JPH06242525A - Radiation image reader - Google Patents

Radiation image reader

Info

Publication number
JPH06242525A
JPH06242525A JP3007193A JP3007193A JPH06242525A JP H06242525 A JPH06242525 A JP H06242525A JP 3007193 A JP3007193 A JP 3007193A JP 3007193 A JP3007193 A JP 3007193A JP H06242525 A JPH06242525 A JP H06242525A
Authority
JP
Japan
Prior art keywords
intensity
image
radiation
image signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3007193A
Other languages
Japanese (ja)
Inventor
Hideyuki Handa
英幸 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP3007193A priority Critical patent/JPH06242525A/en
Publication of JPH06242525A publication Critical patent/JPH06242525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the distortion of a radiation image, and to improve S/N. CONSTITUTION:The amplification factor of a photoelectric amplifier 52E is set by an amplification factor controlling part 53G so as to be a level being a supersaturated condition obtained when a laser beam having maximum intensity from a laser beam generating part 52A scans a stimulable phosphor panel, the intensity of the laser beam is controlled to be the maximum intensity by an intensity converting circuit 53E and a laser controlling part 53F till an image signal detected at the photoelectric amplifier 52E approaches the saturated level, and the image signal is attenuated so as not to be saturated in the vicinity of the saturated level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放射線画像読取り装置に
関し、詳しくは、画像信号の歪み及び残光の影響による
画像のS/N比劣化を抑制する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation image reading apparatus, and more particularly, to a technique for suppressing S / N ratio deterioration of an image due to the influence of image signal distortion and afterglow.

【0002】[0002]

【従来の技術】X線画像のような放射線画像は、病気診
断用などに多く用いられており、このX線画像を得るた
めに、被写体を透過したX線を蛍光スクリーン(蛍光体
層)に照射し、これにより透過線量に応じた可視光を生
じさせて、この可視光を通常の写真と同様に銀塩を使用
したフィルムに照射して現像した、所謂、放射線写真が
従来から多く利用されている。
2. Description of the Related Art Radiation images such as X-ray images are often used for diagnosing diseases, etc. In order to obtain this X-ray image, X-rays transmitted through a subject are displayed on a fluorescent screen (phosphor layer). Irradiation is performed to generate visible light according to the transmitted dose, and this visible light is applied to a film using a silver salt as in ordinary photography to develop the film. ing.

【0003】しかし、近年、銀塩を塗布したフィルムを
使用しないで、蛍光体層から直接画像情報を読み取る方
法が工夫されるようになってきている。かかる方法とし
ては、被写体を透過した放射線を輝尽性蛍光体に吸収せ
しめ、しかる後、この輝尽性蛍光体を例えば光又は熱エ
ネルギーなどで励起することによりこの輝尽性蛍光体が
上記吸収により蓄積している放射線エネルギー(放射線
画像情報)を蛍光として輝尽発光せしめ、この輝尽発光
光を光電変換して画像信号を得る方法がある。
However, in recent years, a method for directly reading image information from a phosphor layer has been devised without using a film coated with silver salt. As such a method, the radiation transmitted through the subject is absorbed by the stimulable phosphor, and then the stimulable phosphor is excited by, for example, light or thermal energy to absorb the stimulable phosphor. There is a method in which the accumulated radiation energy (radiation image information) is stimulated to emit fluorescence as fluorescence, and the stimulated emission light is photoelectrically converted to obtain an image signal.

【0004】具体的には、例えば米国特許3,859,527 号
及び特開昭55−12144 号公報等に、輝尽性蛍光体を用い
可視光線又は赤外線を輝尽励起光とした放射画像変換方
法が示されている。この方法は、支持体上に輝尽性蛍光
体層を形成した輝尽性蛍光パネルを使用するもので、こ
の輝尽性蛍光パネルの輝尽性蛍光体層に被写体を透過し
た放射線を当て、被写体各部の放射線透過率に対応する
放射線エネルギーを蓄積させて潜像を形成し、しかる
後、この輝尽性蛍光体層を輝尽励起光で走査することに
よって蓄積された放射線エネルギーを光に変換して放射
させ、この光信号を光電変換して放射線画像信号を得る
ものである。
Specifically, for example, US Pat. No. 3,859,527 and JP-A-55-12144 disclose a radiation image conversion method using a stimulable phosphor and using visible light or infrared light as stimulated excitation light. ing. This method uses a stimulable phosphor panel having a stimulable phosphor layer formed on a support, and irradiates the stimulable phosphor layer of this stimulable phosphor panel with radiation transmitted through a subject, A latent image is formed by accumulating radiation energy corresponding to the radiation transmittance of each part of the subject, and then the accumulated radiation energy is converted into light by scanning this stimulable phosphor layer with stimulating excitation light. Then, the light signal is photoelectrically converted to obtain a radiation image signal.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記のよう
に放射線エネルギーを光電変換して画像信号を得るもの
では、診断精度を上げるため被写体画像領域の階調性を
良好に確保する必要がある。そのため、従来例えば、特
開昭56−11347 号公報に示されるものでは、読取に先立
ち光量を一定に制御した励起光を光電変換器に導いて光
電変換し、その値を基準レベルに一致させるように光電
変換器の増幅率を制御している。
By the way, in the case of obtaining the image signal by photoelectrically converting the radiation energy as described above, it is necessary to ensure good gradation of the subject image area in order to improve the diagnostic accuracy. Therefore, in the prior art, for example, the one disclosed in Japanese Patent Laid-Open No. 56-11347, the excitation light whose light amount is controlled to be constant prior to reading is guided to a photoelectric converter to be photoelectrically converted so that the value is matched with a reference level. The gain of the photoelectric converter is controlled.

【0006】また、特開昭58−67240 号公報に示される
ものでは、まず弱い励起光による走査を行って被写体画
像領域の放射線強度のダイナミックレンジを検出し、該
画像のダイナミックレンジに合わせて読取のダイナミッ
クレンジを決定してから読取走査を行っている。さら
に、特開昭63- 189854号公報に示されるものでは、前記
同様にまず弱い励起光による走査を行って画像領域毎の
放射線強度を検出し、該強度に応じて飽和にならないよ
うに励起光の強度を制御しつつ、かつ該励起光強度に応
じてダイナミックレンジを圧縮しつつ読取を行ってい
る。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 58-67240, first, scanning with weak excitation light is performed to detect a dynamic range of radiation intensity in a subject image area, and reading is performed according to the dynamic range of the image. The scanning is performed after the dynamic range of is determined. Further, in the one disclosed in Japanese Patent Laid-Open No. 63-189854, the radiation intensity for each image area is first detected by performing scanning with weak excitation light in the same manner as described above, and the excitation light is adjusted so as not to be saturated depending on the intensity. The reading is performed while controlling the intensity of the light and compressing the dynamic range according to the intensity of the excitation light.

