JPH06244592A - Chip parts mounting machine - Google Patents

Chip parts mounting machine

Info

Publication number
JPH06244592A
JPH06244592A JP5027720A JP2772093A JPH06244592A JP H06244592 A JPH06244592 A JP H06244592A JP 5027720 A JP5027720 A JP 5027720A JP 2772093 A JP2772093 A JP 2772093A JP H06244592 A JPH06244592 A JP H06244592A
Authority
JP
Japan
Prior art keywords
chip component
nozzle
film
mounting machine
suction surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5027720A
Other languages
Japanese (ja)
Inventor
Hideo Kurokawa
英雄 黒川
Yuichi Nakagami
裕一 中上
Kunio Sakurai
邦男 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5027720A priority Critical patent/JPH06244592A/en
Publication of JPH06244592A publication Critical patent/JPH06244592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

PURPOSE:To reduce deterioration in characteristics in the case of long term application, by coating at least the suction surface of a nozzle with a hard carbon film having characteristics of visible light absorption. CONSTITUTION:The suction surface of a nozzle 2 is coated with a DLC film 1 whose Vickers hardness is 1500kg/mm<2>. The DLC film exhibits absorption higher than or equal to 50% for visible light whose wavelength is in the range of 400-750nm. Since the DLC film 1 absorbs visible light and the reflected light amount is small, recognition of a chip parts is possible. As compared with the conventional black treatment, the DLC film is hard and excellent in wear resistance. According to the result of a durability test, film durability is improved 10 times as compared with the conventional black treatment such as anodizing, parkerizing or chromating. By forming the DLC film on the suction surface of a nozzle which sucks a chip parts, a chip parts mounting machine wherein deterioration of characteristics is little in the case of long term application, and durability is excellent can be obtained at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小なチップ部品を高
速・高精度で実装するチップ部品装着機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip component mounting machine for mounting minute chip components at high speed and with high accuracy.

【0002】[0002]

【従来の技術】最近の回路実装基板は高密度、高精度が
要求されるようになり、チップ部品の微小化と共に装着
タクトの高速化が図られている。従来のチップ部品装着
機においては、図4に示すように、ノズル7にチップ部
品8を吸着し、画像認識によりチップ部品の外形や位置
を認識して装着する方式がとられてきた。
2. Description of the Related Art Recently, circuit mounting boards are required to have high density and high precision, and miniaturization of chip parts and speeding up of mounting tact have been attempted. In a conventional chip component mounting machine, as shown in FIG. 4, a method of adsorbing a chip component 8 to a nozzle 7 and recognizing an outer shape or a position of the chip component by image recognition and mounting the chip component has been adopted.

【0003】この方式において、チップ部品の外形や位
置を認識する従来の技術(以後視覚部品認識技術と称す
る)は、図6に示すようにチップ部品10を吸着したノ
ズル9の後方から光を照射し、遮蔽されて影になった画
像からチップ部品の形状を認識する透過型タイプが用い
られていた。しかしこの方法ではチップ部品10がノズ
ル9より小さくなると、チップ部品8の影がノズル9に
隠れて形状が認識できなくなるという課題があった。
In this system, a conventional technique for recognizing the outer shape and position of a chip component (hereinafter referred to as a visual component recognition technique) irradiates light from the rear of a nozzle 9 that adsorbs the chip component 10 as shown in FIG. However, a transmissive type that recognizes the shape of a chip component from an image that is shaded by being shielded is used. However, this method has a problem that when the chip component 10 becomes smaller than the nozzle 9, the shadow of the chip component 8 is hidden by the nozzle 9 and the shape cannot be recognized.

【0004】この課題を解決するものとして、図7に示
すような反射型タイプが実用化されつつある。これはチ
ップ部品12を吸着したノズル13の前方から蛍光灯な
どの光を照射し、反射光量の差から形状を認識するもの
である。
As a solution to this problem, a reflective type as shown in FIG. 7 is being put to practical use. This is to irradiate light from a fluorescent lamp or the like from the front of the nozzle 13 that has adsorbed the chip component 12, and recognize the shape from the difference in the amount of reflected light.

