0・VBS−VBS0・VBS d2=VBS0・VCS−VCS0・VBS d3=VCS0・VAS−VAS0・VAC を得る。これらに(1)〜(4)式で示した実測値を印
加してd1,d2,d3を求めると、これらはいずれも d1=d2=d3=√3A(t)A(t0)sin(ωH) となる。
As a fourth frequency detection method, an embodiment will be shown in which the outer product of the vectors E 0 and E 4 is obtained and the frequency is detected from this. Letting these components be d 1 , d 2 , and d 3 , d 1 = VAS0 · VBS-VBS0 · VBS d 2 = VBS0 · VCS-VCS0 · VBS d 3 = VCS0 · VAS-VAS0 · VAC is obtained. When the measured values shown in the equations (1) to (4) are applied to these to obtain d 1 , d 2 and d 3 , these are all d 1 = d 2 = d 3 = √3A (t) A (T 0 ) sin (ωH).

【0048】d1,d2,d3和をとり、これを√3で割
ると DD=(d1+d2+d3)/√3=3A(t)・A(t0)sin(ωH) ……(12) を得る。
The sum of d 1 , d 2 and d 3 is taken and divided by √3. DD = (d 1 + d 2 + d 3 ) / √3 = 3 A (t) · A (t 0 ) sin (ωH) …… (12) is obtained.

【0049】先の内積の場合と同様にして(12)式を
(5),(6)式の積の平方にて割ると DD/√(AA・BB)=sin(ωH)となる。
Similarly to the case of the inner product, the equation (12) is divided by the square of the product of the equations (5) and (6) to obtain DD / √ (AA · BB) = sin (ωH).

【0050】従って内積の場合と同様に f=1/(2π・H)sin~1{DD/√(AA・BB)} ……(13) と周波数fを検出することが出来る。Therefore, as in the case of the inner product, the frequency f can be detected as f = 1 / (2π · H) sin ~ 1 {DD / √ (AA · BB)} (13).

【0051】さらに(9)式と(10)式からωH<π
/2となるようにサンプリング周期Hを選択すると、c
osωH≠0であるから(12)式を(7)式で割って DD/CC=sinωH/cosωH=tan(ωH) ……(14) (14)式を得ることが出来、内積及び外積の和の比を
用いて周波数fを f=tan~1(DD/CC) ……(15) と検出することができる。
Further, from equations (9) and (10), ωH <π
If the sampling period H is selected to be / 2, c
Since osωH ≠ 0, the formula (12) is divided by the formula (7) to obtain DD / CC = sin ωH / cos ωH = tan (ωH) (14) (14) Formula can be obtained, and the sum of the inner product and the outer product can be obtained. the ratio f = tan ~ frequency f using 1 (DD / CC) can be detected with ... (15).

【0052】次に単相交流信号の周波数検出を行う周波
数検出装置の実施例を図6に示す。同図において周波数
検出装置100は、乗算器101,106と、フィルタ
回路102,107と、平方根器103と、除算器10
4と、遅延回路105と、逆関数演算器108と、乗算
器109とを有している。
Next, FIG. 6 shows an embodiment of a frequency detecting device for detecting the frequency of a single-phase AC signal. In the figure, the frequency detection device 100 includes a multiplier 101, 106, a filter circuit 102, 107, a square root 103, and a divider 10.
4, a delay circuit 105, an inverse function calculator 108, and a multiplier 109.

【0053】まず正弦波電圧信号VASを掛算器3を用
いて2乗を求める。
First, the sine wave voltage signal VAS is squared using the multiplier 3.

【0054】正弦波電圧信号VASは理想的な正弦波で
あるから VAS=√2A(t)*sin(ωt+φ) とおける。従って VAS・VAS=2A(t)2・sin2(ωt+φ) =A(t)2{1−cos(2ωt+2φ)} を得る。まず未知量である振幅値A(t)乗算器101
によりVASの2乗値を算出し、この2乗値をフィルタ
回路102により2ωtの成分を除去し、平方根器10
3を介してVASの振幅値A(t)を求める。但しこの
ようにして求めた振幅値A(t)はフィルタ回路102
により遅れを生ずるため厳密には実時刻tにおける振幅
値とは少し違った値となるが、通常振幅値A(t)の時
間的変化はsin(ωt+φ)の時間変化に比べて無視
できる量であるため時刻tにおける振幅値A(t)と見
なしても問題ない。
Since the sine wave voltage signal VAS is an ideal sine wave, VAS = √2A (t) * sin (ωt + φ). Therefore, VAS · VAS = 2A (t) 2 · sin 2 (ωt + φ) = A (t) 2 {1-cos (2ωt + 2φ)} is obtained. First, an amplitude value A (t) multiplier 101 that is an unknown quantity
Then, the squared value of VAS is calculated by the filter circuit 102, and the filter circuit 102 removes the component of 2ωt.
Amplitude value A (t) of VAS is obtained through 3. However, the amplitude value A (t) thus obtained is the filter circuit 102.
Strictly speaking, the amplitude value is slightly different from the amplitude value at the actual time t, but the time change of the normal amplitude value A (t) is a negligible amount compared to the time change of sin (ωt + φ). Therefore, it can be regarded as the amplitude value A (t) at the time t without any problem.

