JPH06244499A - Laser diode - Google Patents

Laser diode

Info

Publication number
JPH06244499A
JPH06244499A JP50A JP3169593A JPH06244499A JP H06244499 A JPH06244499 A JP H06244499A JP 50 A JP50 A JP 50A JP 3169593 A JP3169593 A JP 3169593A JP H06244499 A JPH06244499 A JP H06244499A
Authority
JP
Japan
Prior art keywords
layer
zns
layers
short
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Shigeo Hayashi
茂生 林
Kazuhiro Okawa
和宏 大川
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50A priority Critical patent/JPH06244499A/en
Publication of JPH06244499A publication Critical patent/JPH06244499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the deterioration in crystallizabilities by lattice disorder, by forming ZnS-ZnSe short-period superlattices of a specific component ratio as photoconfinement layers and Zn (S, Se) compounds of a specific ratio as photowaveguide layers, on a GaAs substrate. CONSTITUTION:(ZnS)n-(ZnSe)m short-period superlattices (however n and m are natural numbers, n<5, and 0.1<=n/(n+m)<=0.3) are formed on a silicon added GaAs substrate 1 as photoconfinement layers. Besides, ZnSxSe1-x (0.06<=x<=0.09) layers are formed as photowaveguide layers. The short-period superlattices 2 and 6 have lattice disorder against the GaAs substrate, but their crystallizabilities do not deteriorate by making them very thin. Besides, it becomes possible to suppress the deterioration of the crystallizabilities of the photowaveguides 3 and 5 by making them lattice-match to the substrate. Consequently, it becomes possible to make the efficiency of a blue-range semiconductor laser higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、II−VI族のレーザ
ダイオードに関する。さらに詳しくは,青色域のII−
VI族化合物半導体を用いたレーザダイオードに関す
る。
FIELD OF THE INVENTION This invention relates to II-VI laser diodes. More specifically, II- in the blue range
The present invention relates to a laser diode using a VI compound semiconductor.

【0002】[0002]

【従来の技術】従来のZnSe系レーザダイオードは、
例えばアプライド・フィジックス・レター59巻11号
1272頁(1991年)(Applied Physics Letter v
ol.59、No.11、p.1272(1991))にある
ように、光閉じ込め(クラッド)層としては高い結晶性
を持ったGaAs基板に格子整合するZnS0.07Se0.
93混晶を用い、光導波路(ウェーブガイド)層としては
基板と0.27%の格子不整を持つZnSeを用いてい
る。
2. Description of the Related Art A conventional ZnSe laser diode is
For example, Applied Physics Letter Vol. 59, No. 11, p. 1272 (1991) (Applied Physics Letter v
ol. 59, No. 11, p.1272 (1991)), ZnS 0.07 Se 0. 0 that lattice-matches a GaAs substrate having high crystallinity as an optical confinement (cladding) layer .
The 93 mixed crystal is used, and ZnSe having a lattice mismatch of 0.27% is used as the optical waveguide (waveguide) layer.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うにZnSSe系の3元混晶を用いた場合、クラッド層
とウェーブガイド層共に基板に格子整合させることは不
可能で、どうしても格子不整による結晶性の劣化が発生
していた。
However, when the ZnSSe-based ternary mixed crystal is used as described above, it is impossible to lattice match both the cladding layer and the waveguide layer to the substrate, and the crystallinity due to the lattice mismatch is inevitable. Was deteriorated.