【0005】この方法で認識の感度を高めるには、ノズ
ル13からの反射光量をできるだけ減らしてチップ部品
12からの反射光量のみを認識する必要がある。このた
め少なくともチップ部品12を吸着する吸着面は、光の
反射が少ない黒色であることが必要条件となる。黒色処
理としては従来からユニクロ処理、パーカー処理、フェ
ルマイト処理等があるが、このような黒色処理ではチッ
プ部品12を吸着・装着を繰り返す間に極短時間で摩耗
して剥げてしまい、信頼性・寿命の点で実用化は困難で
あった。現状では、工業用の黒色ダイヤモンドを加工
し、これを先端に蝋付けしたノズルが一部実用化されて
いる。
In order to increase the recognition sensitivity by this method, it is necessary to reduce the amount of reflected light from the nozzle 13 as much as possible and recognize only the amount of reflected light from the chip component 12. For this reason, it is a necessary condition that at least the adsorption surface for adsorbing the chip component 12 is black with little light reflection. Conventionally, there are unichrome treatment, parker treatment, fermite treatment, etc. as the black treatment, but with such black treatment, the chip component 12 is worn and peeled off in an extremely short time during repeated adsorption / mounting, and reliability / Practical application was difficult in terms of life. At present, a part of a nozzle in which industrial black diamond is processed and brazed at the tip is put into practical use.

【0006】[0006]

【発明が解決しようとする課題】しかしながらこのよう
な従来例では、黒色ダイヤモンドがユニクロ等の黒色処
理に比べて材料費が高くなることに加えて、下記のよう
な理由からその加工費が高くなるという課題があった。
チップ部品を効率よく吸引して吸引後は移動しないよう
にするために、ノズルの吸引口14は図5のように複雑
な形状となっている。チップ状に加工した工業用黒ダイ
ヤに、このような形状の吸引口14を加工することは極
めて手間がかりコストが高くなる。また長時間使用して
いると、先端に蝋付けしたダイヤモンドの一部がチッピ
ングをおこしてしまうという課題があった。
However, in such a conventional example, the material cost of black diamond is higher than that of black treatment such as UNIQLO, and the processing cost thereof is high for the following reasons. There was a problem.
The suction port 14 of the nozzle has a complicated shape as shown in FIG. 5 in order to efficiently suck the chip component and prevent it from moving after the suction. It is extremely troublesome and costly to process the suction port 14 having such a shape on the industrial black diamond processed into a chip shape. Further, when used for a long time, there is a problem that a part of the diamond brazed on the tip causes chipping.

【0007】[0007]

【課題を解決するための手段】本発明の第一の発明は、
少なくともノズルの吸着面に可視光を吸収する特性を備
えた硬質炭素膜をコーティングするものである。
The first invention of the present invention is as follows:
At least the adsorption surface of the nozzle is coated with a hard carbon film having a characteristic of absorbing visible light.

【0008】本発明の第二の発明は、ノズルの吸着面に
フェルマイトやユニクロ等の黒色処理を施し、黒色処理
の表面にビッカース硬度2000kg/mm2以上の硬
質炭素膜をコーティングするものである。
A second aspect of the present invention is that the adsorption surface of the nozzle is subjected to black treatment such as fermite or unichrome, and the black treated surface is coated with a hard carbon film having a Vickers hardness of 2000 kg / mm 2 or more.

【0009】本発明の第三の発明は、黒色処理を施した
ノズル吸着面に少なくともSiを含有した中間層を設
け、この中間層の表面にビッカース硬度が2000kg
/mm 2以上の硬質炭素膜をコーティングするものであ
る。
A third aspect of the present invention is a black treatment.
An intermediate layer containing at least Si is provided on the nozzle suction surface.
The surface of this intermediate layer has a Vickers hardness of 2000 kg.
/ Mm 2For coating the above hard carbon film
It

【0010】[0010]