【0007】しかしながら、前記第1の従来例では撮影
条件に応じた増幅率の設定がなされるだけで、実際の画
像の放射線強度のダイナミックレンジに応じた設定では
ないため、必ずしも適切な増幅率に設定しきれるもので
はない。被写体画像領域の放射線強度のダイナミックレ
ンジに見合った増幅率に制御しようとすれば、第2,第
3の従来例同様弱い励起光での走査による所謂先読みに
より前記ダイナミックレンジの検出が必要となるが、か
かる先読み機能を備えると装置が大型化し複雑となる。
However, in the first conventional example, only the amplification factor is set according to the photographing condition, and not the dynamic range of the radiation intensity of the actual image. Therefore, the amplification factor is not always appropriate. It cannot be set completely. If it is attempted to control the amplification factor to match the dynamic range of the radiation intensity of the subject image area, it is necessary to detect the dynamic range by so-called pre-reading by scanning with weak excitation light as in the second and third conventional examples. If the pre-reading function is provided, the device becomes large and complicated.

【0008】また、輝尽性蛍光体は、前述のように励起
光を照射すると、蛍光体中に蓄積されている放射線エネ
ルギーを輝尽発光光として放出する性質を有するが、こ
の輝尽発光光は、励起光の照射が終わってもいわゆる残
光としてその蛍光体特有の応答時間だけ発光が続く。従
って、輝尽性蛍光パネルを励起光で走査し、輝尽性蛍光
体から放出される輝尽発光光を光電的に順次読み取って
画素単位の画像信号を得るときに、励起光照射中の画素
からの発光成分のみではなく、すでに励起光の照射が終
わった画素からの残光成分も含めて励起光照射中の画素
の情報成分が検出されることになる。このため、画素間
の信号の分離が完全になされず、コントラスト分解能が
低下し、また、再生画像の鮮鋭度が低下してしまい、極
端な場合には尾引きなどの偽画像が出てしまうことがあ
る。
Further, the stimulable phosphor has a property of emitting radiation energy accumulated in the phosphor as stimulated emission light when irradiated with excitation light as described above. Emits so-called afterglow for a response time peculiar to the phosphor even after the irradiation of the excitation light ends. Therefore, when the stimulable phosphor panel is scanned with the excitation light and the stimulated emission light emitted from the stimulable phosphor is photoelectrically sequentially read to obtain an image signal on a pixel-by-pixel basis, the pixels being irradiated with the excitation light are The information component of the pixel during the irradiation of the excitation light is detected in addition to the light emission component of the excitation light, including the afterglow component from the pixel that has already been irradiated with the excitation light. For this reason, the signals between pixels are not completely separated, the contrast resolution is lowered, and the sharpness of the reproduced image is lowered. In an extreme case, a false image such as tailing may appear. There is.

【0009】かかる残光の問題に対し、前記第2の従来
例のように被写体画像領域の放射線強度のダイナミック
レンジに合わせて読取のダイナミックレンジを決めたと
しても、被写体外側の放射線が素通りとなる領域 (以下
素通り領域という) では発光光強度が被写体画像領域に
比較して桁外れに大きくなるため、それに伴って残光も
極めて大きくなり、画像全体のS/ N比が大きく劣化し
てしまう。これは、第1の従来例についても同様であ
り、励起光強度を制御しない限り解決されない問題であ
る。
To solve the problem of afterglow, even when the dynamic range of reading is determined in accordance with the dynamic range of the radiation intensity of the subject image area as in the second conventional example, the radiation outside the subject passes through. In a region (hereinafter referred to as a “pass-through region”), the emitted light intensity becomes significantly higher than that in the subject image region, and accordingly, the afterglow also becomes extremely large, and the S / N ratio of the entire image deteriorates significantly. This is also the case with the first conventional example, which is a problem that cannot be solved unless the excitation light intensity is controlled.

【0010】第3の従来例では画像信号が飽和しないよ
うに励起光の強度を制御するため、前記残光の影響は改
善される。しかし、励起光の強度を可変制御するために
読取のダイナミックレンジを励起光の強度に比例的に圧
縮するようにしているが、励起光の強度と発光光の光量
とが必ずしも線形性を有しておらず、特に、励起光強
度,発光光光量の大きいレベルでは線形性が相当崩れる
ため、画像の歪みを発生し、真の放射線画像ではなくな
って画像処理を施す際に正常な処理が臨めなくなるとい
う問題がある。
In the third conventional example, since the intensity of the excitation light is controlled so that the image signal is not saturated, the influence of the afterglow is improved. However, in order to variably control the intensity of the excitation light, the reading dynamic range is compressed in proportion to the intensity of the excitation light, but the intensity of the excitation light and the amount of the emitted light do not always have linearity. Not, especially, the linearity is considerably destroyed at a level where the intensity of the excitation light and the amount of the emitted light are large, so that the image is distorted and the image is not a true radiation image and normal processing cannot be performed when performing image processing. There is a problem.

【0011】本発明はこのような従来の問題点に鑑みな
されたもので、光電変換の増幅率と励起光強度とを適切
に制御することにより、画像の歪みがなく、かつ、残光
の影響も極力回避できるようにした放射線読取装置を提
供することを目的とする。
The present invention has been made in view of such conventional problems, and by appropriately controlling the amplification factor of photoelectric conversion and the excitation light intensity, there is no image distortion and the influence of afterglow. It is an object of the present invention to provide a radiation reading device that can be avoided as much as possible.

【0012】[0012]

【課題を解決するための手段】このため本発明は図1に
示すように、被写体を透過した放射線発生源からの放射
線を輝尽性蛍光体に吸収させることで放射線画像情報を
蓄積記録する輝尽性蛍光パネルと、該輝尽性蛍光パネル
を励起光で走査することにより輝尽性蛍光体に蓄積記録
されている放射線画像情報を輝尽発光せしめる励起手段
と、前記輝尽発光光を光電的に読み取って画素単位の画
像信号を得る光電変換手段と、を含んで構成された放射
線画像読取装置において、前記光電変換手段の増幅率
を、前記輝尽性蛍光パネルの被写体外側を素通りした放
射線の吸収部分を最大強度の励起光で走査したときに光
電変換された画像信号レベルが過飽和状態となる値に制
御する増幅率制御手段と、前記励起光の強度を画像信号
レベルが飽和レベル近傍に達するまでは最大強度近傍の
所定レベルに制御し、画像信号が飽和レベル近傍に達す
ると飽和レベルを超えないように減衰させる光強度制御
手段と、を含んで構成した。
Therefore, according to the present invention, as shown in FIG. 1, a stimulable phosphor absorbs radiation emitted from a radiation source that has passed through an object to store and record radiation image information. Stimulable fluorescent panel, an excitation means for stimulating the radiation image information accumulated and recorded in the stimulable phosphor by scanning the stimulable fluorescent panel with excitation light, and the stimulable luminescent light is photoelectrically converted. In a radiation image reading apparatus configured to include a photoelectric conversion unit that obtains an image signal in a pixel unit by statically reading, the amplification factor of the photoelectric conversion unit is the radiation that passes through the outside of the subject of the stimulable fluorescent panel. Amplification rate control means for controlling the image signal level photoelectrically converted to a value at which the image signal level photoelectrically converted becomes supersaturated when the absorption portion of the image signal level is saturated with the image signal level. Until near is controlled to a predetermined level of the maximum intensity near the image signal is configured to include a light intensity control means for attenuating so as not to exceed the saturation level reaches the saturation level neighborhood.

