JPH06245486A - Back-type dc-dc converter circuit - Google Patents

Back-type dc-dc converter circuit

Info

Publication number
JPH06245486A
JPH06245486A JP5304593A JP5304593A JPH06245486A JP H06245486 A JPH06245486 A JP H06245486A JP 5304593 A JP5304593 A JP 5304593A JP 5304593 A JP5304593 A JP 5304593A JP H06245486 A JPH06245486 A JP H06245486A
Authority
JP
Japan
Prior art keywords
current
voltage
switch element
capacitor
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5304593A
Other languages
Japanese (ja)
Other versions
JP2997608B2 (en
Inventor
Yoshiaki Matsuda
善秋 松田
Jo Kumagai
丈 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP5053045A priority Critical patent/JP2997608B2/en
Publication of JPH06245486A publication Critical patent/JPH06245486A/en
Application granted granted Critical
Publication of JP2997608B2 publication Critical patent/JP2997608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To make it possible to prevent the switching loss of a switch element by using the resonance action of a capacitor and a choke coil, which are connected to a flywheel diode in parallel. CONSTITUTION:When a main switch (MS) Q1 is turned ON, a current Q11d1 flowing through the MSQ1 is commutated into a capacitor (CD) C1. When the voltage of the CDC1 reaches a DC power supply Vi, the energy accumulated in a choke coil (CC) L1 is made to pass through a flywheel diode (FD) D2 and regenerated. When an auxiliary switch element (AS) Q2 is turned ON, a current IF2 flowing through the FDD2 is shunt into the ASQ2 and reaches a load current IO. When a current Q2Id2 reaches the load current IO, the voltage of the DDC 1 is discharged. When a voltage Q1VDS becomes zero, a current Q2Id2 flows through the diode D1 by the action of the CCL2. Since the current Q2Id2 reaches the load current IO, shunting is started into the MSQI.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は、バック型DC−DCコ
ンバ−タ回路のスイッチング損失やサ−ジ電圧及びノイ
ズ低減に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to reduction of switching loss, surge voltage and noise of a buck type DC-DC converter circuit.

【0002】[0002]

【従来の技術】図1は従来のバック型DC−DCコンバ
−タ回路、図2は図1のバック型DC−DCコンバ−タ
回路の代表的動作波形を示す。図1においてQ1は主ス
イッチ素子でFETを例示している。D1及びCossは、
前記主スイッチ素子Q1に寄生する第1のダイオ−ド及
びコンデンサで、Viは直流電源、L1はチョ−クコイ
ル、D2はフライホイルダイオ−ド、C2は平滑用の第2
のコンデンサ、RLは負荷、V0は出力電圧、すなわち
前記 (2) 第2のコンデンサC2の両端の電圧、I0は出力電流を表
している。
2. Description of the Prior Art FIG. 1 shows a typical operation waveform of a conventional buck type DC-DC converter circuit, and FIG. 2 shows a typical operation waveform of the buck type DC-DC converter circuit. In FIG. 1, Q1 is a main switching element, which is an FET. D1 and Coss are
A first diode and a capacitor parasitic on the main switching element Q1, Vi is a DC power supply, L1 is a choke coil, D2 is a flywheel diode, and C2 is a second smoothing coil.
, RL is a load, V0 is an output voltage, that is, (2) the voltage across the second capacitor C2, and I0 is an output current.