【0004】本発明は、前記問題点を解決するために、
結晶性の劣化を抑えた高効率のレーザダイオードを提供
することを目的とする。
In order to solve the above problems, the present invention provides
It is an object of the present invention to provide a highly efficient laser diode in which deterioration of crystallinity is suppressed.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明のレーザダイオードは、GaAs基板上に、
光閉じ込め層として{(ZnS)n −(ZnSe)m
短周期超格子(ただしnおよびmは自然数でかつn<
5、0.1≦n/(n+m)≦0.3)と、光導波路層
としてZnSX Se1ーX (ただしXは0.06以上
0.09以下の範囲を示す)とを備えたものである。
In order to achieve the above object, the laser diode of the present invention comprises:
As a light confinement layer {(ZnS) n- (ZnSe) m }
Short-period superlattice (where n and m are natural numbers and n <
5, 0.1 ≦ n / (n + m) ≦ 0.3), and ZnS X Se 1-X (where X represents a range of 0.06 to 0.09) as an optical waveguide layer. Is.

【0006】[0006]

【作用】前記本発明の構成によれば、(ZnS)n (Z
nSe)m 短周期超格子は基板に対して格子不整を持っ
ているが各層が非常に薄いために結晶性を劣化させるこ
となく基板上にコヒーレントに形成することができる。
しかもこの短周期超格子は成長面内では均一であるた
め、通常の混晶で見られるような局部的な歪の乱れがな
く、結晶としてより歪に強いものとなる。また,光導波
路層を基板に格子整合するZnSX Se1ーX (X;
0.06〜0.09)とすることにより、結晶性の劣化
を抑えた光導波路層を提供できる。このため、GaAs
基板上にこの(ZnS)n (ZnSe)m 短周期超格子
を形成し、ウェーブガイド層として基板に格子整合する
ZnSX Se1ーX (X;0.06〜0.09)を用い
ることにより、素子全体で優れた結晶性をもつ高効率レ
ーザダイオードが達成可能となる。
According to the structure of the present invention, (ZnS) n (Z
The nSe) m short-period superlattice has a lattice irregularity with respect to the substrate, but since each layer is very thin, it can be coherently formed on the substrate without deteriorating the crystallinity.
Moreover, since this short-period superlattice is uniform in the growth plane, it does not have the local distortion of strain that is observed in a normal mixed crystal, and is more resistant to strain as a crystal. In addition, ZnS X Se 1-X (X;
By setting 0.06 to 0.09), it is possible to provide an optical waveguide layer in which deterioration of crystallinity is suppressed. Therefore, GaAs
By forming this (ZnS) n (ZnSe) m short-period superlattice on a substrate and using ZnS X Se 1-X (X; 0.06 to 0.09 ) that is lattice-matched to the substrate as a waveguide layer. Thus, it is possible to achieve a high-efficiency laser diode having excellent crystallinity in the entire device.

【0007】[0007]

【実施例】以下実施例を用いて本発明をより具体的に説
明する。図1は、本発明の一実施例におけるレーザダイ
オードの構造を模式的に示す断面図である。この構造を
形成する方法としては、分子線エピタキシャル成長法が
好ましい。
EXAMPLES The present invention will be described in more detail with reference to the following examples. FIG. 1 is a sectional view schematically showing the structure of a laser diode according to an embodiment of the present invention. A molecular beam epitaxial growth method is preferable as a method for forming this structure.