【0013】また、図1に点線で示すように画像信号か
ら残光成分を除去する残光除去手段をを含んで構成して
もよい。また、図1に鎖線で示すように画像信号を励起
光の強度に応じて基準強度の励起光を照射した場合のレ
ベルに一致するように補償する信号補償手段を含んで構
成してもよい。
Further, as shown by a dotted line in FIG. 1, an afterglow removing means for removing an afterglow component from the image signal may be included. Further, as shown by a chain line in FIG. 1, a signal compensating means for compensating the image signal according to the intensity of the excitation light so as to match the level when the excitation light of the reference intensity is irradiated may be included.

【0014】[0014]

【作用】増幅率制御手段は、放射線画像情報を蓄積記録
した輝尽性蛍光パネルの放射線の素通り領域を最大強度
の励起光で走査したときには画像信号レベルが過飽和状
態となるように制御するが、被写体画像領域では前記素
通り領域に比較して放射線吸収量が桁違いに小さいた
め、光強度制御手段により最大強度近傍の所定レベルま
で高めても飽和することはない。一方、画像信号が飽和
レベル近傍まで増大すると飽和しないように励起光強度
を減衰させる構成としたため、放射線の素通り領域等で
も発光光の光量が所定レベル以下に抑えるられる。
The amplification factor control means controls the image signal level to be in a supersaturated state when the radiation passing area of the stimulable fluorescent panel storing and recording the radiation image information is scanned with the excitation light of maximum intensity. Since the radiation absorption amount in the subject image region is incomparably smaller than that in the pass-through region, it is not saturated even if the light intensity control means raises it to a predetermined level near the maximum intensity. On the other hand, since the excitation light intensity is attenuated so as not to be saturated when the image signal increases to near the saturation level, the light amount of the emitted light is suppressed to a predetermined level or less even in the radiation passing area.

【0015】その結果、被写体画像領域の階調性を良好
に保持しつつ残光の影響が効果的に回避されてS/N比
の劣化を抑制した良好な画質が得られる。また、残光成
分除去手段を備えたものでは、例えば残光強度を指数的
にモデル化して残光を除去することを併用することによ
り、前記励起光強度の減衰制御と相まって残光の影響を
可及的に回避することができる。
As a result, good image quality is obtained in which the effect of afterglow is effectively avoided while maintaining good gradation of the subject image area, and deterioration of the S / N ratio is suppressed. Further, in the one provided with the afterglow component removing means, for example, the effect of the afterglow is coupled with the attenuation control of the excitation light intensity by jointly using afterglow modeling by exponentially modeling the afterglow intensity. It can be avoided as much as possible.

【0016】また、信号補償手段を備えたものでは、画
像信号が基準強度 (例えば前記所定レベル) の励起光を
照射した場合のレベルに一致するように補償されるた
め、肺領域等発光光の光量が飽和レベルに近く励起光の
強度と発光光の光量との線形性が崩れるような画像領域
でも歪みのない再現画像を得ることができ、かつ、放射
線の素通り領域の濃度も真の放射線吸収量に見合った濃
い濃度となって被写体画像領域との区分が明瞭となって
見やすい画像を得られる。
Further, in the case where the signal compensating means is provided, since the image signal is compensated so as to match the level when the excitation light of the reference intensity (for example, the predetermined level) is irradiated, the light emitted from the lung region or the like is compensated. It is possible to obtain a reproduced image without distortion even in an image area where the linearity between the intensity of the excitation light and the light intensity of the emitted light collapses near the saturation level, and the concentration of the radiation passing area is also true radiation absorption. The density becomes darker in proportion to the amount, and the distinction from the subject image area becomes clear, and an easy-to-see image can be obtained.

【0017】[0017]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。図2は本発明にかかる放射線画像読取り装置の一実
施例におけるハードウェア構成を示す概要図であり、本
実施例では医療用としての人体の胸部放射線撮影に適用
した場合を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a schematic diagram showing the hardware configuration of an embodiment of the radiation image reading apparatus according to the present invention, and this embodiment shows a case where it is applied to chest radiography of a human body for medical use.

【0018】一連の放射線照射及び画像読取操作につい
て説明する。操作卓1には、コンピュータから撮影のオ
ーダー・データが入力され、該入力データに基づいて患
者氏名,年齢その他の情報の他、撮影部位等のオーダー
情報が表示される。技師は、撮影オーダーの予約リスト
を操作卓1で確認し、撮影条件を設定し、X線操作卓2
を操作してX線発生制御器3を作動させ、X線管4から
放射線としてX線を被写体Mに照射して読取装置5内部
に固定された輝尽性蛍光パネル51上に撮影する。ここ
で、輝尽性蛍光パネル51上への撮影は、前記X線管4か
らの照射X線量に対する被写体MのX線透過率分布に従
ったエネルギーを内設された輝尽性蛍光体層に蓄積し、
該輝尽性蛍光体層に被写体Mの潜像を形成することによ
り行われる。前記輝尽性蛍光体層の材料としては、例え
ば、特開昭61−72091号公報、或いは、特開昭5
9−75200号公報に開示されるような材料が使われ
る。
A series of radiation irradiation and image reading operations will be described. Imaging order data is input to the operator console 1 from a computer, and based on the input data, the patient name, age, and other information, as well as order information such as an imaging region is displayed. The technician confirms the reservation list of imaging orders on the operator console 1, sets the imaging conditions, and sets the X-ray operator console 2
Is operated to operate the X-ray generation controller 3 to irradiate the subject M with X-rays as radiation from the X-ray tube 4 to photograph on the stimulable fluorescent panel 51 fixed inside the reader 5. Here, the photographing on the stimulable phosphor panel 51 is performed on the stimulable phosphor layer in which the energy according to the X-ray transmittance distribution of the subject M with respect to the irradiation X-ray dose from the X-ray tube 4 is provided. Accumulate,
This is performed by forming a latent image of the subject M on the stimulable phosphor layer. Examples of the material for the stimulable phosphor layer include, for example, JP-A-61-27201, or JP-A-5-72091.
Materials such as those disclosed in 9-75200 are used.