【0003】図2の動作波形において(1)は前記主ス
イッチ素子Q1の駆動信号Q1VGS、(2)は前記チョ
−クコイルL1に流れる電流IL1及び出力電流平均値I
0、(3)、(4)は各々前記主スイッチ素子Q1のドレ
イン電流IDS、ドレイン・ソ−ス間電圧VDS、及びD1
の逆電圧VR、(5)は前記主スイッチ素子Q1のドレ
イン電流IDSとドレイン・ソ−ス間電圧VDS(3)、
(4)が重なり合う期間の損失PLOSSである。TON、T
OFFは前記主スイッチ素子Q1の導通、しゃ断時間を表し
Tは周期を表している。従来この種の回路では、前記出
力電圧V0は一般に次式で表す事が出来る。尚(4)の
点線波形は、D2の逆電圧D2VRである。
In the operation waveform of FIG. 2, (1) is a drive signal Q1VGS of the main switching element Q1, and (2) is a current IL1 flowing through the choke coil L1 and an output current average value I.
0, (3) and (4) are the drain current IDS of the main switching element Q1, the drain-source voltage VDS, and D1 respectively.
The reverse voltage VR of (5) is the drain current IDS of the main switching element Q1 and the drain-source voltage VDS (3),
(4) is the loss PLOSS during the overlapping period. TON, T
OFF represents the conduction / interruption time of the main switch element Q1, and T represents the cycle. In the conventional circuit of this type, the output voltage V0 can be generally expressed by the following equation. The dotted line waveform of (4) is the reverse voltage D2VR of D2.

【0004】V0=TON/T・ViV0 = TON / T · Vi

【0005】従って出力電圧V0を安定化させるために
は周期Tが一定であるPWM(パルス巾変調)制御方式
の場合、前記主スイッチ素子Q1の導通時間TONをコン
トロ−ルして行っている。このため主スイッチ素子Q1
の導通、しゃ断時に図2の(5)で示した様なスイッチ
ング損失が発生する。特に高周波で大容量コンバ−タを
動作させようとした時の損失は大きなものになり効率の
低下をまねく。
Therefore, in order to stabilize the output voltage V0, in the case of the PWM (pulse width modulation) control method in which the period T is constant, the conduction time TON of the main switch element Q1 is controlled. Therefore, the main switch element Q1
When conducting and shutting off, the switching loss as shown by (5) in FIG. 2 occurs. In particular, when trying to operate a large capacity converter at high frequency, the loss becomes large and the efficiency is lowered.

【0006】又図2の(3)、(4)の様に主スイッチ
素子Q1の電流IDS、電圧Q1VDS、フライホイ−ルダイオ
−ドD2の電圧D1VRが配線等の寄生インダクタンスに
依り、主スイッチ素子Q1のOFFの時及びフライホイ
−ルダイオ−ドD2のリカバリ−に依り、大きなサ−ジ
電圧やノイズが発生する。このため対策として、図3の
様に主回路部を並列に接続し電流の分散化を計って主ス
イッチ素子当りに流れる電流を減らして、損失及びサ−
ジ電圧の低減化を計ったりした。しかし小型化、コスト
の面で抜本的解決はならない問題がある。 (3)
Further, as shown in (3) and (4) of FIG. 2, the current IDS of the main switching element Q1, the voltage Q1VDS, and the voltage D1VR of the flywheel diode D2 depend on the parasitic inductance of the wiring, etc. A large surge voltage and noise are generated depending on the OFF state and the recovery of the flywheel diode D2. For this reason, as a countermeasure, as shown in FIG. 3, main circuits are connected in parallel to disperse the current to reduce the current flowing per main switching element to reduce loss and increase
I also tried to reduce the voltage. However, there is a problem in that a drastic solution cannot be achieved in terms of downsizing and cost. (3)

【0007】大容量コンバ−タにおける従来回路での問
題点を解決し、効率化、サ−ジ電圧の低減、低ノイズ化
を実現させるために本発明は成された。又従来の準共振
型コンバ−タにみられる主スイッチ素子の電圧、電流ス
トレスを軽減出来、更に制御上の難しさ等も解決出来、
コストアップ等の要因も少ない。
The present invention has been made in order to solve the problems in the conventional circuit in the large capacity converter, and to realize the efficiency, the reduction of the surge voltage and the noise reduction. In addition, the voltage and current stress of the main switch element found in the conventional quasi-resonant converter can be reduced, and the difficulty in control can be solved.
There are few factors such as cost increase.