【0008】基板にはGaAs単結晶基板1を用い、電
極が取れるように低抵抗n型のものを使用した。結晶性
の良いZnSe系化合物半導体を得るために基板の温度
は200℃から350℃の間に設定した。超高真空中
で、結晶母体材料である金属亜鉛とドナー源としての塩
化亜鉛(ZnCl2 )の分子線を照射しながら金属セレ
ンと硫黄の分子線とを交互に基板1上に照射することに
より1. 2μm厚の塩素添加n型(ZnS)2 (ZnS
e)8 短周期超格子クラッド層2を形成した。クラッド
層の形成にはALE(atomic layer epitaxy)法を用い
て原子層単位で膜厚を制御した。ここではクラッド層と
して(ZnS)n (ZnSe)m 短周期超格子(n=
2、m=8)を用いたが、クラッド層厚1.2μmで
は、0.1≦n/(n+m)≦0.3の範囲であればG
aAs基板上に結晶性の劣化を伴わずにクラッド層を形
成することができる。しかもZnSX Se1-X (X;
0.06〜0.09)ウェーブガイド層に対して十分な
光を閉じ込めることができた。また、短周期超格子の障
壁層厚はn<5であれば、障壁層の影響を余り受けずに
キャリアのトンネル伝導が可能であった。
A GaAs single crystal substrate 1 was used as the substrate, and a low resistance n type substrate was used so that the electrodes could be removed. The temperature of the substrate was set between 200 ° C. and 350 ° C. in order to obtain a ZnSe-based compound semiconductor having good crystallinity. By irradiating the substrate 1 with metal selenium and sulfur molecular beams alternately while irradiating the molecular beam of metallic zinc as a crystal matrix material and zinc chloride (ZnCl 2 ) as a donor source in an ultrahigh vacuum. 1.2 μm thick chlorinated n-type (ZnS) 2 (ZnS
e) An 8 short period superlattice cladding layer 2 was formed. The ALE (atomic layer epitaxy) method was used to form the clad layer, and the film thickness was controlled in atomic layer units. Here, a (ZnS) n (ZnSe) m short-period superlattice (n =
2, m = 8) was used, but when the cladding layer thickness is 1.2 μm, G is satisfied if 0.1 ≦ n / (n + m) ≦ 0.3.
The clad layer can be formed on the aAs substrate without deterioration of crystallinity. Moreover, ZnS X Se 1-X (X;
0.06 to 0.09) Sufficient light could be trapped in the waveguide layer. Further, if the barrier layer thickness of the short-period superlattice was n <5, tunnel conduction of carriers was possible without being significantly affected by the barrier layer.

【0009】次に前記原料をすべて同時に基板上に照射
して0.3μm厚のZnS0.07Se 0.93ウェーブガイド
層3形成した。GaAs基板上のZnSX Se1-X 混晶
の場合、室温ではX=0.06で格子整合し、500℃
ではX=0.09で格子整合する。500℃とはダブル
ヘテロ構造を形成するための通常のエピタキシャル成長
法における最高温度である。この組成範囲(X;0.0
6〜0.09)において結晶性の良い膜が得られる。ま
た、ZnS0.07Se0.93層の厚さは1.2μmとした
が、1μm以上であればウェーブガイド層から漏れる光
を実用上十分に少なくすることができる。
Next, the substrate is irradiated with all the raw materials at the same time.
And 0.3 μm thick ZnS0.07Se 0.93Wave guide
Layer 3 was formed. ZnS on GaAs substrateXSe1-XMixed crystals
In the case of room temperature, lattice matching occurs at X = 0.06 at room temperature,
Then, lattice matching is performed at X = 0.09. Double with 500 ℃
Conventional epitaxial growth to form heterostructures
It is the highest temperature in the law. This composition range (X; 0.0
6 to 0.09), a film with good crystallinity can be obtained. Well
ZnS0.07Se0.93The layer thickness was 1.2 μm
Is 1 μm or more, the light leaks from the waveguide layer
Can be sufficiently reduced practically.

【0010】次に、ZnCl2 の分子線の供給を止め、
金属カドミウムと金属亜鉛と金属セレンの分子線をn型
ZnS0.07Se0.93層3上に照射することにより10n
m厚のZn0.9 Cd0.1 Se活性層4を形成する。活性
層のCd組成は0.3以下が好ましい。0.3を越える
とZnSeウェーブガイド層との格子定数の差により、
成長中に結晶格子欠陥が生じ発光効率が良くないためで
ある。また、この活性層4の厚さは10nmとしたが、
5nm以上50nm以下の範囲であれば発光効率が高か
った。5nm未満では十分にキャリアが蓄積されず、5
0nmを越えると格子緩和が起こる。いずれの場合も、
結晶性が悪くなるために発光効率が低下する。
Next, the supply of ZnCl 2 molecular beam is stopped,
By irradiating the n-type ZnS 0.07 Se 0.93 layer 3 with a molecular beam of metallic cadmium, metallic zinc and metallic selenium,
A Zn 0.9 Cd 0.1 Se active layer 4 having a thickness of m is formed. The Cd composition of the active layer is preferably 0.3 or less. If it exceeds 0.3, due to the difference in lattice constant from the ZnSe waveguide layer,
This is because crystal lattice defects occur during growth and the luminous efficiency is not good. Although the thickness of the active layer 4 is set to 10 nm,
The luminous efficiency was high in the range of 5 nm to 50 nm. If the thickness is less than 5 nm, carriers are not sufficiently accumulated, and 5
When it exceeds 0 nm, lattice relaxation occurs. In either case,
Luminous efficiency is reduced due to poor crystallinity.