【0019】読取装置5は、X線操作卓2と連動して撮
影が済むと直ぐ撮影部位や条件に基づいて読取を開始す
る。読取は前記輝尽性蛍光パネル51上を光学系52が移動
しながら走査することにより行われる。かかる制御は装
置5内の制御部53により後述するようにして行われる。
The reading device 5 starts reading based on the imaged region and conditions immediately after the image is taken in association with the X-ray console 2. Reading is performed by scanning while moving the optical system 52 on the stimulable fluorescent panel 51. Such control is performed by the control unit 53 in the device 5 as described later.

【0020】読取が終了すると、消去ランプ54により輝
尽性蛍光パネル51は全面をリフレッシュ (残存するX線
エネルギの除去) され、それによって次の撮影が可能と
なる。読取装置5で読み取られた画像信号は、画像処理
装置6に送信され、自動的に撮影部位に対して最も好ま
しいと思われる処理を施し、CRT等の表示装置7に表
示される。もし処理が意にそぐわないものであれば、自
動処理モードを解除して手動で処理を変更する。
When the reading is completed, the erasing lamp 54 refreshes the entire surface of the stimulable fluorescent panel 51 (removes the remaining X-ray energy), thereby enabling the next photographing. The image signal read by the reading device 5 is transmitted to the image processing device 6, automatically subjected to the most preferable process for the imaged region, and displayed on the display device 7 such as a CRT. If the process does not suit you, release the automatic process mode and change the process manually.

【0021】最終的に問題なければ、フィルムプリンタ
8へ送信してフィルムハードコピーへの再生を行う。画
像処理装置6には、画像メモリとしてハードディスクを
内蔵しているので、撮影を処理として独立に実行した
り、処理をバッチ的に行うことができる。前記読取装置
5の前記制御部53の構成及び機能を図3に基づいて説明
する。
Finally, if there is no problem, the data is transmitted to the film printer 8 and reproduced as a film hard copy. Since the image processing device 6 has a hard disk built therein as an image memory, it is possible to independently perform shooting as a process or perform the process in batch. The configuration and function of the control unit 53 of the reading device 5 will be described with reference to FIG.

【0022】基本的な構成の概要から説明すると、読取
は輝尽性蛍光パネル51へ励起光としてレーザ光を照射し
つつ、それによって輝尽性蛍光パネル51から発光する発
光光を光電変換して画像信号を得るものであり、被写体
画像の読取前の光電変換の増幅率の設定と、読取時にお
ける検出された画像信号レベルに基づくレーザ光強度の
フィードバック制御とに本発明の特徴を有する。
To explain from the outline of the basic configuration, the reading is performed by irradiating the photostimulable fluorescent panel 51 with laser light as excitation light, and photoelectrically converting the emitted light emitted from the photostimulable fluorescent panel 51. An image signal is obtained, and the features of the present invention are the setting of the amplification factor of photoelectric conversion before the reading of the subject image and the feedback control of the laser light intensity based on the detected image signal level at the time of reading.

【0023】次に個々の回路の機能について説明する。
レーザ光源(本実施例では半導体レーザを用いるが適切
な変調手段と一緒に使用したガスレーザでもよい) 52A
は、出射強度が制御されたレーザ光を発生し、そのレー
ザ光は前記光学系52によって偏向されて、輝尽性蛍光パ
ネル4に輝尽励起用の走査光(励起光)として導かれ
る。従って、本実施例における励起手段は、前記光学系
52とレーザ光源52Aとによって構成される。
Next, the function of each circuit will be described.
Laser light source (semiconductor laser is used in this embodiment, but gas laser used together with appropriate modulation means may be used) 52A
Emits laser light whose emission intensity is controlled, and the laser light is deflected by the optical system 52 and guided to the stimulable fluorescent panel 4 as scanning light (excitation light) for exciting excitation. Therefore, the excitation means in this embodiment is the optical system
52 and a laser light source 52A.

【0024】光電増幅器52Eは、前記励起光の走査によ
って輝尽性蛍光パネル51から発光される潜像エネルギー
に比例した発光強度の輝尽発光を集光体を介して受光し
て光電変換するものである。かかる光電増幅器52Eの増
幅率が増幅率制御手段としての増幅率制御部53Gからの
信号により制御される。ここで、適切な増幅率の値は撮
影部位や条件によってある程度は変化するが、最大強度
のレーザ光をその撮影条件における輝尽性蛍光パネル51
のX線素通り領域に照射したときに、後述するA/D変
換器53Dの上限を超えて過飽和となるように設定する。
具体的には、該上限の3倍〜20倍に設定する。そのた
め、被写体のない状態で通常の撮影条件で撮影を行い、
強度調整信号によってレーザ光の強度を最大強度の1/
8程度に固定して読取を行う。そして、該読取を行いつ
つ光電増幅器52Eの増幅率を低レベルから高めていき、
検出される画像信号の出力が飽和レベルに達した段階の
増幅率を記憶しておき、被写体 (患者) の撮影時に利用
する。
The photoelectric amplifier 52E receives the photostimulated luminescence having a luminescence intensity proportional to the latent image energy emitted from the stimulable fluorescent panel 51 by the scanning of the excitation light through a condenser and photoelectrically converts it. Is. The amplification factor of the photoelectric amplifier 52E is controlled by the signal from the amplification factor control unit 53G as the amplification factor control means. Here, although the value of the appropriate amplification factor changes to some extent depending on the imaging site and conditions, the stimulable fluorescent panel 51 under the imaging conditions is the laser beam with the maximum intensity.
When the X-ray passing region is irradiated with, the setting is made so as to exceed the upper limit of the A / D converter 53D, which will be described later, and become supersaturated.
Specifically, it is set to 3 to 20 times the upper limit. Therefore, shoot under normal shooting conditions with no subject,
The intensity of the laser light is adjusted to 1 / maximum of the maximum intensity by the intensity adjustment signal
It is fixed at about 8 and read. Then, while performing the reading, the amplification factor of the photoelectric amplifier 52E is increased from a low level,
The amplification factor at the time when the output of the detected image signal reaches the saturation level is stored and used when photographing the subject (patient).