【0055】次に原信号VAS=√2×A(t)*si
n(ωt+φ)を平方根器103を介して求めた値で除
算器104により除算すると VAS/A(t)=VAN=√2sin(ωt+φ) なる振幅√2の正弦波電圧信号を得ることができる。
Next, the original signal VAS = √2 × A (t) * si
When n (ωt + φ) is divided by the value obtained through the square root unit 103 by the divider 104, it is possible to obtain a sine wave voltage signal of amplitude √2, which is VAS / A (t) = VAN = √2sin (ωt + φ).

【0056】次にVAN=√2・sin(ωt+φ)
と、遅延回路105を介して求めた値VAN0=√2・
sin(ω(t−H)+φ)との積を乗算器106をによ
り求めると VAN*VAN0={cos(ωH)−cos(2ωt−ωH+2φ)} を得る。このようにして求めたVAN・VAN0の値を
フィルタ回路107を介してcos(2ωt−ωH+2
φ)を除去した値をAAとするとAA=cos(ωH)
となる。従ってcosの逆関数を算出する逆関数演算器
108によりωを算出し、2πHの逆数を乗算器109
により乗算することによりcos(ωH)を検出し、こ
れから周波数fを得ることが出来る。
Next, VAN = √2 · sin (ωt + φ)
And a value obtained through the delay circuit 105 VAN0 = √2 ·
When the product of sin (ω (t−H) + φ) is obtained by the multiplier 106, VAN * VAN0 = {cos (ωH) −cos (2ωt−ωH + 2φ)} is obtained. The value of VAN · VAN0 thus obtained is passed through the filter circuit 107 to cos (2ωt−ωH + 2
If the value obtained by removing φ) is AA, AA = cos (ωH)
Becomes Therefore, ω is calculated by the inverse function calculator 108 that calculates the inverse function of cos, and the inverse of 2πH is multiplied by the multiplier 109.
It is possible to detect cos (ωH) by multiplying by and obtain the frequency f from this.

【0057】f=1/(2πH)cos~1(AA) 単相を介して周波数を検出する場合は図6に示した如く
2段のフィルタリング処理が必要となるが、サンプリン
グ周期1msで約20msの応答を得ることが出来るの
で電力系統安定化制御などの同期機の励磁制御には十分
の応答性と精度を得ることができる。
F = 1 / (2πH) cos ~ 1 (AA) When the frequency is detected through a single phase, a two-stage filtering process is required as shown in FIG. 6, but a sampling period of 1 ms is about 20 ms. Therefore, sufficient response and accuracy can be obtained for excitation control of the synchronous machine such as power system stabilization control.

【0058】以上のように単相正弦波信号より周波数f
を検出する場合は3相電源のVAS,VBS,VCSの
各々について独立に周波数を検出するための各相信号の
異常診断を行うことが可能となる他、正常相の平均値を
とることによりより正確な周波数検出を行うことができ
る。
As described above, the frequency f is calculated from the single-phase sine wave signal.
In the case of detecting, it is possible to perform an abnormality diagnosis of each phase signal for detecting the frequency independently for each of the three-phase power supply VAS, VBS, and VCS. In addition, by taking the average value of the normal phase, Accurate frequency detection can be performed.