【0008】[0008]

【実施例】図4は本発明の実施例であるバック型DC−
DCコンバ−タの基本回路図、図5は図4のバック型D
C−DCコンバ−タ回路の代表的な動作波形を示す。図
4に示す如く直流電源Viの+側に主スイッチ素子Q1
例えばFETのドレインを接続し主スイッチ素子Q1の
ドレインソ−ス間に並列に第1のコンデンサC1と逆並
列に第1のダイオ−ドD1を接続し前記主スイッチ素子
Q1のソ−ス側から直列にチョ−クコイルL1の一端とフ
ライホイ−ルダイオ−ドD2のカソ−ドが接続される。
前記フライホイ−ルダイオ−ドD2のアノ−ド側は前記
直流電源Viの−側に接続される。前記チョ−クコイル
のもう一方の側は平滑用の第2のコンデンサC2と負荷
抵抗RLが並列に接続され、前記平滑コンデンサC2と負
荷抵抗RLのもう一方の側は、並列に直流電源Viの−
側に接続される。
FIG. 4 is a back type DC-type which is an embodiment of the present invention.
The basic circuit diagram of the DC converter, FIG. 5 is the back type D of FIG.
A typical operation waveform of the C-DC converter circuit is shown. As shown in FIG. 4, the main switch element Q1 is provided on the + side of the DC power source Vi.
For example, the drain of the FET is connected, the first capacitor C1 is connected in parallel between the drain sources of the main switching device Q1, and the first diode D1 is connected in antiparallel to the source side of the main switching device Q1. One end of the choke coil L1 is connected to the cathode of the flywheel diode D2.
The anode side of the flywheel diode D2 is connected to the-side of the DC power source Vi. A second smoothing capacitor C2 and a load resistor RL are connected in parallel on the other side of the choke coil, and the other side of the smoothing capacitor C2 and the load resistor RL are connected in parallel to the DC power supply Vi.
Connected to the side.

【0009】又前記主スイッチ素子Q1のドレイン・ソ
−ス間には、第2のチョ−クコイルL2とトランスT1、
補助スイッチ素子Q2から成る直列回路が、並列に接続
される。更に前記トランスT1の2次側には、図4に示
した如くトランスT1の巻方向に順じて第3のダイオ−
ドD3のアノ−ドが接続され、前記トランスT1のもう一
方の側は直流電源Viの(−)側接続される。
A second choke coil L2 and a transformer T1 are provided between the drain and source of the main switch element Q1.
A series circuit composed of the auxiliary switch element Q2 is connected in parallel. Further, the secondary side of the transformer T1 is provided with a third diode in the winding direction of the transformer T1 as shown in FIG.
The node D3 is connected, and the other side of the transformer T1 is connected to the (-) side of the DC power supply Vi.

【0010】又、前記第3のダイオ−ドD3のカソ−ド
は直流電源Viの+側に接続される。更に前記主スイッ
チ素子Q1と前記補助スイッチQ2にはON、OFFさせ
るための駆動回路が接続されているものとする。尚前記
トランスT1は1 (4) 次巻数Np、2次巻数Nsで構成され巻数比n(=NP
/NS)になっているものとする。
The cathode of the third diode D3 is connected to the + side of the DC power supply Vi. Further, it is assumed that a drive circuit for turning on and off is connected to the main switch element Q1 and the auxiliary switch Q2. The transformer T1 is composed of 1 (4) secondary winding number Np and secondary winding number Ns, and the winding ratio n (= NP
/ NS).