【0025】対数アンプ53Cは、前記光電増幅器52Eに
より光電変換され増幅された画像信号を対数に対してリ
ニアになるように変換する。これは、低レベルの信号の
量子化誤差を減らすためである。即ち、対数アンプ53C
からのアナログ信号はA/D変換器53Dによってデジタ
ル信号に変換されるが、A/D変換器53Dのダイナミッ
クレンジは3桁程度であり、それを超えると飽和してし
まい、光電変換された画像信号をそのままA/D変換す
ると低信号レベルは殆ど量子化されず、最も重要な被写
体画像領域の階調が良好でなくなり診断上好ましくない
画像となる。そのため、上記対数変換を行って低信号レ
ベルを充分細かく量子化して誤差を低減するのである。
The logarithmic amplifier 53C converts the image signal photoelectrically converted and amplified by the photoelectric amplifier 52E so as to be linear with respect to the logarithm. This is to reduce the quantization error of low level signals. That is, logarithmic amplifier 53C
The analog signal from is converted into a digital signal by the A / D converter 53D, but the dynamic range of the A / D converter 53D is about 3 digits, and if it exceeds it, it will be saturated and the photoelectrically converted image will be generated. When the signal is A / D converted as it is, the low signal level is hardly quantized, and the gradation of the most important subject image area is not good, resulting in an image unfavorable for diagnosis. Therefore, the logarithmic transformation is performed to quantize the low signal level sufficiently finely to reduce the error.

【0026】このようにしてA/D変換されたデジタル
画像信号は、レーザ光の強度制御を実行するための検出
信号として強度変換回路53Eに出力されると共に、輝尽
性蛍光パネル51に残存する残光を除去する残光除去部53
H (初段の逆対数変換回路53H1 ) に出力される。強度
変換回路53Eは、検出された画像信号レベルに応じて光
強度制御信号を出力する変換回路である。その変換特性
は図4に示すように検出される画像信号が飽和レベルに
近づくまでは光強度制御信号を一定の最大レベルに固定
し、飽和レベルに近づくと光強度を減衰させる特性を有
している。光強度は、最大レベルで輝尽性蛍光パネル51
面上で200mW で2桁を減衰させることができる。また、
制御回路53Oからの後述する強度調整信号が入力される
ときには、該強度調整信号によって設定される光強度に
強制的に固定されるようになっている。実質的に画像信
号が飽和レベルに近づくのは輝尽性蛍光パネル51の被写
体外側の素通り領域若しくは肺領域等空洞に近い領域で
ある。したがって、例えば胸部撮影を行う場合、図5に
示すように、輝尽性蛍光パネル51の肺領域を除く被写体
領域には最大レベルのレーザ光が照射され、肺領域では
最大レベルより強度を減衰されたレーザ光が照射され、
素通り領域では強度を大きく減衰されたレーザ光が照射
されることとなる。また、このとき光電増幅器52Eによ
って検出される画像信号は、図5に示すようになり、前
記したように検出信号レベルの飽和領域近傍においてレ
ーザ光の強度が急激に減衰されるので、素通り領域でも
飽和に近づけられるが飽和には達しない。
The digital image signal thus A / D converted is output to the intensity conversion circuit 53E as a detection signal for controlling the intensity of the laser light and remains on the stimulable fluorescent panel 51. Afterglow removal unit 53 that removes afterglow
It is output to H (the antilog conversion circuit 53H 1 at the first stage). The intensity conversion circuit 53E is a conversion circuit that outputs a light intensity control signal according to the detected image signal level. As shown in FIG. 4, the conversion characteristic is such that the light intensity control signal is fixed to a certain maximum level until the detected image signal approaches the saturation level, and the light intensity is attenuated when the saturation level approaches. There is. The light intensity is at the maximum level.
It can attenuate two orders of magnitude at 200mW on the surface. Also,
When an intensity adjustment signal to be described later is input from the control circuit 53O, it is forcibly fixed to the light intensity set by the intensity adjustment signal. The image signal is substantially close to the saturation level in the area outside the subject of the stimulable fluorescent panel 51, that is, in the pass-through area or the area near the cavity such as the lung area. Therefore, for example, when performing a chest radiography, as shown in FIG. 5, the subject region except the lung region of the stimulable fluorescent panel 51 is irradiated with the maximum level of laser light, and the intensity is attenuated from the maximum level in the lung region. Laser light is emitted,
In the pass-through region, the laser beam whose intensity is greatly attenuated is irradiated. Further, the image signal detected by the photoelectric amplifier 52E at this time is as shown in FIG. 5, and as described above, the intensity of the laser beam is rapidly attenuated in the vicinity of the saturation region of the detection signal level. It approaches saturation, but does not reach saturation.

【0027】レーザ制御部53Fは、前記強度変換回路53
Eからの光強度制御信号に基づいて、レーザ光強度を制
御する。また、レーザ光源52Aから発生するレーザ光の
光量をモニターした信号を入力し、モニターされた光量
が光強度制御信号の制御光量と一致するように強度がフ
ィードバック制御される。ただし、主走査の有効領域外
では散乱光の影響を取り除くため、主走査有効信号によ
りレーザ光はOFFされる。尚、前記強度変換回路53E
と前記レーザ制御部53Fとで光強度制御手段が構成され
る。
The laser control section 53F includes the intensity conversion circuit 53.
The laser light intensity is controlled based on the light intensity control signal from E. Further, a signal monitoring the light quantity of the laser light generated from the laser light source 52A is input, and the intensity is feedback-controlled so that the monitored light quantity matches the control light quantity of the light intensity control signal. However, in order to eliminate the influence of scattered light outside the effective area for main scanning, the laser light is turned off by the main scanning effective signal. The intensity conversion circuit 53E
The laser control section 53F constitutes a light intensity control means.

【0028】前記残光除去手段としての残光除去部53H
は、逆対数変換回路53H1 ,残光除去フィルタ回路53H
2 ,対数変換回路53H2 とで構成される。逆対数変換回
路53H1 は、残光を累積して演算する必要があるため対
数に変換された特性を一旦リニア特性に変換して演算す
るもので、残光除去フィルタ回路53H2 により残光成分
を除去した後、再度対数変換回路53H2 によって対数特
性に変換する。ここで、残光の影響について考察する
と、輝尽性蛍光パネル51にレーザ光を一瞬照射すると、
発光光はレーザ光の照射終了後も残光を発光する (図6
参照) 。この残光量Lは次式により求められる。
An afterglow removing section 53H as the afterglow removing means.
Is an inverse logarithmic conversion circuit 53H 1 and an afterglow removal filter circuit 53H.
2 and a logarithmic conversion circuit 53H 2 . Since the inverse logarithmic conversion circuit 53H 1 needs to accumulate and calculate afterglow, the characteristic converted into logarithm is once converted into linear characteristic for calculation, and the afterglow removal filter circuit 53H 2 causes afterglow component. after removal of, it converted to a logarithmic characteristic by the logarithmic converter 53H 2 again. Here, considering the effect of afterglow, when the photostimulable fluorescent panel 51 is irradiated with laser light for a moment,
The emitted light emits afterglow even after the irradiation of laser light is completed (Fig. 6).
See). The amount of afterglow L is calculated by the following equation.