【0011】次に、アクセプタ源として活性窒素分子線
を用い、金属亜鉛と金属セレンと硫黄の分子線を活性層
4上に照射して0.3μm厚の窒素添加p型ZnS0.07
Se 0.93ウェーブガイド層5を形成した。
Next, an activated nitrogen molecular beam is used as an acceptor source.
By using a molecular beam of metallic zinc, metallic selenium, and sulfur as an active layer
Of 0.3 μm thick nitrogen-doped p-type ZnS0.07
Se 0.93Waveguide layer 5 was formed.

【0012】さらにクラッド層2を形成したように金属
亜鉛と活性窒素の分子線を照射しながら金属セレンと硫
黄の分子線とを交互に基板1上に照射することにより
1.2μm厚の窒素添加p型(ZnS)2 (ZnSe)
8 クラッド層6を形成した。
Further, by irradiating the substrate 1 with the molecular beam of metallic zinc and the molecular beam of active nitrogen while irradiating the molecular beam of metallic zinc and active nitrogen so that the cladding layer 2 is formed, 1.2 μm thick nitrogen is added. p-type (ZnS) 2 (ZnSe)
8 The clad layer 6 was formed.

【0013】そして、p型短周期超格子層6にAu電極
7を形成し、n型GaAs基板1の裏面にIn電極8を
形成した。最後に、縦横の長さがそれぞれ500μm程
度になるようにへき開して端面にへき開面ミラーを形成
し、共振器とした。
Then, an Au electrode 7 was formed on the p-type short period superlattice layer 6 and an In electrode 8 was formed on the back surface of the n-type GaAs substrate 1. Finally, cleavage was performed so that the length and width were each about 500 μm, and cleaved surface mirrors were formed on the end faces to form a resonator.

【0014】このようにして短周期超格子をクラッド層
に用いて得られたレーザダイオードは室温でパルス電流
注入で485nmの青色に発振した。これに対し、短周
期超格子を用いずにZnS0.2Se0.8混晶をクラッド層
として用いて得られたレーザダイオードは発振に至らな
かった。
The laser diode obtained by using the short period superlattice for the cladding layer in this way oscillated in the blue at 485 nm by pulse current injection at room temperature. On the other hand, the laser diode obtained by using the ZnS 0.2 Se 0.8 mixed crystal as the cladding layer without using the short period superlattice did not oscillate.

【0015】また、活性層としてZn0.9 Cd0.1 Se
を用いたが、Cd組成を0以上0.3以下の範囲で変化
させることにより、青色から緑色までのレーザダイオー
ドを作製することができた。またSを加えた4元混晶Z
1-Y CdY X Se1-X (X;0.06〜0.09、
Y;0〜0.3)を活性層として用いると発振波長のよ
り短いレーザダイオードを作製することができた。これ
らはすべて、実用的に発光効率の高いものであった。
Zn 0.9 Cd 0.1 Se is used as the active layer.
However, by changing the Cd composition in the range of 0 or more and 0.3 or less, a laser diode of blue to green could be manufactured. Quaternary mixed crystal Z with S added
n 1-Y Cd Y S X Se 1-X (X; 0.06 to 0.09,
When Y; 0 to 0.3) was used as the active layer, a laser diode having a shorter oscillation wavelength could be manufactured. All of these had practically high luminous efficiency.