【0011】主スイッチ素子Q1と補助スイッチQ2のゲ
−トには図5(1)及び(2)のQ1VGS、Q2VGSの信
号が入力される。図5は本発明の実施動作回路図4の各
部の動作波形を示しており(1)は主スイッチ素子Q1
のゲ−ト入力電圧Q1VGS、(2)は補助スイッチ素子
Q2のゲ−ト入力電圧Q2VGS、(3)は主スイッチ素子
Q1のドレイン電流Q1Id1、ドレイン電圧Q1VDS、及
びフライホイ−ルダイオ−ドD2の電圧D2VR、(4)
は、第1コンデンサC1の充放電々流IC1と、第1のダ
イオ−ドD1の電流IF1、(5)は前記フライホイ−ル
ダイオ−ドD2の電流IF2と補助スイッチ素子Q2のドレ
イン電流Id2、I0は負荷電流を表している。(6)は
第2のチョ−クコイルL2に発生する電圧VL、期間t1
〜t7は本発明を説明する上で重要な代表的な1サイク
ルの時間を表している。
The signals of Q1VGS and Q2VGS shown in FIGS. 5A and 5B are input to the gates of the main switch element Q1 and the auxiliary switch Q2. FIG. 5 shows an operation waveform of each part of the operation circuit of the present invention shown in FIG. 4. (1) shows the main switching element Q1.
Gate input voltage Q1VGS, (2) is the gate input voltage Q2VGS of the auxiliary switching device Q2, (3) is the drain current Q1Id1 of the main switching device Q1, the drain voltage Q1VDS, and the flywheel diode D2 voltage. D2VR, (4)
Is the charge / discharge current IC1 of the first capacitor C1 and the current IF1 of the first diode D1, and (5) is the current IF2 of the flywheel diode D2 and the drain currents Id2, I0 of the auxiliary switch element Q2. Represents the load current. (6) is the voltage VL generated in the second choke coil L2, period t1
.About.t7 represents a typical one cycle time which is important for explaining the present invention.

【0012】以下に本発明のバック型DC−DCコンバ
−タ回路の詳細動作を図4、図5を用いて説明する。説
明にあたっては簡単にするため負荷電流I0は定電流源
として扱い主スイッチ素子Q1、補助スイッチ素子Q2、
ダイオ−ドD1〜D3の電圧降下及び配線に依る電圧降下
は無いものとする。時間t7〜t1の期間は、主スイッチ
Q1がタ−ンオン状態で直流電源Viのエネルギ−が第
1のチョ−クコイルに蓄積されると共に負荷RLに伝達
されている。従って前記主スイッチ素子Q1には図5の
(3)のQ1Id1が流れている。
The detailed operation of the buck type DC-DC converter circuit of the present invention will be described below with reference to FIGS. To simplify the explanation, the load current I0 is treated as a constant current source, and the main switch element Q1, the auxiliary switch element Q2,
It is assumed that there is no voltage drop in the diodes D1 to D3 and no voltage drop due to the wiring. During the period from time t7 to t1, the main switch Q1 is in the turn-on state, the energy of the DC power supply Vi is accumulated in the first choke coil and is transmitted to the load RL. Therefore, Q1Id1 of (3) in FIG. 5 flows through the main switch element Q1.

【0013】時間t1〜t2の期間は、時刻t1で主スイ
ッチQ1がタ−ンオフすると今まで前記主スイッチ素子
Q1に流れていた電流Q1Id1(=I0)は第1のコンデ
ンサC1に転流される。このため前記第1のコンデンサ
C1の電圧、すなわち主スイッチ素子Q1の電圧Q1VDS
はゆるやかに立上がるため、ゼロ電圧スイッチング(Z
VS)動作を行う。従ってスイッチング損失は極めて少
ないも (5) のとなる。
During the period from time t1 to t2, when the main switch Q1 is turned off at time t1, the current Q1Id1 (= I0) flowing in the main switch element Q1 until now is commutated to the first capacitor C1. Therefore, the voltage of the first capacitor C1, that is, the voltage Q1VDS of the main switching element Q1.
Since it rises slowly, zero voltage switching (Z
VS) operation is performed. Therefore, the switching loss is extremely small, which is (5).