【0029】L=L0 ・β・exp(−t/τ) β:初期減衰係数, τ: 減衰時定数 レーザ光を走査すると、走査軌跡の発光量に対して上記
残光成分が現れる。集光器52Dは主走査方向の発光を全
て集光するので、レーザ光照射位置以外の残光を同時に
検出することとなる。特に、X線の素通り領域では発光
量が被写体領域に比較して1桁以上大きいので残光も大
きくなる (図5参照) 。
L = L 0 · β · exp (-t / τ) β: initial attenuation coefficient, τ: attenuation time constant When the laser light is scanned, the above-mentioned afterglow component appears with respect to the light emission amount of the scanning locus. Since the light collector 52D collects all the light emitted in the main scanning direction, the afterglow other than the laser light irradiation position is detected at the same time. In particular, in the X-ray passing region, the amount of light emission is larger than that of the subject region by one digit or more, and the afterglow is also large (see FIG. 5).

【0030】かかる残光成分を除去する前記残光除去フ
ィルタ回路53H2 は、例えば図7に示すように構成され
ている。この回路の演算機能は次式で示される。 S’ (n) =S (n) −β・Σ[S (k) ・δn-1-k ] [但し、画像信号のサンプリング周期をΔtとしたとき
δ=exp(−Δt/τ)] かかる残光成分の除去に際し、前記したように画像信号
が飽和に達していないため、発光量の大きい領域におい
ても前記除去を正しく実行することができる。また、か
かる除去は、指数的に変化するようにモデル化された残
光に対して行われるが、実際には残光の中にはランダム
な光量子ノイズ成分を有しており、かかるランダムな成
分の除去は不可能である。そして、かかるランダム成分
は残光が強い所程大きくなるので、X線の素通り領域の
ようなところが最も問題となるが、本発明ではかかる残
光が強くなる領域でレーザ光の強度を急激に減衰させて
残光の発生量を充分小さく抑えることができるので、ラ
ンダム成分の発生も抑えられ、画像のS/N比の劣化を
防止でき、画質を高めることができる。即ち、前記残光
除去を行うことで、残光の影響を可及的に無くすことが
できることは勿論であるが、該残光除去を行わず、前記
本発明に係る飽和領域近傍でのレーザ光の強度減衰制御
を行うだけでも残光の影響を大きく回避することができ
るものである。
The afterglow removing filter circuit 53H 2 for removing such afterglow components is constructed as shown in FIG. 7, for example. The arithmetic function of this circuit is shown by the following equation. S ′ (n) = S (n) −β · Σ [S (k) · δ n-1-k ] [where δ = exp (-Δt / τ) when the sampling period of the image signal is Δt] When the afterglow component is removed, the image signal does not reach saturation as described above, so that the removal can be correctly performed even in a region having a large light emission amount. Further, such removal is performed on the afterglow modeled to change exponentially, but in reality, the afterglow has a random photon noise component, and such a random component Is impossible to remove. Since the random component becomes larger in a region where the afterglow is stronger, a problem such as an X-ray passing region becomes the most problematic. However, in the present invention, the intensity of the laser light is rapidly attenuated in the region where the afterglow becomes strong. As a result, the amount of afterglow generated can be suppressed to a sufficiently small level, the generation of random components can also be suppressed, the deterioration of the S / N ratio of the image can be prevented, and the image quality can be improved. That is, the effect of afterglow can be eliminated as much as possible by performing the afterglow removal, but the afterglow removal is not performed, and the laser beam in the vicinity of the saturation region according to the present invention is removed. The effect of afterglow can be largely avoided only by performing the intensity attenuation control of.

【0031】前記残光除去部53Hによって残光を除去さ
れた画像信号は、補償回路53Iに出力される。補償回路
53Iには、前記画像信号の他、補償特性変換回路53Jか
らの補償信号が入力される。補償特性変換回路53Jは、
前記光強度制御信号の変化に伴い画像信号を補償する。
即ち、本発明では前記したように検出される画像信号レ
ベルが飽和に近づく領域でレーザ光強度を変えるため、
該領域の検出信号をそのまま画像信号として出力する
と、該領域の再現画像の濃度が異常に低下してしまう。
また、このようにレーザ光の強度が大の領域ではレーザ
光強度に対する発光量の線形性が光強度大の領域では崩
れてくるため、前記従来技術に開示されるように照射す
る光強度の増大に応じて光電変換のダイナミックレンジ
をリニアに圧縮する方式では画像に歪みが生じてしま
う。そこで、レーザ光強度を変えたときにも同一の強度
(実施例では最大強度) のレーザ光を照射したときに得
られる信号と一致するように補償するための補償信号を
形成する。具体的には、図8に示すレーザ光強度に対す
る発光量の特性を予め記憶しておいて、図9に示すよう
な補償信号log(L/L0) を形成する。ここで、L0 は光強
度制御信号を最大として最大強度のレーザ光を照射した
ときの発光量であり、Lは任意レベルの光強度制御信号
のレーザ光を照射したときの発光量である。
The image signal from which the afterglow is removed by the afterglow remover 53H is output to the compensation circuit 53I. Compensation circuit
In addition to the image signal, the compensation signal from the compensation characteristic conversion circuit 53J is input to 53I. The compensation characteristic conversion circuit 53J is
The image signal is compensated according to the change of the light intensity control signal.
That is, in the present invention, since the laser light intensity is changed in the region where the image signal level detected as described above approaches saturation,
If the detection signal of the area is directly output as an image signal, the density of the reproduced image of the area will be abnormally lowered.
Further, since the linearity of the light emission amount with respect to the laser light intensity is broken in the region where the intensity of the laser light is large as described above, the intensity of the light to be irradiated is increased as disclosed in the prior art. According to the method, a system in which the dynamic range of photoelectric conversion is linearly compressed causes distortion of an image. Therefore, the same intensity is obtained when the laser light intensity is changed.
A compensating signal for compensating is formed so as to match the signal obtained when the laser beam of the maximum intensity is irradiated in the embodiment. Specifically, the characteristic of the light emission amount with respect to the laser light intensity shown in FIG. 8 is stored in advance, and the compensation signal log (L / L 0 ) as shown in FIG. 9 is formed. Here, L 0 is the amount of light emitted when the laser beam with the maximum intensity is irradiated with the light intensity control signal being the maximum, and L is the amount of light emitted when the laser beam with the light intensity control signal of an arbitrary level is emitted.