【作用】硬質炭素膜はダイヤモンド状薄膜、i-カーボン
とも称され、非晶質でありながらダイヤモンドに類似の
特性を示す炭素膜である(以後、この炭素膜をDLC膜
と記載する)。DLC膜はダイヤモンド結合(SP3結
合)の炭素とグラファイト結合(SP2結合)の炭素元
素から構成され、その特性はダイヤモンド結合とグラフ
ァイト結合の比率と密接な関係がある。すなわちダイヤ
モンド結合が多く含まれるほどダイヤモンドに近い特性
を備えた膜になり、透明で硬くなる(ビッカース硬度2
000kg/mm2以上)。逆にグラファイト結合が多
くなると可視光を吸収して黒色となり、硬さは低下する
(ビッカース硬さ1500kg/mm2以下)。
The hard carbon film is also called a diamond-like thin film or i-carbon, and is a carbon film that is amorphous but exhibits characteristics similar to diamond (hereinafter, this carbon film is referred to as a DLC film). The DLC film is composed of diamond-bonded (SP3 bond) carbon and graphite-bonded (SP2 bond) carbon elements, and its characteristics are closely related to the ratio of diamond bond and graphite bond. In other words, the more diamond bonds are contained, the more the film becomes closer to diamond, and the film becomes transparent and hard (Vickers hardness 2
000 kg / mm 2 or more). On the other hand, when the number of graphite bonds is increased, visible light is absorbed to turn black and the hardness is lowered (Vickers hardness of 1500 kg / mm 2 or less).

【0011】第一の発明では、吸着面のグラファイト結
合を多く含んだDLC膜が可視光を吸収するために、ノ
ズル吸着面からの反射光量が少なくなり、反射光量によ
るチップ部品の形状認識が可能になる。またこのDLC
膜は従来の黒色処理に比べて硬いために、チップ部品の
吸着・装着の繰り返しによる摩耗や損傷に強い。
In the first invention, the DLC film containing a large amount of graphite bonds on the adsorption surface absorbs visible light, so that the amount of light reflected from the nozzle adsorption surface is reduced and the shape of the chip component can be recognized by the amount of reflected light. become. Also this DLC
Since the film is harder than conventional black treatment, it is resistant to wear and damage due to repeated chip component adsorption and mounting.

【0012】第二、第三の発明では、黒色処理を施した
ノズル表面にビッカース硬度2000kg/mm2のD
LC膜をコーティングした構成である。黒色処理で反射
光量を低減してチップ部品の形状・位置の認識が可能に
なる。一方黒色処理上の硬質なDLC膜により、チップ
部品の吸着・装着を繰り返すことによる黒色処理の摩耗
損傷を防止する。
In the second and third inventions, the nozzle surface subjected to black treatment has a Vickers hardness of D of 2000 kg / mm 2 .
This is a structure coated with an LC film. The black processing reduces the amount of reflected light and makes it possible to recognize the shape and position of chip components. On the other hand, the hard DLC film on the black treatment prevents abrasion damage of the black treatment due to repeated adsorption and mounting of chip parts.

【0013】DLC成膜技術については従来から種々の
方法が提案されており(例えば特開No62-139873)、比
較的容易にコーティングできる。原料はメタンガスやベ
ンゼン等の炭化水素ガスであるため、低コストで実現で
きる。また薄膜であるためにチッピングが発生しにく
く、ダイヤモンドを蝋付けしたものと同等以上の寿命を
実現できる。この結果、長期間使用しても特性劣化が少
なく、耐久性に優れたチップ部品装着機が低コストで実
現できる。
Various methods have been proposed for the DLC film forming technique (for example, Japanese Patent Laid-Open No. 62-139873), and coating can be performed relatively easily. Since the raw material is a hydrocarbon gas such as methane gas or benzene, it can be realized at low cost. Also, since it is a thin film, chipping is unlikely to occur, and a life equivalent to or longer than that of diamond brazing can be realized. As a result, it is possible to realize a low-cost chip component mounting machine with little deterioration in characteristics even after long-term use.

【0014】[0014]

【実施例】本実施例ではイオン化蒸着法(1989年度
精密工学会秋期大会学術講演開講演論文集第3分冊 P
621参照)を用いてDLC膜を形成した。イオン化蒸
着法とは、フィラメントの加熱で発生する熱電子を利用
して原料ガスをプラズマ化し、プラズマ中のイオンを基
板に負のバイアスを印加することで加速照射する方法で
あり、DLC膜を形成する場合はメタンガスやエチレン
ガス等の炭化水素ガスを原料とする。本実施例において
は、C6H6ガスを原料とした。
[Examples] In this example, the ionization vapor deposition method (the 3rd volume of the 1989 Autumn Meeting of the Precision Engineering Society of Japan)
621) to form a DLC film. The ionization vapor deposition method is a method in which the source gas is made into plasma by utilizing thermoelectrons generated by heating of a filament, and ions in the plasma are accelerated and irradiated by applying a negative bias to the substrate to form a DLC film. In that case, a hydrocarbon gas such as methane gas or ethylene gas is used as a raw material. In this example, C 6 H 6 gas was used as a raw material.