【0014】(時間t2〜t3)時刻t2で前記第1のコ
ンデンサC1の電圧が直流電源Viに達すると、フライホ
イ−ルダイオ−ドD2がタ−ンオンし、第1のチョ−ク
コイルL1に蓄積されていたエネルギ−をフライホイ−
ルダイオ−ドD2を通して回生する。
(Times t2 to t3) At time t2, when the voltage of the first capacitor C1 reaches the DC power source Vi, the flywheel diode D2 turns on and is stored in the first choke coil L1. Fly energy
Regenerate through Rediode D2.

【0015】(時間t3〜t4)時刻t3で補助スイッチ
素子Q2がタ−ンオンする。フライホイ−ルダイオ−ド
D2に流れていた電流IF2は、前記補助スイッチ素子Q2
に分流し時刻t4で負荷電流I0に達する。又、この時前
記補助スイッチ素子Q2に流れる電流Q2Id2の立上り
時間は、第2のチョ−クコイルL2とトランスT1の1次
側に発生する電圧によって決まる。式は、補助スイッ
チQ2の電流Q2Id2の立上り時間を表したものであ
る。 △t4=(t4−t3)=L1・I0/VL・・・・・ 但しVLは第2のチョ−クコイルLに発生する電圧で VL=Vi−nVi ∴nはT1の巻数比Np/Ns で表すことができる。従って補助スイッチQ2はゼロ電
流スイッチ(ZCS)動作を行うため、補助スイッチQ
2のスイッチング損失は極めて少ないものとなる。又、
前記トランスT1の2次側には第3のダイオ−ドD3を通
して補助スイッチQ2の電流Q2Id2の前記トランスT1
の巻数比倍の電流n・Q2Id2倍が流れる。
(Time t3 to t4) At time t3, the auxiliary switch element Q2 is turned on. The current IF2 flowing in the flywheel diode D2 is the auxiliary switch element Q2.
The load current I0 is reached at the shunting time t4. At this time, the rising time of the current Q2Id2 flowing through the auxiliary switch element Q2 is determined by the voltage generated on the primary side of the second choke coil L2 and the transformer T1. The equation represents the rise time of the current Q2Id2 of the auxiliary switch Q2. Δt4 = (t4−t3) = L1 · I0 / VL ... where VL is the voltage generated in the second choke coil L. VL = Vi−nVi∴n is the turn ratio Np / Ns of T1. Can be represented. Therefore, since the auxiliary switch Q2 operates as a zero current switch (ZCS), the auxiliary switch Q2
The switching loss of 2 is extremely small. or,
The transformer T1 of the current Q2Id2 of the auxiliary switch Q2 passes through the third diode D3 to the secondary side of the transformer T1.
A current n.multidot.Q2Id2 times that of the number of turns ratio flows.

【0016】時間(t4〜t5) 時刻t4で補助スイッチQ2の電流Q2Id2が負荷電流I
0に達すると主スイッチ素子Q1と並列に接続されている
第1のコンデンサC1の電圧(直流電源Viに充電され
ている。)が放電を開始する。この時前記第1のコンデ
ンサC1の電圧、すなわちQ1VDSはゼロボルトになる。
従って、前記第1のコン (6) デンサC1の電圧がゼロボルトになるまでの時間と、
式より求められる。この時の補助スイッチ素子Q2の電
流Q2Id2(t5)はそれぞれ △t5=t5−t4=1/ω・COS-・(−V1)/Vi−V1・・・ 但しω=1/√・L1C1、V1=Vi−nVi Id2(t5)=I0+(Vi−nVi)/Z0・sinω△t5・・・ 但しZ0=√・L1/C1 又前記第1のコンデンサC1がゼロボルトになるための
条件は、Vi≧2・n・Viであるからn≦1/2でな
ければならない。更にフライホイ−ルダイオ−ドD2の
電圧は、前記フライホイ−ルダイオ−ドD2に流れてい
た電流IF2が、前記時刻t4でゼロになってからゆるや
かに印加されるため、リカバリ−発生が少ないものとな
り、それによりサ−ジ、ノイズの発生は極めて少なくな
る。
Time (t4 to t5) At time t4, the current Q2Id2 of the auxiliary switch Q2 becomes the load current I.
When it reaches 0, the voltage of the first capacitor C1 (which is charged in the DC power supply Vi) connected in parallel with the main switch element Q1 starts discharging. At this time, the voltage of the first capacitor C1, that is, Q1VDS becomes zero volt.
Therefore, the time until the voltage of the first capacitor (6) capacitor C1 becomes zero volt,
Calculated from the formula. The current Q2Id2 (t5) of the auxiliary switch element Q2 at this time is Δt5 = t5−t4 = 1 / ω · COS− · (−V1) / Vi−V1 ... where ω = 1 / √ · L1C1 and V1 = Vi−nVi Id2 (t5) = I0 + (Vi−nVi) / Z0 · sin ωΔt5 ... where Z0 = √ · L1 / C1 and the condition for the first capacitor C1 to be zero volt is Vi ≧ Since 2 · n · Vi, n ≦ 1/2 must be satisfied. Further, since the voltage of the flywheel diode D2 is slowly applied after the current IF2 flowing in the flywheel diode D2 becomes zero at the time t4, the recovery is less likely to occur. As a result, the generation of surge and noise is extremely reduced.