【0059】次に図7に周波数検出装置の他の実施例の
構成を示す。同図において周波数検出装置200は、各
相信号の周波数を検出する周波数検出回路201〜20
3と、これら周波数検出回路201〜203の平均値を
算出する平均値演算回路204と、平均値演算回路20
4の出力と各周波数検出回路201〜203の各出力と
の偏差を算出する加算器205〜207と、加算器20
5〜207の偏差の絶対値と所定値(ε)とを比較する
比較回路208〜210と、判別回路211〜213
と、乗算器214〜216、加算器217,218と、
除算器219とを有している。
Next, FIG. 7 shows the configuration of another embodiment of the frequency detecting apparatus. In the figure, a frequency detection device 200 includes frequency detection circuits 201 to 20 for detecting the frequency of each phase signal.
3, an average value calculation circuit 204 for calculating an average value of these frequency detection circuits 201 to 203, and an average value calculation circuit 20.
4 and the outputs of the frequency detection circuits 201 to 203, and adders 205 to 207 for calculating the deviation between the outputs of the frequency detection circuits 201 to 203, and the adder 20.
Comparing circuits 208 to 210 for comparing the absolute value of the deviation of 5 to 207 with a predetermined value (ε), and discriminating circuits 211 to 213.
And multipliers 214 to 216 and adders 217 and 218,
And a divider 219.

【0060】上記構成において各相信号VAS,VB
S,VCSの各々の周波数を周波数検出回路201〜2
03により検出し、これらの値をfa,fb,fcとす
る。これらの値の平均値f0を平均値演算回路204に
より求めこの値と各周波数fa,fb,fcとの偏差Δ
fa,Δfb,Δfcを加算器205〜207により求
め、これらの偏差の絶対値が所定値ε以下(εは通常数
%の値)であるときに正常と見なし、1.0、条件を満
たさない場合は0.0と比較回路208〜210、判別
回路211〜213により出力される。
In the above structure, the phase signals VAS, VB
The frequencies of S and VCS are detected by the frequency detection circuits 201 to 2
03, and let these values be fa, fb, and fc. The average value f 0 of these values is obtained by the average value calculation circuit 204, and the deviation Δ between this value and each frequency fa, fb, fc
fa, Δfb, Δfc are obtained by the adders 205 to 207, and when the absolute value of these deviations is equal to or less than a predetermined value ε (ε is usually a value of several%), it is regarded as normal and 1.0, the condition is not satisfied. In the case of 0.0, it is output by the comparison circuits 208 to 210 and the discrimination circuits 211 to 213.

【0061】 したがって f=(fa*KA+fb*KB+fc*KC)/(KA+KB+KC) なる周波数fを乗算器214〜216、加算器217,
218、除算器219を用いて検出することができる。
このようにすることにより常に正常な検出相の平均値を
求めることが出来る。
[0061] Therefore, the frequency f of f = (fa * KA + fb * KB + fc * KC) / (KA + KB + KC) is multiplied by the multipliers 214 to 216, the adder 217,
218 and the divider 219 can be used for detection.
By doing so, the average value of the normal detection phases can always be obtained.

【0062】以上の実施例を用いれば、3相正弦波信号
入力及び単相正弦波入力信号とも高精度・高速に周波数
fの検出を行うことができる。しかしながら、周波数変
化の非常に小さな値を検出するには上述した各方式とも
周波数の絶対値を検出する方法であるため向いていな
い。
Using the above embodiment, the frequency f can be detected with high accuracy and high speed for both the three-phase sine wave signal input and the single-phase sine wave input signal. However, in order to detect an extremely small value of frequency change, each of the above-mentioned methods is a method of detecting an absolute value of frequency, and is not suitable.

【0063】そこで、これを解決する方法として、正弦
波信号入力と基準正弦波信号からこれらの周波数偏差を
含む正弦波信号を検出し、これに以上述べた周波数検出
方式を適用すれば良い。
Therefore, as a method for solving this, it is only necessary to detect a sine wave signal including these frequency deviations from the sine wave signal input and the reference sine wave signal, and apply the frequency detection method described above.

【0064】次に図8に正弦波信号入力と基準正弦波信
号の周波数偏差に比例する正弦波信号を検出する正弦波
信号検出回路の一実施例の構成を示す。同図において正
弦波信号検出回路300は、乗算器301と、フィルタ
回路302とを有している。
Next, FIG. 8 shows the configuration of an embodiment of a sine wave signal detection circuit for detecting a sine wave signal proportional to the frequency deviation between the sine wave signal input and the reference sine wave signal. In the figure, the sine wave signal detection circuit 300 has a multiplier 301 and a filter circuit 302.