【0015】イオン化蒸着法では基板のバイアス値を変
えることにより、特性が異なるDLC膜を形成すること
ができる。例えば本発明のようにC6H6を原料ガスとする
場合、バイアスが−0.7kV近傍で最も硬くて透明な
DLC膜が形成される(ビッカース硬度4500kg/
mm2以上、波長400〜750nmの光に対して70
%以上の透過率)。
In the ionization vapor deposition method, DLC films having different characteristics can be formed by changing the bias value of the substrate. For example, when C 6 H 6 is used as the source gas as in the present invention, the hardest and most transparent DLC film is formed when the bias is around −0.7 kV (Vickers hardness 4500 kg /
70 mm 2 or more for light with a wavelength of 400 to 750 nm
% Or more).

【0016】バイアスを−0.7kVより大きくするに
つれて硬度は低下し、黒色化する。これは膜中にグラフ
ァイト成分が多くなるためである。例えばバイアスが−
3.5kVの場合、ビッカース硬度が1500kg/m
2、波長400〜750nmの可視光に対して50%
以上の吸収を示すDLC膜が形成される。
As the bias is increased above -0.7 kV, the hardness decreases and the material turns black. This is because the graphite component increases in the film. For example, if the bias is −
Vickers hardness of 1500 kg / m at 3.5 kV
m 2, 50% for visible light having a wavelength of 400~750nm
A DLC film showing the above absorption is formed.

【0017】バイアスが−0.7kVより小さくなる
と、膜中には多量の水素が残存して有機に近い膜とな
る。このため膜は極めて軟らかくなり、透過率も大きく
なる。このようにC6H6を原料ガスとした場合、膜質が変
わるバイアス値は−0.7kV近傍であったが、この値
は原料ガスの種類や成膜条件によって変わるものであり
特定はできない。
When the bias becomes smaller than -0.7 kV, a large amount of hydrogen remains in the film to form a film close to organic. Therefore, the film becomes extremely soft and the transmittance becomes large. As described above, when C 6 H 6 was used as the source gas, the bias value at which the film quality changed was around −0.7 kV, but this value varies depending on the type of the source gas and the film forming conditions and cannot be specified.

【0018】以下、本発明の実施例について具体的に説
明する。ノズル表面に特性の異なるDLC膜を形成し、
反射型方式での画像認識特性と実用耐久試験(タクト0.
14秒)を行った。その結果を(表1)に示す。
Examples of the present invention will be specifically described below. DLC film with different characteristics is formed on the nozzle surface,
Image recognition characteristics and practical endurance test with reflection type (tact 0.
14 seconds). The results are shown in (Table 1).

【0019】[0019]

【表1】 [Table 1]

【0020】図1に実施例1におけるチップ部品装着機
のノズル構成を示す。図1において2はノズル、3はノ
ズルに備えられた吸引口であり、ノズル2の吸引面には
ビッカース硬度が1500kg/mm2、波長400〜
750nmの可視光に対して50%以上の吸収を示すD
LC膜1がコーティングされている。DLC膜1は可視
光を吸収して反射光量が少なく、チップ部品の認識が可
能である。またDLC膜1は従来の黒色処理に比べて硬
く、耐摩耗特性に優れる。耐久試験の結果、フェルマイ
ト処理、パーカー処理、ユニクロ処理等の従来の黒色処
理に比べて実用耐久性は10倍以上に向上した。
FIG. 1 shows the nozzle structure of the chip component mounting machine in the first embodiment. In FIG. 1, 2 is a nozzle and 3 is a suction port provided in the nozzle. The suction surface of the nozzle 2 has a Vickers hardness of 1500 kg / mm 2 , and a wavelength of 400 to 400.
D showing 50% or more absorption for visible light of 750 nm
The LC film 1 is coated. The DLC film 1 absorbs visible light and has a small amount of reflected light, so that chip components can be recognized. Further, the DLC film 1 is harder than the conventional black treatment and has excellent wear resistance. As a result of the durability test, the practical durability was improved 10 times or more as compared with the conventional black treatment such as fermite treatment, Parker treatment, and Uniqlo treatment.