【0017】時間(t5〜t6) 時刻t5で第1のコンデンサC1の電圧すなわち主スイッ
チQの電圧Q1VDSがゼロボルトになると、補助スイッ
チQ2の電流Q2Id2が第2のチョ−クコイルL2の作用
により第1のダイオ−ドD1を通して流れ続ける。この
期間△t6は式により求めることができる。 △t6=(t6−t5)=L1・(Q2Id2(ts)−I0)/nVi・・・・ 又この期間に前記主スイッチ素子Q1をタ−ンオンする
ことにより、ゼロ電圧スイッチング(ZVS)動作が可
能となる。
Time (t5 to t6) At time t5, when the voltage of the first capacitor C1, that is, the voltage Q1VDS of the main switch Q becomes zero volts, the current Q2Id2 of the auxiliary switch Q2 becomes the first by the action of the second choke coil L2. Continue to flow through diode D1. This period Δt6 can be obtained by an equation. .DELTA.t6 = (t6-t5) = L1. (Q2Id2 (ts) -I0) / nVi ... Also, by turning on the main switching element Q1 during this period, zero voltage switching (ZVS) operation is performed. It will be possible.

【0018】時間(t6〜t7) 時刻t6で補助スイッチ素子Q2に流れていた電流Q2I
d2は負荷電流I0に達するため、主スイッチ素子Q1に
分流を始める。この期間は、式より求めることができ
る。 △t7=(t7−t6)=L1・I0/nVi・・・・ 従って前記補助スイッチQ2のタ−ンオフは、前記補助
スイッチQ2をゼロ電 (7) 流スイッチ(ZCS)動作を行わせるためには、時間t
7以降に設定する必要がある。つまり、補助スイッチの
タ−ンオン時間△tQ2は△t4+△t5+△t6+△t7以
上にする必要がある。
Time (t6 to t7) At time t6, the current Q2I flowing through the auxiliary switch element Q2
Since d2 reaches the load current I0, shunting starts in the main switch element Q1. This period can be calculated by an equation. Δt7 = (t7−t6) = L1 · I0 / nVi ... Therefore, the turning off of the auxiliary switch Q2 causes the auxiliary switch Q2 to perform zero current (7) current switch (ZCS) operation. Is the time t
Must be set to 7 or later. That is, the turn-on time ΔtQ2 of the auxiliary switch needs to be Δt4 + Δt5 + Δt6 + Δt7 or more.

【0019】図6、図7、図8は本発明の他の応用例を
示す。
FIG. 6, FIG. 7 and FIG. 8 show other application examples of the present invention.