【0032】補償回路53Iは、前記したように残光除去
部53Hからの画像信号と前記補償信号とを入力してこれ
らを加算する加算回路で構成される。即ち、本実施例で
は前記画像信号と補償信号とは共に対数特性であるの
で、両信号を加算することで画像信号はL/L0倍に補償さ
れる。前記胸部撮影の場合、肺領域を除く領域ではL=
0 であるのでそのままであるが、肺領域及びX線素通
り領域ではL/L0倍 (対数では加算) に補償されることに
より、これらの領域でも最大レベルのレーザ光が照射さ
れたときの信号レベルとなるように補償される。かかる
補償の結果、肺領域のようにレーザ光の強度が大きくレ
ーザ光強度に対する発光光の光量が線形性を有しない領
域でも歪みのない再現画像を得ることができ、また、X
線素通り領域の濃度も真のX線吸収量に見合った濃い濃
度となって被写体画像領域との区分けが明瞭となり見や
すい画像が得られる。また、このように補償された画像
信号は光電変換された補償前の画像信号レベルよりレン
ジが拡げられ、それによって階調性を高められる。これ
ら補償特性変換回路53J及び補償回路53Iとで信号補償
手段が構成される。
The compensating circuit 53I is composed of an adding circuit for inputting the image signal from the afterglow removing section 53H and the compensating signal and adding them as described above. That is, in the present embodiment, since both the image signal and the compensation signal have logarithmic characteristics, the image signal is compensated L / L 0 times by adding both signals. In the case of the chest radiography, L =
Since it is L 0, it is as it is, but in the lung region and the X-ray passing region, it is compensated by L / L 0 times (addition in logarithm), so that the laser beam of the maximum level is irradiated even in these regions. The signal level is compensated. As a result of such compensation, it is possible to obtain a distortion-free reproduced image even in a region where the intensity of laser light is large and the amount of emitted light with respect to the laser light intensity is not linear, such as in the lung region.
The density of the line-passing region also becomes a high density corresponding to the true X-ray absorption amount, and the image is clearly distinguished from the subject image region and an easy-to-see image is obtained. Further, the range of the image signal thus compensated is expanded from the level of the photoelectrically converted image signal before compensation, whereby the gradation is enhanced. The compensation characteristic conversion circuit 53J and the compensation circuit 53I constitute a signal compensation means.

【0033】なお、肺の画像のように画像信号レベルが
飽和近くまで達する場合は、前記補償によって画像の歪
みを無くせる効果があるが、その他の胃等の撮影では、
被写体画像の全域でX線吸収量が大きいから該全域でX
線を最大レベル一定に保持すればよく、したがって前記
補償を行わなくともX線素通り領域の濃度が異常に低く
なる問題はあるが被写体画像領域に関しては良好な画像
が得られるので、簡易的には補償を省略することもでき
る。
When the image signal level reaches near saturation like an image of the lung, the above-described compensation has an effect of eliminating the distortion of the image.
Since the amount of X-ray absorption is large in the entire area of the subject image, X
It is only necessary to keep the line constant at the maximum level. Therefore, there is a problem that the density of the X-ray passing region becomes abnormally low without performing the compensation, but a good image can be obtained in the subject image region. Compensation can be omitted.

【0034】このようにして補償された画像信号は、固
定パターン除去回路53Kに出力される。固定パターン除
去回路53Kは固定パターンメモリ53Lに記憶された読取
装置5の走査に特有の固定パターン成分を前記画像信号
から除去した後、該画像信号を前記画像処理装置6へ出
力する。尚、これら各回路の制御は、制御データを授受
しつつ前記制御回路53Oにより行われる。
The image signal thus compensated is output to the fixed pattern removing circuit 53K. The fixed pattern removal circuit 53K removes the fixed pattern component stored in the fixed pattern memory 53L and peculiar to the scanning of the reading device 5 from the image signal, and then outputs the image signal to the image processing device 6. The control of each of these circuits is performed by the control circuit 53O while exchanging control data.

【0035】[0035]

【発明の効果】以上説明したように本発明にかかる放射
線画像読取装置によれば、光電変換増幅率を適正に設定
すると共に、光電変換された画像信号に基づいて該画像
信号の飽和近傍以外では励起光の強度を大きく一定に保
持し、飽和領域近傍では飽和しないように励起光強度を
減衰させる構成としたため、放射線の素通り領域等でも
発光光の光量を所定レベル以下に抑えることができ、も
って、被写体画像領域の階調性を良好に保持しつつ残光
の影響が効果的に回避されてS/N比の劣化を抑制した
良好な画質が得られる。
As described above, according to the radiation image reading apparatus of the present invention, the photoelectric conversion amplification factor is appropriately set, and the photoelectric conversion image signal is converted into a signal other than near the saturation of the image signal based on the image signal. Since the intensity of the excitation light is kept largely constant and the intensity of the excitation light is attenuated so as not to be saturated in the vicinity of the saturation region, it is possible to suppress the light amount of the emitted light to a predetermined level or less even in the radiation passing region. The effect of afterglow is effectively avoided while maintaining good gradation of the subject image area, and good image quality is obtained in which deterioration of the S / N ratio is suppressed.

【0036】また、残光成分の除去を併用することで、
残光の影響を可及的に回避することができる。更に、画
像信号を励起光の強度に応じて補償することで、肺等放
射線透過量が大きい画像領域でも歪みのない再現画像を
得ることができると共に、放射線の素通り領域の濃度も
濃く被写体画像領域との区分が明瞭で見やすい画像を得
られる。
By using the afterglow component removal in combination,
The influence of afterglow can be avoided as much as possible. Furthermore, by compensating the image signal according to the intensity of the excitation light, it is possible to obtain a reconstructed image without distortion even in an image region having a large radiation transmission amount such as the lungs, and the concentration of the radiation passing region is high, and the subject image region is also high. An image that is easy to see can be obtained with a clear distinction between and.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放射線画像読取装置における基本構成
要素を示すブロック図。
FIG. 1 is a block diagram showing basic components of a radiation image reading apparatus of the present invention.

【図2】本発明にかかる放射線画像読取装置の一実施例
のシステム外観図。
FIG. 2 is a system external view of an embodiment of a radiation image reading apparatus according to the present invention.

【図3】同上実施例における制御部のブロック図。FIG. 3 is a block diagram of a control unit in the embodiment.

【図4】同上実施例の光強度制御信号の特性を示す線
図。
FIG. 4 is a diagram showing characteristics of a light intensity control signal according to the above-mentioned embodiment.