【0021】実施例2は、図2に示すように、ビッカー
ス硬度4500kg/mm2以上、可視光透過率70%以上のDLC
膜をコーティングしたものである。実施例1に比べDL
C膜が硬くなったことで実用耐久性はさらに向上する
が、ノズル表面に直接コーティングした場合は、膜が透
明であるためにノズルからの反射光量が多く、チップ部
品の形状・位置が正確に認識できない。そのため反射光
量を減らす手段が必要であり、本実施例では従来の黒色
処理7を施した表面にDLC膜8をコーティングした
(実施例2-b、c)。この結果、画像認識性を低下させる
ことなく実用耐久性を60倍以上と飛躍的に向上するこ
とが可能となった。
In Example 2, as shown in FIG. 2, a DLC having a Vickers hardness of 4500 kg / mm 2 or more and a visible light transmittance of 70% or more.
It is a film coated. DL compared to the first embodiment
Practical durability is further improved due to the hardened C film, but when coated directly on the nozzle surface, the amount of light reflected from the nozzle is large because the film is transparent and the shape and position of the chip component is accurate. I can't recognize it. Therefore, a means for reducing the amount of reflected light is required, and in this embodiment, the surface subjected to the conventional black treatment 7 was coated with the DLC film 8 (Examples 2-b and c). As a result, the practical durability can be dramatically improved to 60 times or more without deteriorating the image recognition property.

【0022】実施例3は、図3に示すように、実施例2
における黒色処理6とDLC処理5との間に中間層4を
設けた構成であり、DLC膜5の付着力を向上させるも
のである。通常、DLC膜は、ダイヤモンド結合を多く
含むにつれて、その硬度は硬くなり、また膜中の内部応
力は大きくなって基板との付着性が悪くなる傾向を有す
る。このため実施例2の構成で耐久性は向上したもの
の、500時間以上稼動させると膜の剥がれが生じる。
これはDLC膜8が摩耗したのではなく、負荷が繰り返
しかかることで膜にクラックが生じ、付着力の弱い部分
が脱落したことによる。
The third embodiment, as shown in FIG. 3, is the second embodiment.
The intermediate layer 4 is provided between the black treatment 6 and the DLC treatment 5 in 4 above, and the adhesion of the DLC film 5 is improved. Usually, the DLC film has a tendency that its hardness becomes harder as more diamond bonds are contained, and the internal stress in the film becomes larger, resulting in poor adhesion to the substrate. For this reason, although the durability of the structure of Example 2 was improved, peeling of the film occurs when operated for 500 hours or more.
This is because the DLC film 8 was not worn, but cracks were generated in the film due to repeated application of load, and the portions with weak adhesion were removed.

【0023】そこで、本実施例は中間層4を設けること
で付着力を向上させ、実用耐久性をさらに高めるもので
ある。本実施例では、この中間層4にスパッタリング法
で形成した厚み0.03μmのSi膜を用いた。この結果、
500時間以上の実用耐久性を確保することが可能とな
った。
Therefore, in this embodiment, by providing the intermediate layer 4, the adhesive force is improved and the practical durability is further enhanced. In this example, a Si film having a thickness of 0.03 μm formed by the sputtering method was used as the intermediate layer 4. As a result,
It became possible to secure practical durability for 500 hours or more.

【0024】本発明の実施において、DLC膜のコーテ
ィングはイオン化蒸着法に限るものではなく、プラズマ
CVD法、スパッタリング法、蒸着法等、いずれの方法
を用いてもかまわない。
In the practice of the present invention, the coating of the DLC film is not limited to the ionization vapor deposition method, and any method such as plasma CVD method, sputtering method and vapor deposition method may be used.

【0025】[0025]

【発明の効果】本発明は、チップ部品に光を照射し、そ
の反射光量によりチップ部品の形状、電極位置を直接認
識して装着するチップ部品装着機において、チップ部品
を吸着するノズルの吸着面にDLC膜を形成する構成も
のであり、長期間使用しても特性劣化が少なく、耐久性
に優れたチップ部品装着機を低コストで実現できるもの
で、その工業的効果は非常に大きい。
According to the present invention, in the chip component mounting machine for irradiating the chip component with light and directly recognizing the shape and electrode position of the chip component by the amount of reflected light, the suction surface of the nozzle for sucking the chip component. The DLC film is formed on the substrate, the characteristic deterioration is small even after long-term use, and the chip component mounting machine having excellent durability can be realized at low cost, and its industrial effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の構成を示す断面図FIG. 1 is a sectional view showing the configuration of a first embodiment of the present invention.