【0020】[0020]

【発明の効果】本発明に依りバック型DC−DCコンバ
−タ回路において、スイッチング時の共振作用に依り主
スイッチ素子のスイッチング損失を低減すると共に主ス
イッチ素子及びフライホイ−ルダイオ−ドのサ−ジ電
圧、ノイズの低減に効果があり、コンバ−タの低ノイズ
化、高効率化、小型化が実現出来、産業上の効果大であ
る。
In the buck type DC-DC converter circuit according to the present invention, the switching loss of the main switching element is reduced by the resonance action at the time of switching, and the surge of the main switching element and the flywheel diode is reduced. It is effective in reducing voltage and noise, and can realize low noise, high efficiency and miniaturization of the converter, which is a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のバック型DC−DCコンバ−タ回路FIG. 1 is a conventional buck type DC-DC converter circuit.

【図2】従来のバック型DC−DCコンバ−タ動作波形FIG. 2 is a conventional back-type DC-DC converter operation waveform

【図3】従来の大容量コンバ−タにおけるバック型DC
−DCコンバ−タの対策回路
FIG. 3 is a back type DC in a conventional large capacity converter.
-DC converter countermeasure circuit

【図4】本発明のバック型DC−DCコンバ−タ回路FIG. 4 is a buck type DC-DC converter circuit of the present invention.

【図5】本発明のバック型DC−DCコンバ−タ動作波
FIG. 5 is a back-type DC-DC converter operation waveform of the present invention.

【図6】本発明の他の実施例回路図、その1FIG. 6 is a circuit diagram of another embodiment of the present invention, part 1

【図7】本発明の他の実施例回路図、その2FIG. 7 is a circuit diagram of another embodiment of the present invention, part 2

【図8】 (8) 本発明の他の実施例回路図、その3(8) Circuit diagram of another embodiment of the present invention, part 3

【符号の説明】[Explanation of symbols]

Vi・・・・直流電源 Q1・・・・主スイッチ素子 Q2・・・・第2のスイッチ素子 COSS・・・主スイッチ素子の寄生コンデンサ L1・・・・第1のチョ−クコイル L2・・・・第2のチョ−クコイル C1・・・・第1のコンデンサ CL・・・ 平滑用コンデンサ D1・・・・第1のダイオ−ド D2・・・・フライホイ−ルダイオ−ド D3・・・・第2のダイオ−ド T1・・・・トランス RL・・・ 負荷 Vi ... DC power supply Q1 ... Main switch element Q2 ... Second switch element COSS ... Main switch element parasitic capacitor L1 ... First choke coil L2 ...・ Second choke coil C1 ・ ・ ・ First capacitor CL ・ ・ ・ Smoothing capacitor D1 ・ ・ ・ ・ First diode D2 ・ ・ ・ ・ ・ ・ Flywheel diode D3 ・ ・ ・Two diodes T1 ... Transformer RL ... Load

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直流電源に直列に接続された主スイッチ
素子及び第1のチョ−クコイルを通して負荷に電力を供
給する回路と、前記主スイッチ素子がOFFの時、前記
第1のチョ−クコイルのエネルギ−を前記負荷に回生す
るフライホイ−ルダイオ−ドと、前記第1のチョ−クコ
イル出力を平滑する第2のコンデンサから成るバック型
DC−DCコンバ−タに於いて、前記主スイッチ素子と
並列に前記主スイッチ素子の寄生コンデンサを含む第1
のコンデンサ及び逆並列の第1のダイオ−ドを接続し、
かつ前記主スイッチ素子に並列に第2のチョ−クコイル
とトランス及び補助スイッチ素子から成る直列回路を接
続し、さらに前記トランスの2次側の一端を第2のダイ
オ−ドのアノ−ド側に、他端を前記電源の(−)側に接
続し、前記第2のダイオ−ドのカソ−ド側を前記電源の
(+)側に接続した事を特徴とするバック型DC−DC
コンバ−タ回路。
1. A circuit for supplying power to a load through a main switch element and a first choke coil connected in series to a DC power supply, and a circuit for supplying power to the load when the main switch element is OFF. In a back-type DC-DC converter comprising a flywheel diode for regenerating energy to the load and a second capacitor for smoothing the output of the first choke coil, a parallel switch is provided in parallel with the main switch element. First, including a parasitic capacitor of the main switching element in
Connect the capacitor and the first diode in anti-parallel,
A series circuit composed of a second choke coil, a transformer and an auxiliary switch element is connected in parallel to the main switch element, and one end of the secondary side of the transformer is connected to the anode side of the second diode. , The other end is connected to the (-) side of the power source, and the cathode side of the second diode is connected to the (+) side of the power source.
Converter circuit.
JP5053045A 1993-02-18 1993-02-18 Buck type DC-DC converter circuit Expired - Lifetime JP2997608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053045A JP2997608B2 (en) 1993-02-18 1993-02-18 Buck type DC-DC converter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053045A JP2997608B2 (en) 1993-02-18 1993-02-18 Buck type DC-DC converter circuit