【0065】入力信号VAS=√2A(t)(sin
ωt+φ)と新たに設けた基準周波数発生回路303か
らの信号VBASEとを乗算器301により積をとると VAS・VBASE=A(t)・{cos((ω−ω0)t+φ−φ0)− cos((ω+ω0)t+φ+φ0)} なる周波数ω−ω0及びω+ω0周波数成分を含む正弦波
信号が得られる。ここでω−ω0<<ω+ω0となるよう
に基準正弦波信号の周波数ω0を選択されているのでω
+ω0の項は一次遅れ要素又は積分フィルタとしてのフ
ィルタ回路302により簡単に除去することが出来る。
代表的なフィルタとしては(1+Z~1+Z~2+Z~3+Z
~4+Z~5)/6なる積分フィルタを用いれば良い。ここ
でZ~iは時刻t−i*Hにおける値を示す。(i=1
〜5)単相の場合は上記の如くフィルタが必要となるが
3相平衡正弦波信号の場合は、このフィルタは不要とな
る。
Input signal VAS = √2A (t) (sin
ωt + φ) and the signal VBASE from the newly provided reference frequency generating circuit 303 are multiplied by the multiplier 301 to obtain VAS · VBASE = A (t) · (cos ((ω−ω 0 ) t + φ−φ 0 ) − A sinusoidal signal including the frequency components ω−ω 0 and ω + ω 0 is obtained as cos ((ω + ω 0 ) t + φ + φ 0 )}. Since the frequency ω 0 of the reference sine wave signal is selected so that ω−ω 0 << ω + ω 0 ,
The term + ω 0 can be easily removed by the filter circuit 302 as a first-order lag element or an integral filter.
A typical filter is (1 + Z ~ 1 + Z ~ 2 + Z ~ 3 + Z
~ 4 + Z ~ 5 ) / 6 integral filter may be used. Here, Z to i represent values at time t-i * H. (I = 1
5) In the case of a single phase, the filter is necessary as described above, but in the case of a three-phase balanced sine wave signal, this filter is unnecessary.

【0066】即ち各相の基準信号として Vsin0=√2・sin(ω0t+φ0) Vcos0=√2・cos(ω0t+φ ) を設ける。これらの値とVAS,VBS,VCS,VA
C,VBC,VCCとの積差を求めることにより角周波
数ω−ω0、振幅A(t)を有する正弦波信号を得るこ
とが出来る。
That is, Vsin0 = √2 · sin (ω 0 t + φ 0 ) Vcos0 = √2 · cos (ω 0 t + φ) is provided as a reference signal for each phase. These values and VAS, VBS, VCS, VA
A sine wave signal having an angular frequency ω-ω 0 and an amplitude A (t) can be obtained by obtaining the product difference between C, VBC, and VCC.

【0067】例えば DsinA=VAS・Vcos0−VAC・Vsin0 =2A(t){sin(ωt+φ)・cos(ω0t+φ0)−cos(ωt+φ)・ sin(ω0t+φ0)} =2A(t)sin{(ω−ω0)t+φ−φ0} 同様に DcosA=VAC・Vcos0+VAS・Vsin0 =2A(t)cos{(ω−ω0)t+φ−φ0} として(ω−ω0)成分のみを含む正弦波入力信号に対
して90°位相の進んだ3相の信号を特別なフィルタを
必要とせず、かつ時間遅れなく瞬時に求めることが出来
る。
[0067] For example DsinA = VAS · Vcos0-VAC · Vsin0 = 2A (t) {sin (ωt + φ) · cos (ω 0 t + φ 0) -cos (ωt + φ) · sin (ω 0 t + φ 0)} = 2A (t) sin ((ω−ω 0 ) t + φ−φ 0 } Similarly, as DcosA = VAC · Vcos0 + VAS · Vsin0 = 2A (t) cos {(ω−ω 0 ) t + φ−φ 0 }, only the (ω−ω 0 ) component is obtained. It is possible to instantly obtain a three-phase signal with a 90 ° phase advance with respect to the included sine wave input signal without requiring a special filter and without a time delay.

【0068】これらの信号を先に述べた周波数検出回路
(図7)の入力信号として用いれば角周波数偏差値ω−
ω0、即ち周波数偏差値Δf=f−f0の値を非常に精度
よく求めることが出来る。
If these signals are used as the input signals of the frequency detection circuit (FIG. 7) described above, the angular frequency deviation value ω-
ω 0 , that is, the value of the frequency deviation value Δf = f−f 0 can be obtained very accurately.