【図2】本発明の第二の実施例の構成を示す断面図FIG. 2 is a sectional view showing the configuration of a second embodiment of the present invention.

【図3】本発明の第三の実施例の構成を示す断面図FIG. 3 is a sectional view showing the configuration of a third embodiment of the present invention.

【図4】チップ部品装着機ノズルの動作を示す原理図FIG. 4 is a principle diagram showing the operation of the nozzle for the chip component mounting machine.

【図5】ノズル吸着面の正面図FIG. 5 is a front view of a nozzle suction surface.

【図6】チップ部品装着機の一従来例を示す概略図FIG. 6 is a schematic view showing a conventional example of a chip component mounting machine.

【図7】チップ部品装着機の第二の従来例を示す概略図FIG. 7 is a schematic view showing a second conventional example of a chip component mounting machine.

【符号の説明】[Explanation of symbols]

1 硬質炭素膜(DLC膜) 2 ノズル 4 Siを含有した中間層 7 黒色処理層 1 Hard carbon film (DLC film) 2 Nozzle 4 Si-containing intermediate layer 7 Black treated layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】チップ部品をノズルの吸着面に吸着・保持
した状態において、前記チップ部品に光を照射し、その
反射光量により前記チップ部品の形状、電極位置を直接
認識して装着するチップ部品装着機であって、前記チッ
プ部品を吸着する前記ノズルの吸着面に可視光の透過率
が50%以下の硬質炭素膜をコーティングしたチップ部
品装着機。
1. A chip component that is mounted by irradiating the chip component with light in a state where the chip component is adsorbed and held on a suction surface of a nozzle, and directly recognizing the shape and electrode position of the chip component based on the amount of reflected light. A mounting machine, wherein the suction surface of the nozzle for suctioning the chip component is coated with a hard carbon film having a visible light transmittance of 50% or less.
【請求項2】チップ部品をノズルの吸着面に吸着・保持
した状態において、前記チップ部品に光を照射し、その
反射光量により前記チップ部品の形状、電極位置を直接
認識して装着するチップ部品装着機であって、前記チッ
プ部品を吸着するノズルの吸着面に黒色処理を施し、黒
色処理の表面にビッカース硬度が2000kg/mm2
以上の硬質炭素膜をコーティングしたチップ部品装着
機。
2. A chip component mounted by irradiating the chip component with light in a state where the chip component is adsorbed and held on a suction surface of a nozzle, and directly recognizing the shape and electrode position of the chip component based on the amount of reflected light. In the mounting machine, the suction surface of the nozzle for sucking the chip component is subjected to black treatment, and the black treatment surface has a Vickers hardness of 2000 kg / mm 2
Chip component mounting machine coated with the above hard carbon film.
【請求項3】チップ部品をノズルの吸着面に吸着・保持
した状態において、前記チップ部品に光を照射し、その
反射光量により前記チップ部品の形状、電極位置を直接
認識して装着するチップ部品装着機であって、前記チッ
プ部品を吸着するノズルの吸着面に黒色処理を施し、黒
色処理の表面に少なくともSiを含有した中間層を設
け、該中間層の表面にビッカース硬度が2000kg/
mm2以上の硬質炭素膜をコーティングしたチップ部品
装着機。
3. A chip component which is mounted by irradiating the chip component with light in a state where the chip component is adsorbed and held on a suction surface of a nozzle and directly recognizing the shape and electrode position of the chip component by the amount of reflected light. In the mounting machine, the suction surface of the nozzle for sucking the chip component is subjected to black treatment, an intermediate layer containing at least Si is provided on the surface of the black treatment, and the surface of the intermediate layer has a Vickers hardness of 2000 kg /
Chip component mounting machine coated with a hard carbon film of mm 2 or more.
【請求項4】少なくともSiを含有した中間層の比抵抗
が107Ω・cm以下である請求項3記載のチップ部品装着
機。
4. The chip component mounting machine according to claim 3, wherein the specific resistance of the intermediate layer containing at least Si is 10 7 Ω · cm or less.
JP5027720A 1993-02-17 1993-02-17 Chip parts mounting machine Pending JPH06244592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5027720A JPH06244592A (en) 1993-02-17 1993-02-17 Chip parts mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5027720A JPH06244592A (en) 1993-02-17 1993-02-17 Chip parts mounting machine