Publications (2)

Publication Number Publication Date
JPH06245486A true JPH06245486A (en) 1994-09-02
JP2997608B2 JP2997608B2 (en) 2000-01-11

Family

ID=12931914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053045A Expired - Lifetime JP2997608B2 (en) 1993-02-18 1993-02-18 Buck type DC-DC converter circuit

Country Status (1)

Country Link
JP (1) JP2997608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011001500A1 (en) * 2009-06-30 2012-12-10 富士通株式会社 DC-DC converter, module, power supply device and electronic device
US20140321172A1 (en) * 2013-04-24 2014-10-30 Daniel Princinsky Systems and methods for a dc phaseback choke

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011001500A1 (en) * 2009-06-30 2012-12-10 富士通株式会社 DC-DC converter, module, power supply device and electronic device
US20140321172A1 (en) * 2013-04-24 2014-10-30 Daniel Princinsky Systems and methods for a dc phaseback choke
US9875841B2 (en) * 2013-04-24 2018-01-23 Applied Energy Llc Systems and methods for a DC phaseback choke

Also Published As

Publication number Publication date
JP2997608B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US5438498A (en) Series resonant converter having a resonant snubber
US5313382A (en) Reduced voltage/zero current transition boost power converter
US6995987B2 (en) DC—DC converters providing reduced deadtime
US5132888A (en) Interleaved bridge converter
US5726869A (en) Synchronous rectifier type DC-to-DC converter in which a saturable inductive device is connected in series with a secondary-side switching device
US7501715B2 (en) Multi-output DC-DC converter
US5521807A (en) DC-To-DC converter with secondary flyback core reset
US6452814B1 (en) Zero voltage switching cells for power converters
US6236191B1 (en) Zero voltage switching boost topology
US6038142A (en) Full-bridge isolated Current Fed converter with active clamp
US6198260B1 (en) Zero voltage switching active reset power converters
US7180759B2 (en) Push-pull inverter with snubber energy recovery
EP0610158A1 (en) Fixed frequency converter switching at zero voltage
JPS62178169A (en) Single ended type dc-dc converter without switching loss
US6097614A (en) Asymmetrical pulse width modulated resonant DC-DC converter with compensating circuitry
JPH0327772A (en) Dc-dc converter and electronic computer using the same
JP2008533959A (en) Switchable power converter and method of operating the same
US20180323713A1 (en) Soft-switching for high-frequency power conversion
US6906931B1 (en) Zero-voltage switching half-bridge DC-DC converter topology by utilizing the transformer leakage inductance trapped energy
US6812679B2 (en) High efficiency AC-DC converter with power factor corrector
JPH05207740A (en) Dc/dc converter circuit
JPH07154967A (en) Dc-dc converter and computer using it
JPH08130871A (en) Dc-dc converter
US6442052B1 (en) High efficiency power converter with fast transient response
JP2997608B2 (en) Buck type DC-DC converter circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081029

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111029

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111029

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20131029

EXPY Cancellation because of completion of term