【0069】図9は本発明に係る周波数検出装置が適用
される同期機励磁装置の全体構成を示す。自動電圧調整
装置は、発電機400の端子電圧をPT404を介して
検出し、この検出値と設定器405により設定された値
とを比較し、偏差があればこれを増幅器406及びゲー
トパルス発生装置(Gate Pulse Genera
tor)407を介してサイリスタ412のゲートを制
御することで発電機400の界磁414における界磁電
流Ifを変化させて発電機400の端子電圧を一定に制
御する。
FIG. 9 shows the overall structure of a synchronous machine excitation device to which the frequency detection device according to the present invention is applied. The automatic voltage regulator detects the terminal voltage of the generator 400 via the PT 404, compares the detected value with the value set by the setter 405, and if there is a deviation, it is detected by the amplifier 406 and the gate pulse generator. (Gate Pulse Genera
by controlling the gate of the thyristor 412 via the (tor) 407 to change the field current If in the field 414 of the generator 400 to control the terminal voltage of the generator 400 constant.

【0070】一方、電力系統の安定率向上策として電力
系統安定化装置(PSS:PowerSystem Stabilize
r)409及び軸ねじれ抑制装置410を付加する必要
があるが、これの入力信号として高速・高精度の周波数
検出が必要となる。本発明はこの系統安定化に必須の信
号である周波数信号を波形歪の影響を受けることなく高
速に検出する周波数検出装置408を提供するものであ
る。
On the other hand, as a measure for improving the power system stability rate, a power system stabilizer (PSS: Power System Stem Stabilize) is used.
r) It is necessary to add 409 and the shaft twist suppression device 410, but high-speed and high-accuracy frequency detection is required as an input signal for this. The present invention provides a frequency detecting device 408 which detects a frequency signal, which is an essential signal for system stabilization, at high speed without being affected by waveform distortion.

【0071】以上に説明したように本実施例では同期機
の端子電圧及び端子電流から鎖交磁束数に比例する電圧
E″を検出することにより、同期機の電圧・電流に波形
歪があっても常に基本正弦波を有する電圧信号を検出可
能とした。
As described above, in this embodiment, by detecting the voltage E ″ proportional to the number of flux linkages from the terminal voltage and terminal current of the synchronous machine, there is waveform distortion in the voltage and current of the synchronous machine. Has always made it possible to detect a voltage signal having a basic sine wave.

【0072】さらにこの検出信号を用いた周波数検出
を、時刻t及び−サンプリング前のt−Hの値の簡単な
積和・積差演算を用いた内積及び外積の組合せにより制
御周期を同じあらいサンプリング同期Hにても高速かつ
高精度の周波数検出を可能とした。
Further, the frequency detection using this detection signal is carried out at the same rough control sampling with the same control cycle by the combination of the inner product and the outer product using the simple product sum / product difference operation of the time t and the value of tH before the sampling. High-speed and highly-accurate frequency detection is possible even in the synchronization H.

【0073】また周波数の微小変化を検出する方法とし
て基準周波数発生回路を設け、原信号と基準信号の積差
をとることにより差周波数成分のみなる正弦波信号を検
出することが出来、極めて微少の周波数変動を高速・高
精度に行えることを可能とした。
Further, as a method for detecting a minute change in frequency, a sine wave signal having only a difference frequency component can be detected by providing a reference frequency generating circuit and taking a product difference between the original signal and the reference signal. This makes it possible to perform frequency fluctuations at high speed and with high accuracy.

【0074】[0074]

【発明の効果】以上に説明したように、本発明によれば
同期機の端子電圧及び端子電流から鎖交磁束数に比例す
る直軸次過渡リアクタンスxd″の背後電圧E″を周波
数検出の信号源として用いるようにしたので同期機の運
転状態及び外部状態に関係なく粗いサンプリング周期で
も高速・高精度に周波数検出を行うことができる。
As described above, according to the present invention, the back voltage E "of the direct axial transient reactance xd" proportional to the number of flux linkages is calculated from the terminal voltage and terminal current of the synchronous machine as a signal for frequency detection. Since it is used as a power source, frequency detection can be performed at high speed and with high accuracy even in a rough sampling cycle regardless of the operating state and external state of the synchronous machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】同期機の直軸次過渡リアクタンスxd″の背後
電圧を検出する背後電圧検出装置の構成を示すブロック
図である。
FIG. 1 is a block diagram showing a configuration of a backside voltage detection device that detects a backside voltage of a direct-axis transient reactance xd ″ of a synchronous machine.