Publications (1)

Publication Number Publication Date
JPH06244592A true JPH06244592A (en) 1994-09-02

Family

ID=12228853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5027720A Pending JPH06244592A (en) 1993-02-17 1993-02-17 Chip parts mounting machine

Country Status (1)

Country Link
JP (1) JPH06244592A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745241A (en) * 1994-11-11 1998-04-28 Yamaha Hatsudoki Kabushiki Kaisha Method of recognizing cylindrical part
US7276673B2 (en) * 2003-09-26 2007-10-02 Tdk Corporation Solder bonding method and solder bonding device
KR100888801B1 (en) * 2002-11-15 2009-03-13 두산인프라코어 주식회사 Method for manufacturing nozzle in electric spark machine
WO2012038118A1 (en) * 2010-09-23 2012-03-29 Evonik Degussa Gmbh Use of diamond-like carbon layers for the application of semiconductor inks free of metal ions
KR20160051096A (en) * 2014-10-31 2016-05-11 홍익대학교 산학협력단 Chip Mounter Nozzle having Oxide Nano Coating Layer and Method of Manufacturing of the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745241A (en) * 1994-11-11 1998-04-28 Yamaha Hatsudoki Kabushiki Kaisha Method of recognizing cylindrical part
KR100888801B1 (en) * 2002-11-15 2009-03-13 두산인프라코어 주식회사 Method for manufacturing nozzle in electric spark machine
US7276673B2 (en) * 2003-09-26 2007-10-02 Tdk Corporation Solder bonding method and solder bonding device
WO2012038118A1 (en) * 2010-09-23 2012-03-29 Evonik Degussa Gmbh Use of diamond-like carbon layers for the application of semiconductor inks free of metal ions
KR20160051096A (en) * 2014-10-31 2016-05-11 홍익대학교 산학협력단 Chip Mounter Nozzle having Oxide Nano Coating Layer and Method of Manufacturing of the Same

Similar Documents

Publication Publication Date Title
US20060068227A1 (en) Ag-based reflection film and method for preparing the same
CA2090109C (en) Abrasion wear resistant coated substrate product
KR20030048012A (en) Semiconductor polysilicon component and method of manufacture thereof
US20100328605A1 (en) Optical article including a layer siox as main component and manufacturing method of the same
JP2014181404A (en) Lamination coating for sapphire substrate
ATE141654T1 (en) METHOD FOR COATING SUBSTRATES ON CEMENTED TUNGSTEN CARBIDE WITH ADHESIVE DIAMOND COATING
US8399100B2 (en) Reflection film, reflection film laminate, LED, organic EL display, and organic EL illuminating instrument
DE60335368D1 (en) METHOD FOR PRODUCING A GLAZED PART MULTILAYER COATED
JPWO2004102231A1 (en) REFLECTOR, USE THEREOF, AND MANUFACTURING METHOD FOR REFLECTOR
US20100171406A1 (en) Electroconductive laminate
JPH06244592A (en) Chip parts mounting machine
US20210016417A1 (en) Cmp pad conditioner and method for manufacturing the same
JP3370318B2 (en) Member provided with diamond-like carbon film
FR2837839A1 (en) Production of a coating on a metallic substrate involves treatment of the surface of the substrate with a plasma of an inert gas containing oxygen, and then applying a coating by plasma-assisted chemical vapor deposition
JP2004288327A (en) Magnetic recording medium and method of manufacturing the same
JP2003113471A (en) Transparent electroconductive layered body with diamond-structure carbon film, and manufacturing method therefor
JPH06306591A (en) Production of water-repellent hard-coated coating film
US20020164435A1 (en) Method of prevention of particle pollution in a pre-clean chamber
JPH0565625A (en) Hard carbon laminated film
CN1808671A (en) Electrode for high contrast gas discharge panel and the method for manufacturing the same
JP2001283645A (en) Transparent conductive film and its production
CN110643944B (en) Silver layer transparent protective film and application thereof
RU2025749C1 (en) Mirror and method to form its protective coating
JPH0414645A (en) Optical information recording medium
JP3267959B2 (en) Method for producing diamond-like carbon film