【0016】結晶成長には分子線エピタキシャル法を用
いたが、このほかMOCVD(metalorganic chemical
vapor deposition)法などの気相成長法でも原料ガスを
切り替えることによって、同様の成長を行うことができ
る。さらに、原子層エピタキシャル成長法を用いて層厚
を制御することにより、膜厚制御性と結晶性がより向上
し、発振しきい値や外部微分量子効率などの特性が向上
した。
Molecular beam epitaxy was used for crystal growth. In addition to this, MOCVD (metalorganic chemical
Similar growth can be performed by changing the source gas even in a vapor deposition method such as a vapor deposition method. Furthermore, by controlling the layer thickness using the atomic layer epitaxial growth method, the film thickness controllability and crystallinity were further improved, and characteristics such as oscillation threshold and external differential quantum efficiency were improved.

【0017】なお、n型層のドーパントとして塩素を用
いたが、このほか、アルミニウム、ガリウム、インジウ
ム、フッ素、ヨウ素、臭素が低抵抗試料を得られるとい
う点で好ましい。
Although chlorine was used as a dopant for the n-type layer, aluminum, gallium, indium, fluorine, iodine and bromine are preferable in that a low resistance sample can be obtained.

【0018】また、p型層のドーパントとして窒素を用
いたが、このほか、リン、ヒ素、リチウム、ナトリウム
が低抵抗試料を得られるという点で好ましい。各層のキ
ャリア密度は、n型p型ともに2×1017cm-3である
が、十分に電気伝導が得られるためには、室温において
5×1016cm-3以上であることが好ましい。
Nitrogen was used as the dopant for the p-type layer, but phosphorus, arsenic, lithium and sodium are preferable in that a low resistance sample can be obtained. The carrier density of each layer is 2 × 10 17 cm −3 for both n-type and p-type, but it is preferably 5 × 10 16 cm −3 or more at room temperature in order to obtain sufficient electric conduction.

【0019】基板としてn型GaAsを用いたが、電気
伝導度的に反対の構造、すなわちp型とn型を入れ換え
て素子を形成してもほぼ同様の特性を示した。また、本
実施例では分離閉じこめ型レーザダイオードの形成につ
いて示したが、このほか、どのレーザ構造においてもG
aAs基板上の光閉じ込め層にこの(ZnS)n (Zn
Se)m 短周期超格子(n,m:自然数、n<5、0.
1≦n/(n+m)≦0.3)層を用いることにより高
効率のレーザダイオードを得ることができた。
Although n-type GaAs was used as the substrate, almost the same characteristics were exhibited even when the structure was reversed in electric conductivity, that is, the device was formed by exchanging p-type and n-type. Further, in this embodiment, the formation of the separate confinement type laser diode is shown, but in addition to this, in any laser structure, G
This (ZnS) n (ZnS) is added to the optical confinement layer on the aAs substrate.
Se) m short-period superlattice (n, m: natural number, n <5, 0.
A highly efficient laser diode could be obtained by using the 1 ≦ n / (n + m) ≦ 0.3) layer.

【0020】[0020]