【図2】本発明に係る周波数検出装置の一実施例の構成
を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of an embodiment of a frequency detection device according to the present invention.

【図3】周波数検出に使用する90°移相回路の構成を
示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a 90 ° phase shift circuit used for frequency detection.

【図4】本発明に係る周波数検出装置の他の実施例の構
成を示すブロック図である。
FIG. 4 is a block diagram showing the configuration of another embodiment of the frequency detection device according to the present invention.

【図5】本発明に係る周波数検出装置の他の実施例の構
成を示す図である。
FIG. 5 is a diagram showing the configuration of another embodiment of the frequency detection device according to the present invention.

【図6】本発明に係る周波数検出装置の他の実施例の構
成を示すブロック図である。
FIG. 6 is a block diagram showing the configuration of another embodiment of the frequency detection device according to the present invention.

【図7】本発明に係る周波数検出回路の他の実施例の構
成を示すブロック図である。
FIG. 7 is a block diagram showing the configuration of another embodiment of the frequency detection circuit according to the present invention.

【図8】周波数偏差ω−ω0を含む正弦波信号を検出す
る正弦波信号検出回路の構成を示すブロック図である。
FIG. 8 is a block diagram showing a configuration of a sine wave signal detection circuit that detects a sine wave signal including a frequency deviation ω−ω 0 .

【図9】本発明に係る周波数検出装置が適用される同期
機励磁装置の構成を示すブロック図である。
FIG. 9 is a block diagram showing a configuration of a synchronous machine excitation device to which the frequency detection device according to the present invention is applied.

【符号の説明】[Explanation of symbols]