【図5】同上実施例の胸部撮影における各部の信号状態
を示す図。
FIG. 5 is a diagram showing a signal state of each part in chest imaging according to the embodiment.

【図6】同上実施例における残光の発生状態を示す線
図。
FIG. 6 is a diagram showing a state of occurrence of afterglow in the same example.

【図7】同上実施例の残光除去回路の一例を示す回路
図。
FIG. 7 is a circuit diagram showing an example of an afterglow removing circuit according to the above embodiment.

【図8】同上実施例のレーザ光強度と発光光量の関係を
示す線図。
FIG. 8 is a diagram showing the relationship between the laser light intensity and the amount of emitted light in the same example.

【図9】同上実施例の光強度信号と補償信号との関係を
示す図。
FIG. 9 is a diagram showing a relationship between a light intensity signal and a compensation signal according to the embodiment.

【符号の説明】[Explanation of symbols]

5 放射線読取装置 51 輝尽性蛍光パネル 52A レーザ光発生部 52E 光電増幅器 53 制御部 53E 強度変換回路 53F レーザ制御部 53H 残光除去部 53I 補償回路 53J 補償特性変換回路 5 Radiation reader 51 Photostimulable fluorescent panel 52A Laser light generator 52E Photoelectric amplifier 53 Controller 53E Intensity conversion circuit 53F Laser controller 53H Afterglow eliminator 53I Compensation circuit 53J Compensation characteristic conversion circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被写体を透過した放射線発生源からの放射
線を輝尽性蛍光体に吸収させることで放射線画像情報を
蓄積記録する輝尽性蛍光パネルと、 該放射線画像変換パネルを励起光で走査することにより
輝尽性蛍光体に蓄積記録されている放射線画像情報を輝
尽発光せしめる励起手段と、 前記輝尽発光光を光電的に読み取って画素単位の画像信
号を得る光電変換手段と、 を含んで構成された放射線画像読取装置において、 前記光電変換手段の増幅率を、前記輝尽性蛍光パネルの
被写体外側を素通りした放射線の吸収部分を最大強度の
励起光で走査したときに光電変換された画像信号レベル
が過飽和状態となる値に制御する増幅率制御手段と、 前記励起光の強度を画像信号レベルが飽和レベル近傍に
達するまでは最大強度近傍の所定レベルに制御し、飽和
レベル近傍に達すると飽和レベルを超えないように減衰
させる光強度制御手段と、 を含んで構成したことを特徴とする放射線画像読取装
置。
1. A stimulable fluorescent panel that stores and records radiation image information by absorbing radiation from a radiation source that has passed through an object into a stimulable fluorescent material, and scans the radiation image conversion panel with excitation light. Excitation means for stimulating the radiation image information accumulated and recorded in the stimulable phosphor by stimulating, and photoelectric conversion means for photoelectrically reading the stimulating luminescence light to obtain an image signal of a pixel unit, In the radiation image reading device configured to include, the amplification factor of the photoelectric conversion unit is photoelectrically converted when the absorption portion of the radiation that has passed through the outside of the subject of the stimulable fluorescent panel is scanned with excitation light of maximum intensity. And an amplification factor control means for controlling the image signal level to a value at which the image signal level becomes supersaturated, and a predetermined level near the maximum intensity until the image signal level reaches the saturation level near the image signal level. Controlling the radiation image reading apparatus characterized by being configured to include a light intensity control means for attenuating so as not to exceed the saturation level reaches the saturation level near the.
【請求項2】前記画像信号から残光成分を除去する残光
除去手段を含んで構成したことを特徴とする請求項1に
記載の放射線画像読取装置。
2. The radiation image reading apparatus according to claim 1, further comprising afterglow removing means for removing an afterglow component from the image signal.
【請求項3】前記画像信号を励起光の強度に応じて基準
強度の励起光を照射した場合のレベルに一致するように
補償する信号補償手段を含んで構成したことを特徴とす
る請求項1又は2に記載の放射線画像読取装置。
3. A signal compensating means for compensating the image signal according to the intensity of the excitation light so as to match the level when the excitation light of the reference intensity is irradiated. Or the radiographic image reading device described in 2.
JP3007193A 1993-02-19 1993-02-19 Radiation image reader Pending JPH06242525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007193A JPH06242525A (en) 1993-02-19 1993-02-19 Radiation image reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007193A JPH06242525A (en) 1993-02-19 1993-02-19 Radiation image reader

Publications (1)

Publication Number Publication Date
JPH06242525A true JPH06242525A (en) 1994-09-02

Family

ID=12293581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007193A Pending JPH06242525A (en) 1993-02-19 1993-02-19 Radiation image reader

Country Status (1)

Country Link
JP (1) JPH06242525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209501A (en) * 1998-11-24 2000-07-28 Ge Medical Syst Sa Compensating method for thickness of organ
JP2001238870A (en) * 1999-12-28 2001-09-04 Ge Medical Syst Sa Method to compensate thickness of organ and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209501A (en) * 1998-11-24 2000-07-28 Ge Medical Syst Sa Compensating method for thickness of organ
JP2001238870A (en) * 1999-12-28 2001-09-04 Ge Medical Syst Sa Method to compensate thickness of organ and its device

Similar Documents

Publication Publication Date Title
JP3188491B2 (en) Dynamic compression method and apparatus for X-ray recording
JPS6262373B2 (en)
JP2509503B2 (en) Image processing method and apparatus
JP2952519B2 (en) Radiation image gradation converter
JPH06242525A (en) Radiation image reader
JP2670635B2 (en) Method and apparatus for displaying energy subtraction image
JP2005283798A (en) Radiographic system and radiograph reading method
JP2756346B2 (en) Method of erasing stimulable phosphor sheet
JPS61162037A (en) Method and apparatus for reading radiation picture information
JP2532951B2 (en) Energy-subtraction image forming method and apparatus
JP2694583B2 (en) Bone mineral analysis
JP2952483B2 (en) Radiation image information reading and displaying device
JP3888050B2 (en) Radiation image reading apparatus and radiation image reading method
JPS6262376B2 (en)
JPH03133278A (en) Method and apparatus for forming energy subtraction picture
JP2791887B2 (en) Radiation image information reading and displaying device
JPH067669B2 (en) Method and apparatus for improving image quality of energy subtraction image
JPS60222034A (en) Image formation in energy subtraction
JP2001292324A (en) Image processing apparatus and image processing method
JPH03133275A (en) Method and device for forming energy subtraction picture
JPH03265841A (en) Radiophotograph photographing device
JPH05309087A (en) Radiation image photographing/reading device
JPH04314432A (en) Method and apparatus for photographing and reading radiation image
JP2596887B2 (en) Radiation image reading method and apparatus
JP3038407B2 (en) Radiation image information reader