【発明の効果】以上説明したように、本発明のレ−ザダ
イオ−ドによれば、II- VI 族化合物半導体を用いた青
色域の半導体レーザの高効率化が実現できる。このよう
な高効率の青色域レーザダイオードは、高密度光記録・
情報通信などの分野で大きな効果をもたらし、実用的に
極めて有用である。
As described above, according to the laser diode of the present invention, it is possible to realize the high efficiency of the blue semiconductor laser using the II-VI group compound semiconductor. Such a highly efficient blue laser diode is used for high-density optical recording and
It has a great effect in fields such as information and communication, and is extremely useful in practice.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるレーザダイオードの
構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a laser diode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ケイ素添加n型GaAs基板 2 塩素添加n型( ZnS)2 ( ZnSe)8 短周期超
格子層(1. 2μm) 3 塩素添加n型ZnS0.07Se0.93層(0. 3μm) 4 Zn0.9 Cd0.1 Se層(10nm) 5 窒素添加p型ZnS0.07Se0.93層(0. 3μm) 6 窒素添加p型( ZnS)2 ( ZnSe)8 短周期超
格子層(1. 2μm) 7 Au電極 8 In電極
1 Silicon-added n-type GaAs substrate 2 Chlorine-added n-type (ZnS) 2 (ZnSe) 8 Short period superlattice layer (1.2 μm) 3 Chlorine-added n-type ZnS 0.07 Se 0.93 layer (0.3 μm) 4 Zn 0.9 Cd 0.1 Se layer (10 nm) 5 Nitrogen-added p-type ZnS 0.07 Se 0.93 layer (0.3 μm) 6 Nitrogen-added p-type (ZnS) 2 (ZnSe) 8 Short period superlattice layer (1.2 μm) 7 Au electrode 8 In electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板上に、光閉じ込め層として
{(ZnS)n −(ZnSe)m }短周期超格子(ただ
しnおよびmは自然数でかつn<5、0.1≦n/(n
+m)≦0.3)と、光導波路層としてZnSX Se
1ーX (ただしXは0.06以上0.09以下の範囲を
示す)とを備えたレーザダイオード。
1. A {(ZnS) n- (ZnSe) m } short-period superlattice as an optical confinement layer on a GaAs substrate (where n and m are natural numbers and n <5, 0.1 ≦ n / (n
+ M) ≦ 0.3), and ZnS X Se as an optical waveguide layer
1-X (where X represents a range of 0.06 or more and 0.09 or less).
JP50A 1993-02-22 1993-02-22 Laser diode Pending JPH06244499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06244499A (en) 1993-02-22 1993-02-22 Laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06244499A (en) 1993-02-22 1993-02-22 Laser diode

Publications (1)

Publication Number Publication Date
JPH06244499A true JPH06244499A (en) 1994-09-02

Family

ID=12338216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06244499A (en) 1993-02-22 1993-02-22 Laser diode

Country Status (1)

Country Link
JP (1) JPH06244499A (en)

Similar Documents

Publication Publication Date Title
US5341001A (en) Sulfide-selenide manganese-zinc mixed crystal photo semiconductor and laser diode
US5548137A (en) Group II-VI compound semiconductor light emitting devices and an ohmic contact therefor
US5515393A (en) Semiconductor laser with ZnMgSSe cladding layers
KR910003465B1 (en) Opto-electronic device
US5616937A (en) Compound semiconductor luminescent device
US5268918A (en) Semiconductor laser
US5508522A (en) Method for producing a group II-VI compound semiconductor thin film and a group II-VI compound semiconductor device
US5299217A (en) Semiconductor light-emitting device with cadmium zinc selenide layer
US5633514A (en) Semiconductor light emitting device with lattice-matching and lattice-mismatching
EP0556461B1 (en) Semiconductor laser
JPH07202340A (en) Visible-light semiconductor laser
JPH09199783A (en) Semiconductor light emitting element
JPH0897519A (en) Semiconductor light-emitting device
JPH06244499A (en) Laser diode
US5375134A (en) Semiconductor light emitting device
JP3141430B2 (en) Semiconductor laser
JP3562518B2 (en) Semiconductor light emitting device
US5491709A (en) Semiconductor laser device
JP3233330B2 (en) Semiconductor light emitting device and method of manufacturing the same
EP0523597B1 (en) Semiconductor laser
JP3164482B2 (en) Crystal growth method and semiconductor device manufacturing method using the crystal growth method
JPH06244498A (en) Laser diode
JPH08222811A (en) Semiconductor light-emitting element
JPH0878729A (en) Semiconductor element
JP3557644B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041018