1 背後電圧検出装置 10 周波数検出装置 40 90°移相回路 50 周波数検出装置 80 周波数検出装置 100 周波数検出装置 200 周波数検出装置 201 周波数検出回路 202 周波数検出回路 203 周波数検出回路 204 平均値演算回路 205 加算器 206 加算器 207 加算器 208 比較回路 209 比較回路 210 比較回路 211 判別回路 212 判別回路 213 判別回路 214 乗算器 215 乗算器 216 乗算器 217 加算器 218 加算器 219 除算器 300 正弦波検出回路 301 乗算器 302 フィルタ回路 303 基準周波数発生回路 1 Back Voltage Detection Device 10 Frequency Detection Device 40 90 ° Phase Shift Circuit 50 Frequency Detection Device 80 Frequency Detection Device 100 Frequency Detection Device 200 Frequency Detection Device 201 Frequency Detection Circuit 202 Frequency Detection Circuit 203 Frequency Detection Circuit 204 Average Value Calculation Circuit 205 Addition Unit 206 Adder 207 Adder 208 Comparison circuit 209 Comparison circuit 210 Comparison circuit 211 Discrimination circuit 212 Discrimination circuit 213 Discrimination circuit 214 Multiplier 215 Multiplier 216 Multiplier 217 Adder 218 Adder 219 Divider 300 Sine wave detection circuit 301 Multiplication Unit 302 Filter circuit 303 Reference frequency generation circuit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 同期機の直軸次過渡リアクタンスxd″
の背後電圧E″を三相の各相毎に検出する背後電圧検出
手段と、 該背後電圧検出手段により検出された背後電圧に基づい
て同期機励磁装置の周波数を検出する周波数検出手段と
を有することを特徴とする周波数検出装置。
1. A direct-axis transient reactance xd ″ of a synchronous machine.
Has a backside voltage detecting means for detecting the backside voltage E ″ of each of the three phases and a frequency detecting means for detecting the frequency of the synchronous machine excitation device based on the backside voltage detected by the backside voltage detecting means. A frequency detection device characterized by the above.
【請求項2】 前記周波数検出手段は、前記背後電圧検
出手段の三相の各相の出力を1サンプリング周期(H)だ
け、遅延させる信号遅延手段と、 前記背後電圧検出手段の各相の検出出力と前記信号遅延
手段の出力との内積または、内積及び外積を求め、これ
らの演算結果に基づいて周波数を算出する演算手段とを
有することを特徴とする請求項1に記載の周波数検出装
置。
2. The frequency detecting means, a signal delay means for delaying the output of each of the three phases of the back voltage detecting means by one sampling period (H), and a detection of each phase of the back voltage detecting means. The frequency detecting apparatus according to claim 1, further comprising: an arithmetic means for obtaining an inner product or an inner product and an outer product of the output and the output of the signal delay means, and calculating a frequency based on a result of the arithmetic operation.
【請求項3】 前記周波数検出手段は、前記背後電圧検
出手段の三相の各相の出力を1サンプリング周期、遅延
させる信号遅延手段と、 前記背後電圧検出手段の各相の検出出力と前記信号遅延
手段の出力との内積または、内積及び外積を求め、これ
らの演算結果に基づいてcosωH,sinωH,tanωHに比例
する量を求めると共に、これらの各三角関数値から周波
数を算出する演算手段とを有することを特徴とする請求
項1に記載の周波数検出装置。
3. The frequency detecting means, a signal delay means for delaying the output of each of the three phases of the back voltage detecting means by one sampling cycle, a detection output of each phase of the back voltage detecting means and the signal. An inner product with the output of the delay means, or an inner product and an outer product are obtained, and an amount proportional to cos ωH, sin ωH, tan ωH is obtained based on these calculation results, and calculation means for calculating the frequency from each trigonometric function value The frequency detection device according to claim 1, further comprising:
【請求項4】 前記周波数検出手段は、前記背後電圧検
出手段の三相の各相の出力の位相をπ/2だけシフトさ
せるπ/2移相手段と、 該π/2移相手段の各相の出力を1サンプリング周期、
遅延させる信号遅延手段と、 前記背後電圧検出手段の各相の出力、π/2移相手段の
出力及び信号遅延手段の出力に基づいて周波数を算出す
る演算手段とを有することを特徴とする請求項1に記載
の周波数検出装置。
4. The frequency detection means shifts the phase of the output of each of the three phases of the back voltage detection means by π / 2, and each of the π / 2 phase shift means. The phase output is 1 sampling cycle,
It has a signal delaying means for delaying, and a computing means for calculating a frequency based on the output of each phase of the back voltage detecting means, the output of the π / 2 phase shifting means and the output of the signal delaying means. Item 1. The frequency detection device according to item 1.
【請求項5】 基準正弦波信号を生成する基準周波数発
生手段と、 前記背後電圧検出手段及び基準周波数発生手段の出力を
取り込み、背後電圧検出手段より得られる背後電圧と前
記基準正弦波信号の周波数偏差を有する正弦波信号を出
力する正弦波信号検出手段とを有することを特徴とする
請求項1乃至4のいずれかに記載の周波数検出装置。
5. A reference frequency generating means for generating a reference sine wave signal, a back voltage obtained by the back voltage detecting means and a reference frequency generating means, and a frequency of the reference sine wave signal obtained by the back voltage detecting means. 5. A frequency detecting device according to claim 1, further comprising a sine wave signal detecting means for outputting a sine wave signal having a deviation.
【請求項6】 原信号である単相正弦波信号の振幅値を
求める振幅値算出手段と、 原信号を前記振幅値算出手段の出力で除算して振幅値が
一定の正弦波信号を求める除算器と、 該除算器の出力信号に基づいて周波数を算出する演算手
段とを有することを特徴とする周波数検出装置。
6. An amplitude value calculating means for obtaining an amplitude value of a single-phase sine wave signal which is an original signal, and a division for obtaining the sine wave signal having a constant amplitude value by dividing the original signal by the output of the amplitude value calculating means. And a calculating means for calculating a frequency based on an output signal of the divider.
【請求項7】 同期機の直軸次過渡リアクタンスxd″
の背後電圧E″を三相の各相毎に検出する背後電圧検出
手段と、 該背後電圧検出手段により検出された各相の背後電圧を
それぞれ取り込み、周波数を検出する各相毎に設けられ
た請求項6に記載の周波数検出手段と、 これら各相毎に設けられた周波数検出手段により検出さ
れた周波数の平均値を算出する平均値演算手段と、 該平均値演算手段の演算出力と前記各周波数検出手段と
の偏差の絶対値を求め、これらの各偏差値が所定値以内
にあるか否かにより異常判定を行ない、正常相のみによ
り検出された周波数の平均値を検出周波数とする演算手
段とを有することを特徴とする周波数検出装置。
7. A direct-axis transient transient reactance xd ″ of a synchronous machine.
Is provided for each phase for detecting the frequency by detecting the back voltage E ″ of each of the three phases and the back voltage of each phase detected by the back voltage detecting means. The frequency detecting means according to claim 6, an average value calculating means for calculating an average value of the frequencies detected by the frequency detecting means provided for each of these phases, an arithmetic output of the average value calculating means and each of the above. An absolute value of the deviation from the frequency detection means is obtained, and an abnormality judgment is made depending on whether each of these deviation values is within a predetermined value or not, and an arithmetic means that uses the average value of the frequencies detected only in the normal phase as the detection frequency. And a frequency detecting device.
JP5030213A 1993-02-19 1993-02-19 Frequency detector Expired - Fee Related JP2946152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5030213A JP2946152B2 (en) 1993-02-19 1993-02-19 Frequency detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5030213A JP2946152B2 (en) 1993-02-19 1993-02-19 Frequency detector

Publications (2)

Publication Number Publication Date
JPH06245600A true JPH06245600A (en) 1994-09-02
JP2946152B2 JP2946152B2 (en) 1999-09-06

Family

ID=12297452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5030213A Expired - Fee Related JP2946152B2 (en) 1993-02-19 1993-02-19 Frequency detector

Country Status (1)

Country Link
JP (1) JP2946152B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177999A (en) * 2008-01-28 2009-08-06 Aisin Aw Co Ltd Motor controller and drive device
JP5971425B1 (en) * 2015-03-16 2016-08-17 純教 西江 AC signal analyzing apparatus, AC signal analyzing method and program
CN112986744A (en) * 2021-04-26 2021-06-18 湖南大学 Frequency fault tolerance detection method and system under transient fault condition of power system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177999A (en) * 2008-01-28 2009-08-06 Aisin Aw Co Ltd Motor controller and drive device
WO2009096065A1 (en) * 2008-01-28 2009-08-06 Aisin Aw Co., Ltd. Electric motor control apparatus and driving apparatus
US7960927B2 (en) 2008-01-28 2011-06-14 Aisin Aw Co., Ltd. Electric motor control device and drive unit
JP5971425B1 (en) * 2015-03-16 2016-08-17 純教 西江 AC signal analyzing apparatus, AC signal analyzing method and program
WO2016147426A1 (en) * 2015-03-16 2016-09-22 純教 西江 Alternating current signal analyzing device, alternating current signal analyzing method, and recording medium
CN112986744A (en) * 2021-04-26 2021-06-18 湖南大学 Frequency fault tolerance detection method and system under transient fault condition of power system
CN112986744B (en) * 2021-04-26 2021-08-06 湖南大学 Frequency fault tolerance detection method and system under transient fault condition of power system

Also Published As

Publication number Publication date
JP2946152B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
Jiang et al. High dynamic speed sensorless ac drive with on-line model parameter tuning for steady-state accuracy
Hart et al. A new frequency tracking and phasor estimation algorithm for generator protection
JP3338159B2 (en) Amplitude / phase detector
KR920004734B1 (en) Induction machine controller
US4441065A (en) Method and apparatus for determining the rotor resistance of an asynchronous machine
EP0515469B1 (en) Method and apparatus for controlling an ac induction motor by indirect measurement of the air-gap voltage
EP1998435A2 (en) Method and system for estimating rotor angular position and rotor angular velocity at low speeds or standstill
US4593240A (en) Method and apparatus for determining the flux vector of a rotating-field machine from the stator current and the stator voltage, and the application thereof
CN107210690B (en) The angular error means for correcting of position detector and angular error bearing calibration
CN109738780B (en) Multi-phase angle connection brushless exciter rotating diode one-tube open circuit detection method and system
NO864053L (en) CIRCUIT FOR CREATING A MULTIPLE PHASE SINUS SHAPED OUTPUT.
US4884023A (en) Method and apparatus for determining the rotor resistance of a rotating-field machine
US6479971B1 (en) Method for regulating a three-phase machine without a mechanical rotary transducer
CA2344645A1 (en) Method and device for determining the torque of an induction machine
US4885519A (en) Method and apparatus for determining the flux vector of a rotating-field machine
JP2946152B2 (en) Frequency detector
JPS6036716B2 (en) Magnetic flux vector calculator for induction motor
US4613807A (en) Low-noise system for measuring frequency in multiphase power transmission systems
US4322672A (en) Electric motor control apparatus
JP2003270277A (en) Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference
JP3053002B2 (en) Frequency measurement method and device
JP3528108B2 (en) Adaptive slip frequency type vector control method and apparatus for induction motor
JPS58133167A (en) Device for obtaining common frequency of two electric ac amounts
JPH0651004A (en) Measuring device for constant of circuit element
JP3030481B2 (en) Frequency detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees