JPH06242087A - Ultrasonic flaw detecting system - Google Patents

Ultrasonic flaw detecting system

Info

Publication number
JPH06242087A
JPH06242087A JP5026760A JP2676093A JPH06242087A JP H06242087 A JPH06242087 A JP H06242087A JP 5026760 A JP5026760 A JP 5026760A JP 2676093 A JP2676093 A JP 2676093A JP H06242087 A JPH06242087 A JP H06242087A
Authority
JP
Japan
Prior art keywords
probe
subject
ultrasonic
scanning
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5026760A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishimori
博幸 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP5026760A priority Critical patent/JPH06242087A/en
Publication of JPH06242087A publication Critical patent/JPH06242087A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow high speed, high resolution ultrasonic flaw detecting operation for a specimen having free curve surface through a simple mechanism. CONSTITUTION:The ultrasonic flaw detecting system wherein an untrasonic probe 1 movable in Z-direction and communicating ultrasonic wave with a specimen scans, through a scanning means 4, on the specimen in the direction perpendicular to Z-direction to obtain ultrasonic signals from the specimen comprises means 19-21 for supporting the scanning means 4 movably in Z- direction with respect to the specimen, a dummy specimen 33 having surface profile simulating that of the specimen, and a copying means 22 moving up and down in Z-direction while copying the surface profile of the dummy specimen 33 thus moving the scanning means 4 in Z-direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検体と超音波探触子
との間で超音波を送受信しつつ、この超音波探触子を走
査することにより特定深さの被検体の超音波画像などを
得る超音波探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to transmit and receive ultrasonic waves between a subject and an ultrasonic probe while scanning the ultrasonic probe to obtain ultrasonic waves of the subject at a specific depth. The present invention relates to an ultrasonic flaw detector for obtaining images and the like.

【0002】[0002]

【従来の技術】図4は、この種の超音波探傷装置の従来
例を示す図であって、その回路構成を示すブロック図で
ある。図4において、1は被検体3との間で超音波の送
受信を行う超音波探触子であり、この超音波探触子1は
3次元走査装置4に取り付けられている。走査装置4
は、定盤10と、この定盤10の上に固定されたフレー
ム11と、このフレーム11に取り付けられたY軸スキ
ャナ12、X軸スキャナ13およびZ軸スキャナ14と
を備えている。Y軸スキャナ12は、駆動モータ17a
の駆動力によりフレーム11に対してY方向(図4の紙
面に直交する方向)に移動可能とされ、X軸スキャナ1
3は、駆動モータ17bの駆動力によりY軸スキャナ1
2に対してX方向(図4の左右方向)に移動可能とさ
れ、さらにZ軸スキャナ14は、駆動モータ17cの駆
動力によりX軸スキャナ13に対してZ方向(図4の上
下方向)に移動可能とされている。Z軸スキャナ14に
は治具18が固設されており、この治具18の先端に上
述の超音波探触子1が取り付けられている。16は水1
5が満たされた水槽であり、その深さ方向が走査装置4
のZ方向に一致するように定盤10上に配置されてい
る。被検体3はこの水槽16内に水没した状態で配置さ
れる。
2. Description of the Related Art FIG. 4 is a diagram showing a conventional example of this type of ultrasonic flaw detector, and is a block diagram showing the circuit configuration thereof. In FIG. 4, reference numeral 1 denotes an ultrasonic probe that transmits and receives ultrasonic waves to and from the subject 3, and the ultrasonic probe 1 is attached to the three-dimensional scanning device 4. Scanning device 4
Includes a surface plate 10, a frame 11 fixed on the surface plate 10, and a Y-axis scanner 12, an X-axis scanner 13 and a Z-axis scanner 14 attached to the frame 11. The Y-axis scanner 12 has a drive motor 17a.
The driving force of the X-axis scanner 1 enables movement in the Y direction (direction orthogonal to the paper surface of FIG. 4) with respect to the frame 11.
3 is the Y-axis scanner 1 by the driving force of the drive motor 17b.
2 is movable in the X direction (left and right direction in FIG. 4), and the Z axis scanner 14 is further moved in the Z direction (up and down direction in FIG. 4) with respect to the X axis scanner 13 by the driving force of the drive motor 17c. It is supposed to be movable. A jig 18 is fixed to the Z-axis scanner 14, and the ultrasonic probe 1 is attached to the tip of the jig 18. 16 is water 1
5 is a water tank filled with the scanning device 4 in the depth direction.
Are arranged on the surface plate 10 so as to coincide with the Z direction. The subject 3 is placed in the water tank 16 in a submerged state.

【0003】2は超音波送受信部であり、パルサレシー
バ2aおよびピーク検出器2bを備える。パルサレシー
バ2aは、探触子1にパルス状の電圧を印加してこの探
触子1から被検体3に向けて超音波を照射するととも
に、探触子1で受信されて電気信号に変換された被検体
3からの反射超音波信号を増幅する。ピーク検出器2b
は、パルサレシーバ2aからの受信信号から、任意の伝
播時間内の信号のピーク値に比例した直流電圧を出力す
る。コンピュータ5は超音波探傷装置全体の制御を行
い、操作者からの指示データ等はキーボード8を介して
入力される。コンピュータ5は、コントローラ6を介し
て走査装置4の各駆動モータ17a、17b、17cを
駆動制御し、超音波探触子1を走査して被検体3の各測
定点(通常はXY平面、XZ平面あるいはYZ平面上に
存在する)からの反射超音波を受信し、測定点毎に取り
込んで画像化したデータをモニタ7に表示する。
Reference numeral 2 denotes an ultrasonic wave transmitting / receiving section, which includes a pulsar receiver 2a and a peak detector 2b. The pulsar receiver 2a applies a pulsed voltage to the probe 1 to irradiate ultrasonic waves from the probe 1 toward the subject 3, and at the same time, is received by the probe 1 and converted into an electric signal. The reflected ultrasonic signal from the subject 3 is amplified. Peak detector 2b
Outputs a DC voltage proportional to the peak value of the signal within an arbitrary propagation time from the received signal from the pulser receiver 2a. The computer 5 controls the entire ultrasonic flaw detector, and instruction data and the like from the operator is input via the keyboard 8. The computer 5 drives and controls the drive motors 17a, 17b, and 17c of the scanning device 4 via the controller 6, scans the ultrasonic probe 1, and scans the measurement points of the subject 3 (usually XY plane, XZ). The reflected ultrasonic wave from the plane or the YZ plane) is received, and the monitor 7 displays the imaged data captured at each measurement point.

【0004】図5は、図4に適用される従来の超音波探
触子の一例を示す図である。図5に示すように、超音波
探触子1は、薄板あるいは薄膜状に形成された圧電素子
30と、この圧電素子30で発生した超音波を収束する
凹面31aが下端に形成された音響レンズ31とを備え
ている。超音波探触子1の音響レンズ31の下端から照
射される超音波ビームUBは、凹面31aの曲率で定ま
る各探触子固有の焦点距離fの位置Fで収束すべく水1
5内を伝播するが、超音波ビームUBが被検体3内に進
入するときは、被検体3と水15との音響インピーダン
スが異なることからこれらの界面で屈折し、通常は焦点
距離fより短い距離の焦点位置F′で収束する(図5に
実線で示す)。
FIG. 5 is a diagram showing an example of a conventional ultrasonic probe applied to FIG. As shown in FIG. 5, the ultrasonic probe 1 includes a piezoelectric element 30 formed in a thin plate or thin film shape, and an acoustic lens having a concave surface 31a for converging the ultrasonic waves generated by the piezoelectric element 30 at the lower end. 31 and 31 are provided. The ultrasonic beam UB emitted from the lower end of the acoustic lens 31 of the ultrasonic probe 1 is converged at the position F of the focal length f peculiar to each probe determined by the curvature of the concave surface 31a.
5, the ultrasonic beam UB is refracted at the interface when the ultrasonic beam UB enters the subject 3 because the acoustic impedances of the subject 3 and the water 15 are different, and is usually shorter than the focal length f. It converges at the focal position F ′ of the distance (shown by the solid line in FIG. 5).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の超音波探傷装置にあっては、被検体3の表面と
探触子1との間の距離(水距離)が変動するとこれに連
れて超音波ビームの焦点位置も変動し、超音波画像が不
鮮明になる等して分解能の劣化を招く、という問題があ
った。すなわち、近年、航空機等に用いられる3次元曲
面を有する複合材料の材料特性の測定に超音波探傷装置
が適用されつつあり、このような3次元曲面を有する材
料を測定すると、超音波探触子1がXY平面に沿って走
査された場合でも、被検体3の表面位置が各測定点で異
なるために被検体3の表面と超音波探触子1との間の距
離は必ずしも一定しない。このような場合、上述のごと
く超音波ビームUBが被検体3内に進入するときは、被
検体3と水15との音響インピーダンス差に基づく屈折
により超音波ビームUBは位置F′に収束され、被検体
3の表面と探触子1との間の距離が変動すると被検体3
への入射角がこれに連れて変動し、焦点位置F′も変動
する。そして、焦点位置が変動すると超音波画像が不鮮
明になる等して分解能の劣化を招くおそれがある。な
お、図5において被検体3の表面と焦点位置Fとが一致
する場合を二点鎖線で示す。
However, in the above-mentioned conventional ultrasonic flaw detector, when the distance (water distance) between the surface of the subject 3 and the probe 1 changes, this is accompanied. There is also a problem that the focal position of the ultrasonic beam also fluctuates, the ultrasonic image becomes unclear, and the resolution deteriorates. That is, in recent years, ultrasonic flaw detectors are being applied to the measurement of the material properties of composite materials having a three-dimensional curved surface used in aircraft and the like, and when measuring a material having such a three-dimensional curved surface, an ultrasonic probe is used. Even when 1 is scanned along the XY plane, the distance between the surface of the subject 3 and the ultrasonic probe 1 is not necessarily constant because the surface position of the subject 3 is different at each measurement point. In such a case, when the ultrasonic beam UB enters the subject 3 as described above, the ultrasonic beam UB is converged to the position F ′ by refraction based on the acoustic impedance difference between the subject 3 and the water 15. When the distance between the surface of the subject 3 and the probe 1 changes, the subject 3
The incident angle on the lens fluctuates accordingly, and the focal position F ′ also fluctuates. Then, if the focal position changes, the ultrasonic image may become unclear and the resolution may deteriorate. Note that, in FIG. 5, a case where the surface of the subject 3 and the focus position F coincide with each other is shown by a chain double-dashed line.

【0006】このため、従来の超音波探傷装置にあって
は、凹面31aの曲率が小さくて焦点距離の長い探触子
1を使用することにより被検体3への入射角を小さく
し、被検体3の表面と探触子1との間の距離が変動して
も焦点位置が大きく変動しないようにしていた。しかし
ながら、焦点距離が長い探触子は分解能が本来的に低い
ため、結果として本質的な解決策となっていない。
Therefore, in the conventional ultrasonic flaw detector, by using the probe 1 having a concave surface 31a having a small curvature and a long focal length, the incident angle to the object 3 is made small and the object 3 is made small. Even if the distance between the surface of No. 3 and the probe 1 changes, the focal position does not change greatly. However, a probe with a long focal length has inherently low resolution, and as a result is not an essential solution.

【0007】焦点距離が短くて分解能が高い探触子を使
用しつつ、超音波画像の不鮮明化等を防止する手法とし
ては、被検体3の表面と探触子1との間の距離を常に一
定に保持しつつ超音波探触子1を走査する手法が挙げら
れる。被検体3の表面と探触子1との間の距離を測定し
てこれを一定に保持する技術としては、例えば実開昭59
ー166164号公報、実開昭59ー194063号公報などに開示され
た技術がある。しかしながら、これら従来技術にあって
は、超音波により被検体と探触子との間の距離を測定
し、この距離が一定となるように被検体または探触子を
移動制御するものであるため、超音波探触子の走査機構
に加えて被検体または探触子の移動制御機構が加わり、
制御手順、機構が複雑になるとともに被検体の高速走査
が困難である、という問題があった。
As a technique for preventing blurring of an ultrasonic image while using a probe having a short focal length and a high resolution, the distance between the surface of the subject 3 and the probe 1 is always maintained. A method of scanning the ultrasonic probe 1 while keeping it constant can be mentioned. As a technique for measuring the distance between the surface of the subject 3 and the probe 1 and keeping the distance constant, for example, the actual open sho 59
There are technologies disclosed in Japanese Patent Publication No. 166164, Japanese Utility Model Publication No. 59-194063, and the like. However, in these conventional techniques, the distance between the subject and the probe is measured by ultrasonic waves, and the movement of the subject or the probe is controlled so that this distance becomes constant. , In addition to the scanning mechanism of the ultrasonic probe, the movement control mechanism of the subject or the probe is added,
There is a problem that the control procedure and mechanism are complicated and high-speed scanning of the subject is difficult.

【0008】本発明の目的は、自由曲面を有する被検体
に対して簡易な機構でありながら高分解能でかつ高速な
超音波探傷動作を行うことの可能な超音波探傷装置を提
供することにある。
An object of the present invention is to provide an ultrasonic flaw detector which is capable of performing high-resolution and high-speed ultrasonic flaw detection on a subject having a free-form surface while having a simple mechanism. .

【0009】[0009]

【課題を解決するための手段】一実施例を示す図1およ
び図3に対応付けて説明すると、請求項1の発明は、Z
方向に移動可能に設けられ、被検体3との間で超音波の
送受信を行う超音波探触子1を、走査手段4により前記
Z方向と直交する方向に走査して前記被検体3からの超
音波信号を得る超音波探傷装置に適用される。そして、
上述の目的は、前記走査手段4を前記被検体3に対して
Z方向に移動可能に支持する支持手段19、20、21
と、前記被検体3の表面形状に模した表面形状を有する
ダミー被検体33と、前記ダミー被検体33の表面形状
に倣って前記Z方向に上下動して前記走査手段4をZ方
向に移動させる倣い手段22とを設けることにより達成
される。また、請求項2の発明は、前記被検体3の表面
形状に模した表面形状を有するダミー被検体33と、前
記ダミー被検体33の表面形状に応じた倣い信号を出力
する倣い信号出力手段24と、前記倣い信号出力手段2
4から出力される倣い信号に基づいて、前記超音波探触
子1と前記被検体3の表面との間の距離が略所定値とな
るように前記超音波探触子1を移動させる移動手段14
とを設けることにより上述の目的を達成する。
The invention of claim 1 will be described with reference to FIG. 1 and FIG. 3 showing an embodiment.
The ultrasonic probe 1 that is movable in the direction and transmits and receives ultrasonic waves to and from the subject 3 is scanned by the scanning means 4 in a direction orthogonal to the Z direction, It is applied to ultrasonic flaw detectors that obtain ultrasonic signals. And
The above-mentioned purpose is to support the scanning means 4 with respect to the subject 3 so as to be movable in the Z direction.
A dummy object 33 having a surface shape imitating the surface shape of the object 3; and a vertical movement in the Z direction following the surface shape of the dummy object 33 to move the scanning means 4 in the Z direction. This is achieved by providing a copying unit 22 for causing the copying. Further, the invention of claim 2 is such that a dummy object 33 having a surface shape imitating the surface shape of the object 3 and a scanning signal output means 24 for outputting a scanning signal according to the surface shape of the dummy object 33. And the copy signal output means 2
Moving means for moving the ultrasonic probe 1 so that the distance between the ultrasonic probe 1 and the surface of the subject 3 becomes approximately a predetermined value based on the scanning signal output from the ultrasonic probe 1. 14
By providing and, the above-mentioned object is achieved.

【0010】[0010]

【作用】[Action]

−請求項1− 倣い手段22は、ダミー被検体33の表面形状に倣って
Z方向に上下動し、この上下動により走査手段4をZ方
向に移動させる。走査手段4のZ方向への移動に伴って
超音波探触子1もZ方向に移動し、これにより、超音波
探触子1がダミー被検体33、すなわち被検体3の表面
形状に倣ってZ方向に上下動する。 −請求項2− 移動手段14は、倣い信号出力手段24が出力するダミ
ー被検体33の表面形状に応じた倣い信号に基づき、超
音波探触子1と被検体3の表面との間の距離が略所定値
となるように前記超音波探触子1を移動させる。
-Claim 1- The copying unit 22 moves up and down in the Z direction following the surface shape of the dummy subject 33, and the vertical movement moves the scanning unit 4 in the Z direction. As the scanning means 4 moves in the Z direction, the ultrasonic probe 1 also moves in the Z direction, whereby the ultrasonic probe 1 follows the dummy object 33, that is, the surface shape of the object 3. Moves up and down in the Z direction. -Claim 2- The moving means 14 determines the distance between the ultrasonic probe 1 and the surface of the subject 3 based on the scanning signal output by the scanning signal output means 24 according to the surface shape of the dummy subject 33. The ultrasonic probe 1 is moved so that is approximately a predetermined value.

【0011】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for making the present invention easy to understand. It is not limited to.

【0012】[0012]

【実施例】【Example】

−第1実施例− 図1は、本発明による超音波探傷装置の第1実施例を示
す図であって、その全体構成を示す図である。なお、以
下の説明において、従来例と同様の機能、作用を有する
構成要素については同一の符号を付してその説明を簡略
化する。
First Embodiment FIG. 1 is a diagram showing a first embodiment of the ultrasonic flaw detector according to the present invention, and is a diagram showing the overall configuration thereof. In the following description, constituent elements having the same functions and actions as those of the conventional example are designated by the same reference numerals, and the description thereof will be simplified.

【0013】本実施例においても、超音波探触子1は3
次元走査装置4の治具18の先端に取り付けられてお
り、この走査装置4は、定盤10の上に設けられた1対
のフレーム11と、これらフレーム11の間に図中Y方
向に移動可能に架設されたY軸スキャナ12と、Y軸ス
キャナ12の上に図中X方向に移動可能に載置されたX
軸スキャナ13と、このX軸スキャナ13に設けられ、
治具18を図中Z方向に移動可能に支持するZ軸スキャ
ナ14とを備えている。しかし、本実施例では、フレー
ム11がスプリング19およびダンパ20を介して定盤
10の上に支持されており、かつ、各フレーム11の側
方に設けられた一対のガイド機構21(図1では一方の
み図示)により図中Z方向にのみ移動が許容されてい
る。これにより、各フレーム11は定盤10に対してZ
方向にのみ移動し、かつ、スプリング19およびダンパ
20により微動、振動が減衰される。任意の3次元自由
曲面を有する被検体3は、従来例と同様に水15が満た
された水槽16内に配置されている。
Also in this embodiment, the ultrasonic probe 1 has three
The scanning device 4 is attached to the tip of the jig 18 of the dimensional scanning device 4, and the scanning device 4 is moved between the pair of frames 11 provided on the surface plate 10 and the frames 11 in the Y direction in the figure. A Y-axis scanner 12 that is erected so that the X-axis is mounted on the Y-axis scanner 12 so as to be movable in the X direction in the figure.
Provided on the X-axis scanner 13 and the X-axis scanner 13,
A Z-axis scanner 14 that supports the jig 18 so as to be movable in the Z direction in the drawing is provided. However, in this embodiment, the frame 11 is supported on the surface plate 10 via the spring 19 and the damper 20, and a pair of guide mechanisms 21 (in FIG. Only one side is shown), so that movement is allowed only in the Z direction in the figure. As a result, each frame 11 is moved to Z relative to the surface plate 10.
It moves only in the direction, and the spring 19 and the damper 20 dampen fine movements and vibrations. The subject 3 having an arbitrary three-dimensional free-form surface is placed in a water tank 16 filled with water 15 as in the conventional example.

【0014】定盤10上には、水槽16の底面と平行な
上面を有するテーブル23が設けられ、このテーブル2
3上には、水槽16内に配置された被検体3の表面形状
と全く同一の表面形状を有するダミー被検体33が配置
されている。テーブル23の上面の広さは、少なくとも
走査装置4によるXY平面上の最大走査範囲よりも広く
形成されている。
A table 23 having an upper surface parallel to the bottom surface of the water tank 16 is provided on the surface plate 10.
A dummy subject 33 having the same surface shape as that of the subject 3 placed in the water tank 16 is placed on the surface 3. The size of the upper surface of the table 23 is at least wider than the maximum scanning range of the scanning device 4 on the XY plane.

【0015】一方、X軸スキャナ13からは、その先端
部22aがテーブル23に向かって延びる探針22が突
設されている。探針22は、X軸スキャナ13からX方
向に略水平に延出する腕部22bと、この腕部22bの
先端からZ方向に下降する検出部22cとからなる。検
出部22cは、図2に示すように内ロッド40に外管4
1が外嵌されることにより外管41が内ロッド40に対
して所定範囲だけ伸縮可能に構成されている。外管41
内にはスプリング42が配設されている。内ロッド40
には、その長手方向に沿ってスリット40aが形成され
る一方、外管41にはスリット40aを臨む位置に貫通
孔41aが形成され、これらスリット40aおよび貫通
孔41aを通ってボルト43が貫通されてナット44で
緊締、固定されることにより内ロッド40に対する外管
41の伸縮位置が固定可能に構成されている。また、探
針22の先端部22aは後述のごとくダミー被検体33
の表面上を摺動するため、ローラ等の転動手段、あるい
はテフロン(登録商標)加工等の摩擦低減手段が設けら
れていることが好ましい。
On the other hand, the X-axis scanner 13 is provided with a probe 22 whose tip 22a extends toward the table 23. The probe 22 includes an arm portion 22b that extends substantially horizontally from the X-axis scanner 13 in the X direction, and a detection portion 22c that descends in the Z direction from the tip of the arm portion 22b. As shown in FIG. 2, the detection unit 22c includes an inner tube 40 and an outer tube 4 which are connected to each other.
The outer pipe 41 is configured to be expandable and contractable with respect to the inner rod 40 by a predetermined range by externally fitting the inner pipe 1. Outer tube 41
A spring 42 is arranged inside. Inner rod 40
While a slit 40a is formed along the longitudinal direction thereof, a through hole 41a is formed in the outer tube 41 at a position facing the slit 40a, and a bolt 43 is penetrated through the slit 40a and the through hole 41a. The expansion and contraction position of the outer tube 41 with respect to the inner rod 40 can be fixed by tightening and fixing with the nut 44. The tip 22a of the probe 22 has a dummy object 33, as will be described later.
In order to slide on the surface, it is preferable to provide rolling means such as rollers or friction reducing means such as Teflon (registered trademark) processing.

【0016】水槽16の底面とテーブル23の上面とに
はそれぞれ同一ピッチの桝目が形成されており、かつ、
探触子1のXY座標値と探針22の先端部22aの位置
との対応をつけるための手段、たとえばXY座標値の目
盛がテーブル23の上面に形成されている。
The bottom surface of the water tank 16 and the top surface of the table 23 are formed with grids of the same pitch, and
Means for associating the XY coordinate values of the probe 1 with the position of the tip 22a of the probe 22, for example, a scale of the XY coordinate values is formed on the upper surface of the table 23.

【0017】なお、超音波送受信部2、コンピュータ
5、コントローラ6、モニタ7、キーボード8および駆
動モータ17a〜17cの構成は従来例とほぼ同様であ
るためその説明を省略する。
The constructions of the ultrasonic wave transmitting / receiving section 2, the computer 5, the controller 6, the monitor 7, the keyboard 8 and the drive motors 17a to 17c are substantially the same as those of the conventional example, and the description thereof will be omitted.

【0018】次に、図1を参照して、本実施例の超音波
探傷装置による被検体の探傷動作を説明する。なお、以
下に説明する被検体の探傷は、XY平面上の複数の測定
点からのデータを収集することにより行われる。
Next, referring to FIG. 1, the flaw detection operation of the subject by the ultrasonic flaw detection apparatus of this embodiment will be described. Note that the flaw detection of the subject described below is performed by collecting data from a plurality of measurement points on the XY plane.

【0019】まず、図1に示すように、水槽16の底面
の所定位置上に被検体3を配置するとともに、これに対
応するテーブル23上の所定位置にダミー被検体33を
配置する。さらに、探針22の検出部22c、すなわち
外管41を伸縮させて先端部22aをダミー被検体33
の表面に当接させ、この状態で検出部22cの伸縮位置
をボルト43、ナット44(図1では不図示)により固
定する。検出部22cの伸縮位置は、フレーム11、各
軸スキャナ12〜14の自重によりスプリング19が撓
んだつりあい位置において探針22の先端部22aがダ
ミー被検体33の最も窪んだ位置よりも下方に位置する
ように定められる。これにより、後述のごとく、ダミー
被検体33の最も窪んだ位置にも探針22の検出部22
cが当接可能となる。この後、駆動モータ17a、17
bを駆動してX軸スキャナ13およびY軸スキャナ12
により探触子1を検査開始位置まで移動させる。
First, as shown in FIG. 1, the subject 3 is placed on a predetermined position on the bottom surface of the water tank 16, and the dummy subject 33 is placed on a corresponding position on the table 23. Further, the detection portion 22c of the probe 22, that is, the outer tube 41 is expanded and contracted so that the tip portion 22a is attached to the dummy subject 33.
The surface of the detection part 22c is fixed in this state by a bolt 43 and a nut 44 (not shown in FIG. 1). The expansion / contraction position of the detection unit 22c is lower than the most recessed position of the dummy subject 33 at the balance position where the spring 19 bends due to the weight of the frame 11 and the respective axis scanners 12 to 14. Determined to be located. As a result, as will be described later, the detection unit 22 of the probe 22 is located at the most recessed position of the dummy subject 33.
c can contact. After this, the drive motors 17a, 17
b to drive the X-axis scanner 13 and the Y-axis scanner 12
Then, the probe 1 is moved to the inspection start position.

【0020】次いで、駆動モータ17cを駆動してZ軸
スキャナ14により探触子1をZ方向に下降させつつ、
目的とする表面深さの位置に探触子1の焦点位置が設定
されたか否かをモニタ7に表示される超音波信号を操作
者が観察して確認することにより、被検体3の表面と探
触子1との間の距離(水距離)を調整、設定する。この
後、焦点位置に相当する伝播時間(遅延時間)近傍の超
音波信号のピーク値を検出できるようにピーク検出器2
bを設定する。
Next, the drive motor 17c is driven to lower the probe 1 in the Z direction by the Z-axis scanner 14,
When the operator observes and confirms the ultrasonic signal displayed on the monitor 7 whether or not the focus position of the probe 1 is set at the position of the target surface depth, the surface of the subject 3 is detected. The distance (water distance) from the probe 1 is adjusted and set. After that, the peak detector 2 is provided so that the peak value of the ultrasonic signal near the propagation time (delay time) corresponding to the focus position can be detected.
Set b.

【0021】さらに、操作者はキーボード8を介してコ
ンピュータ5にXY平面走査指令を送り、コンピュータ
5は、コントローラ6を介して駆動モータ17a、17
bを駆動し、X軸スキャナ13およびY軸スキャナ12
を介して探触子1をXY平面に沿って移動させる。
Further, the operator sends an XY plane scanning command to the computer 5 via the keyboard 8, and the computer 5 causes the drive motors 17a, 17 to be sent via the controller 6.
b, and drives the X-axis scanner 13 and the Y-axis scanner 12
The probe 1 is moved along the XY plane via.

【0022】探触子1の移動に伴ってY軸スキャナ12
に突設された探針22も移動し、探針22の先端部22
aが接触しているダミー被検体33の表面位置に倣って
Z方向に上下動する。したがって、X軸スキャナ13、
Y軸スキャナ12およびZ軸スキャナ14は、探針22
の上下動の変位と等しい変位をもってZ方向に上下動
し、Z軸スキャナ14の治具18に固定された探触子1
もこれに連れて上下動する。ダミー被検体33は、水槽
16の底面上にある被検体3の位置に対応するテーブル
23上の位置に配置されているので、探触子1のZ方向
の上下動は水槽16内の被検体3の表面位置に倣ったも
のになる。よって、探触子1は被検体3の3次元自由曲
面に沿って移動し、探触子1と被検体3の表面との間の
距離が一定に保持されて探触子1の焦点位置は被検体3
の表面から一定深さの位置に維持される。
As the probe 1 moves, the Y-axis scanner 12
The probe 22 protruding from the needle also moves, and the tip 22 of the probe 22 is moved.
It moves up and down in the Z direction following the surface position of the dummy subject 33 with which a is in contact. Therefore, the X-axis scanner 13,
The Y-axis scanner 12 and the Z-axis scanner 14 include a probe 22.
The probe 1 which moves up and down in the Z direction with a displacement equal to the displacement of the vertical movement of the probe 1 and is fixed to the jig 18 of the Z-axis scanner 14.
Also moves up and down with this. Since the dummy test object 33 is arranged at a position on the table 23 corresponding to the position of the test object 3 on the bottom surface of the water tank 16, the vertical movement of the probe 1 in the Z direction is the test object in the water tank 16. It follows the surface position of No. 3. Therefore, the probe 1 moves along the three-dimensional free-form surface of the subject 3, the distance between the probe 1 and the surface of the subject 3 is kept constant, and the focus position of the probe 1 becomes Subject 3
It is maintained at a certain depth from the surface of the.

【0023】特に、本実施例では、フレーム11、各軸
スキャナ12〜14の自重によりスプリング19が撓ん
だつりあい位置において探針22の先端部22aがダミ
ー被検体33の最も窪んだ位置よりも下方に位置するよ
うに検出部22cの伸縮位置が定められているので、探
針22の先端部22aがダミー被検体33の表面に当接
している状態ではスプリング19が伸長され、その反発
力により探針22には下向きの力が作用する。そして、
この力は走査動作を通じて探針22に作用するため、探
針22の先端部22aは常にダミー被検体33の表面に
押圧された状態にあり、ダミー被検体33の表面位置が
上下に大きく変化してもこれに追従することが可能とな
る。
In particular, in the present embodiment, the tip portion 22a of the probe 22 is located at a balance position where the spring 19 is bent by the own weight of the frame 11 and the respective axis scanners 12 to 14 rather than the most recessed position of the dummy subject 33. Since the expansion / contraction position of the detection portion 22c is determined so as to be located below, the spring 19 is extended in a state where the tip end portion 22a of the probe 22 is in contact with the surface of the dummy subject 33, and the repulsive force causes A downward force acts on the probe 22. And
Since this force acts on the probe 22 through the scanning operation, the tip portion 22a of the probe 22 is always pressed against the surface of the dummy subject 33, and the surface position of the dummy subject 33 changes greatly in the vertical direction. However, it is possible to follow this.

【0024】したがって、本実施例によれば、探針22
がダミー被検体33の表面位置に倣って上下動する力を
直接各軸スキャナ12〜14の上下動に利用し、これら
各軸スキャナ12〜14の上下動により探触子1と被検
体3の表面との間の距離を一定に保持しているので、上
述した従来技術のように探触子1の位置制御機構を走査
機構と別に設ける必要がなく、あるいはZ軸スキャナ1
4を探触子1の位置制御に用いる必要がないため、制御
手順、機構が簡易で従来の3次元走査装置4を流用する
ことができるとともに、被検体3の高速走査が可能とな
る。加えて、探触子1と被検体3の表面との間の距離を
常に一定に保持できるので、焦点距離が短く分解能が高
い探触子の適用が可能となり、これにより、簡易な機構
により自由曲面を有する被検体に対して高分解能でかつ
高速な超音波探傷動作を行うことができる。
Therefore, according to the present embodiment, the probe 22
Directly utilizes the force of moving up and down in accordance with the surface position of the dummy subject 33 to vertically move each of the axis scanners 12 to 14, and the vertical movement of each of the axis scanners 12 to 14 causes the probe 1 and the subject 3 to move. Since the distance to the surface is kept constant, there is no need to provide a position control mechanism for the probe 1 separately from the scanning mechanism as in the above-mentioned conventional technique, or the Z-axis scanner 1
Since it is not necessary to use 4 to control the position of the probe 1, the control procedure and mechanism are simple, the conventional three-dimensional scanning device 4 can be used, and the subject 3 can be scanned at high speed. In addition, since the distance between the probe 1 and the surface of the subject 3 can be kept constant at all times, it is possible to apply a probe having a short focal length and high resolution. High-resolution and high-speed ultrasonic flaw detection operation can be performed on a subject having a curved surface.

【0025】−第2実施例− 図3は、本発明による超音波探傷装置の第2実施例を示
す図であって、その全体構成を示す図である。なお、以
下の説明では第1実施例と第2実施例との相違点につい
て主に説明し、共通する部分についてはその説明を簡略
化する。
-Second Embodiment- FIG. 3 is a view showing a second embodiment of the ultrasonic flaw detector according to the present invention, and is a view showing the overall structure thereof. In the following description, differences between the first embodiment and the second embodiment will be mainly described, and description of common parts will be simplified.

【0026】本実施例では、探針22の検出部22cの
伸縮位置を固定するボルト43、ナット44が省略され
ているかわりに、この検出部22cのZ方向の伸縮を検
出する変位センサ24が設けられている。変位センサ2
4は周知の構成、たとえばリニアエンコーダやロータリ
ーエンコーダなどを備え、内ロッド40に対する外管4
1のZ方向の変位、すなわち伸縮量が測定可能なもので
あればその構成に限定はない。変位センサ24の検出信
号は変換器25を介してコンピュータ5に入力される。
また、本実施例ではスプリング19およびダンパ20が
省略され、フレーム11は定盤10上に固設されてい
る。
In the present embodiment, instead of omitting the bolts 43 and nuts 44 for fixing the expansion / contraction position of the detection portion 22c of the probe 22, the displacement sensor 24 for detecting the expansion / contraction of the detection portion 22c in the Z direction is used. It is provided. Displacement sensor 2
Reference numeral 4 denotes a well-known configuration, for example, a linear encoder, a rotary encoder, etc.
The configuration is not limited as long as the displacement in the Z direction of 1, that is, the amount of expansion and contraction can be measured. The detection signal of the displacement sensor 24 is input to the computer 5 via the converter 25.
Further, in this embodiment, the spring 19 and the damper 20 are omitted, and the frame 11 is fixedly installed on the surface plate 10.

【0027】次に、図3を参照して、本実施例の超音波
探傷装置による被検体の探傷動作を説明する。まず、上
述の第1実施例と同様に、被検体3およびダミー被検体
33を対応位置にそれぞれ配置した後、駆動モータ17
a、17bを駆動してX軸スキャナ13およびY軸スキ
ャナ12により探触子1を検査開始位置まで移動させ
る。なお、本実施例では検出部22cの固定機構、すな
わちボルト43、ナット44が省略されているので、検
出部22cの外管41は自由に伸縮し、探触子1が検査
開始位置まで移動された状態では探針22の先端部22
aはダミー被検体33の表面に当接している。
Next, with reference to FIG. 3, the flaw detection operation of the subject by the ultrasonic flaw detector of the present embodiment will be described. First, similarly to the above-described first embodiment, after arranging the subject 3 and the dummy subject 33 at the corresponding positions, respectively, the drive motor 17
By driving a and 17b, the probe 1 is moved to the inspection start position by the X-axis scanner 13 and the Y-axis scanner 12. In this embodiment, since the fixing mechanism of the detection unit 22c, that is, the bolt 43 and the nut 44 are omitted, the outer tube 41 of the detection unit 22c is freely expanded and contracted, and the probe 1 is moved to the inspection start position. Tip 22 of the probe 22
a is in contact with the surface of the dummy subject 33.

【0028】次いで、Z軸スキャナ14により探触子1
をZ方向に下降させつつ、探触子1の焦点位置を操作者
が確認することにより、被検体3の表面と探触子1との
間の距離(水距離)を調整、設定する。この後、焦点位
置に相当する伝播時間(遅延時間)近傍の超音波信号の
ピーク値を検出できるようにピーク検出器2bを設定す
る。
Next, the probe 1 is moved by the Z-axis scanner 14.
While lowering in the Z direction, the operator confirms the focus position of the probe 1 to adjust and set the distance (water distance) between the surface of the subject 3 and the probe 1. After that, the peak detector 2b is set so that the peak value of the ultrasonic signal near the propagation time (delay time) corresponding to the focus position can be detected.

【0029】さらに、操作者はキーボード8を介してコ
ンピュータ5にXY平面走査指令を送り、コンピュータ
5は、コントローラ6を介して駆動モータ17a、17
bを駆動し、X軸スキャナ13およびY軸スキャナ12
を介して探触子1をXY平面に沿って移動させる。探触
子1の移動に伴ってY軸スキャナ12に突設された探針
22も移動し、探針22の先端部22aが接触している
ダミー被検体33の表面位置に倣って検出部22cがZ
方向に伸縮する。検出部22cの伸縮は変位センサ24
により検出され、伸縮量が変換器25を介してコンピュ
ータ5に入力される。コンピュータ5は、変位センサ2
4の検出信号に基づき、探触子1と被検体3の表面との
間の距離が一定になるように駆動モータ17cに指令を
発し、Z軸スキャナ14を介して探触子1をZ方向に移
動させる。一例として、検出部22cの伸縮量がΔ(Δ
は正負いずれの値をもとる)であるとすれば、探触子1
のZ方向の移動量もΔとなるように駆動モータ17cに
指令を発すればよい。探触子1のZ方向の移動により、
探触子1は被検体3の3次元自由曲面に沿って移動し、
探触子1と被検体3の表面との間の距離が一定に保持さ
れて探触子1の焦点位置は被検体3の表面から一定深さ
の位置に維持される。
Further, the operator sends an XY plane scanning command to the computer 5 through the keyboard 8, and the computer 5 causes the drive motors 17a, 17 through the controller 6.
b, and drives the X-axis scanner 13 and the Y-axis scanner 12
The probe 1 is moved along the XY plane via. As the probe 1 moves, the probe 22 protruding from the Y-axis scanner 12 also moves, and the detection unit 22c follows the surface position of the dummy subject 33 with which the tip 22a of the probe 22 is in contact. Is Z
Stretch in the direction. The expansion / contraction of the detection unit 22c is determined by the displacement sensor 24.
And the expansion amount is input to the computer 5 via the converter 25. The computer 5 uses the displacement sensor 2
Based on the detection signal of No. 4, a command is issued to the drive motor 17c so that the distance between the probe 1 and the surface of the subject 3 becomes constant, and the probe 1 is moved through the Z-axis scanner 14 in the Z direction. Move to. As an example, the expansion / contraction amount of the detection unit 22c is Δ (Δ
Is either positive or negative), the probe 1
A command may be issued to the drive motor 17c so that the amount of movement in the Z direction also becomes Δ. By moving the probe 1 in the Z direction,
The probe 1 moves along the three-dimensional free-form surface of the subject 3,
The distance between the probe 1 and the surface of the subject 3 is kept constant, and the focus position of the probe 1 is maintained at a position of a certain depth from the surface of the subject 3.

【0030】したがって、本実施例によれば、ダミー被
検体33の表面位置に倣って伸縮する探針22の検出部
22cの伸縮量を変位センサ24により検出し、探触子
1と被検体3の表面との間の距離が一定になるようにZ
軸スキャナ14を駆動制御しているので、上述した従来
技術のように探触子の位置制御機構を走査機構と別に設
ける必要がなく、制御手順、機構が簡易で従来の3次元
走査装置4を流用することができるとともに、被検体3
の高速走査が可能となる。加えて、探触子1と被検体3
の表面との間の距離を常に一定に保持できるので、焦点
距離が短く分解能が高い探触子の適用が可能となり、こ
れにより、簡易な機構により自由曲面を有する被検体に
対して高分解能でかつ高速な超音波探傷動作を行うこと
ができる。
Therefore, according to the present embodiment, the displacement sensor 24 detects the expansion / contraction amount of the detecting portion 22c of the probe 22 which expands / contracts in accordance with the surface position of the dummy object 33, and the probe 1 and the object 3 are detected. Z so that the distance from the surface of
Since the axis scanner 14 is driven and controlled, it is not necessary to provide a position control mechanism for the probe separately from the scanning mechanism as in the above-described conventional technique, and the control procedure and mechanism are simple and the conventional three-dimensional scanning device 4 is used. It can be diverted and the subject 3
It becomes possible to perform high speed scanning. In addition, the probe 1 and the subject 3
Since the distance to the surface of the probe can be kept constant at all times, it is possible to apply a probe with a short focal length and high resolution, which allows a simple mechanism with high resolution for an object having a free-form surface. In addition, high-speed ultrasonic flaw detection operation can be performed.

【0031】以上説明した実施例と請求の範囲との対応
において、走査装置4は走査手段を、スプリング19、
ダンパ20およびガイド機構21は支持手段を、探針2
2は倣い手段を、変位センサ24は倣い信号出力手段
を、Z軸スキャナ14は移動手段をそれぞれ構成してい
る。
In the correspondence between the embodiment described above and the scope of the claims, the scanning device 4 includes the scanning means, the spring 19,
The damper 20 and the guide mechanism 21 serve as support means for the probe 2.
Reference numeral 2 is a copying unit, displacement sensor 24 is a copying signal output unit, and Z-axis scanner 14 is a moving unit.

【0032】なお、本発明の超音波探傷装置は、その細
部が上述の各実施例に限定されず、種々の変形が可能で
ある。一例として、探針22の形状、構成は各実施例の
それに限定されず、ダミー被検体33の表面形状に倣っ
てZ方向に上下動するものであればよい。また、第2実
施例においては、非接触型センサなどによりダミー被検
体33の表面形状を実時間的に計測し、これをZ軸スキ
ャナ14の駆動制御に用いることもできる。
The details of the ultrasonic flaw detector of the present invention are not limited to those of the above-described embodiments, and various modifications are possible. As an example, the shape and configuration of the probe 22 are not limited to those of the respective embodiments, and may be any one that moves up and down in the Z direction in accordance with the surface shape of the dummy subject 33. Further, in the second embodiment, it is also possible to measure the surface shape of the dummy subject 33 in real time by a non-contact type sensor or the like and use it for drive control of the Z-axis scanner 14.

【0033】[0033]

【発明の効果】以上詳細に説明したように、本発明によ
れば、被検体の表面形状に模した表面形状を有するダミ
ー被検体の表面形状に倣って、走査手段あるいは探触子
をZ方向に移動させて探触子と被検体の表面との間の距
離を略所定値に保持しているので、上述した従来技術の
ように探触子の位置制御手段を走査手段と別に設ける必
要がなく、制御手順、機構が簡易で従来の走査装置を流
用することができるとともに、被検体の高速走査が可能
となる。加えて、探触子と被検体の表面との間の距離を
常に略所定値に保持できるので、焦点距離が短く分解能
が高い探触子の適用が可能となり、これにより、簡易な
機構により自由曲面を有する被検体に対して高分解能で
かつ高速な超音波探傷動作を行うことができる。
As described in detail above, according to the present invention, the scanning means or the probe is moved in the Z direction by following the surface shape of the dummy object having a surface shape imitating the surface shape of the object. Since the distance between the probe and the surface of the subject is maintained at a substantially predetermined value by moving the probe to the above position, it is necessary to provide the probe position control means separately from the scanning means as in the above-mentioned conventional technique. Instead, the control procedure and mechanism are simple, the conventional scanning device can be used, and high-speed scanning of the subject can be performed. In addition, since the distance between the probe and the surface of the subject can be maintained at a substantially predetermined value at all times, a probe with a short focal length and high resolution can be applied. High-resolution and high-speed ultrasonic flaw detection operation can be performed on a subject having a curved surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例である超音波探傷装置の全
体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of an ultrasonic flaw detector according to a first embodiment of the present invention.

【図2】探針の検出部の詳細を示す一部断面正面図であ
る。
FIG. 2 is a partial cross-sectional front view showing details of a detection unit of a probe.

【図3】本発明の第2実施例である超音波探傷装置の全
体構成を示す図である。
FIG. 3 is a diagram showing an overall configuration of an ultrasonic flaw detector according to a second embodiment of the present invention.

【図4】従来の超音波探傷装置の一例の回路構成を示す
ブロック図である。
FIG. 4 is a block diagram showing a circuit configuration of an example of a conventional ultrasonic flaw detector.

【図5】超音波探触子の概略構成を示す断面図である。FIG. 5 is a cross-sectional view showing a schematic configuration of an ultrasonic probe.

【符号の説明】[Explanation of symbols]

1 探触子 3 被検体 4 走査装置 10 定盤 11 フレーム 12 Y軸スキャナ 13 X軸スキャナ 14 Z軸スキャナ 15 水 16 水槽 17a、17b、17c 駆動モータ 19 スプリング 20 ダンパ 21 ガイド機構 22 探針 22a 先端部 22b 腕部 22c 検出部 23 テーブル 24 変位センサ 33 ダミー被検体 1 probe 3 subject 4 scanning device 10 surface plate 11 frame 12 Y-axis scanner 13 X-axis scanner 14 Z-axis scanner 15 water 16 water tank 17a, 17b, 17c drive motor 19 spring 20 damper 21 guide mechanism 22 probe 22a tip Part 22b Arm part 22c Detection part 23 Table 24 Displacement sensor 33 Dummy subject

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Z方向に移動可能に設けられ、被検体と
の間で超音波の送受信を行う超音波探触子を、走査手段
により前記Z方向と直交する方向に走査して前記被検体
からの超音波信号を得る超音波探傷装置において、 前記走査手段を前記被検体に対してZ方向に移動可能に
支持する支持手段と、 前記被検体の表面形状に模した表面形状を有するダミー
被検体と、 前記ダミー被検体の表面形状に倣って前記Z方向に上下
動して前記走査手段をZ方向に移動させる倣い手段とを
備えたことを特徴とする超音波探傷装置。
1. An ultrasonic probe, which is movably provided in the Z direction and transmits and receives ultrasonic waves to and from the subject, is scanned by a scanning means in a direction orthogonal to the Z direction, and the subject is scanned. In an ultrasonic flaw detection apparatus for obtaining an ultrasonic signal from a device, supporting means for supporting the scanning means so as to be movable in the Z direction with respect to the object, and a dummy object having a surface shape imitating the surface shape of the object. An ultrasonic flaw detector, comprising: a sample; and a copying unit that moves up and down in the Z direction to move the scanning unit in the Z direction, following the surface shape of the dummy object.
【請求項2】 Z方向に移動可能に設けられ、被検体と
の間で超音波の送受信を行う超音波探触子を、走査手段
により前記Z方向と直交する方向に走査して前記被検体
からの超音波信号を得る超音波探傷装置において、 前記被検体の表面形状に模した表面形状を有するダミー
被検体と、 前記ダミー被検体の表面形状に応じた倣い信号を出力す
る倣い信号出力手段と、 前記倣い信号出力手段から出力される倣い信号に基づい
て、前記超音波探触子と前記被検体の表面との間の距離
が略所定値となるように前記超音波探触子を移動させる
移動手段とを備えたことを特徴とする超音波探傷装置。
2. An ultrasonic probe, which is provided so as to be movable in the Z direction and transmits and receives ultrasonic waves to and from the subject, is scanned by a scanning means in a direction orthogonal to the Z direction. In an ultrasonic flaw detection apparatus for obtaining an ultrasonic signal from, a dummy object having a surface shape imitating the surface shape of the object, and a scanning signal output means for outputting a scanning signal according to the surface shape of the dummy object And, based on the scanning signal output from the scanning signal output means, moves the ultrasonic probe so that the distance between the ultrasonic probe and the surface of the subject becomes a substantially predetermined value. An ultrasonic flaw detector, comprising:
JP5026760A 1993-02-16 1993-02-16 Ultrasonic flaw detecting system Pending JPH06242087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026760A JPH06242087A (en) 1993-02-16 1993-02-16 Ultrasonic flaw detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026760A JPH06242087A (en) 1993-02-16 1993-02-16 Ultrasonic flaw detecting system

Publications (1)

Publication Number Publication Date
JPH06242087A true JPH06242087A (en) 1994-09-02

Family

ID=12202245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026760A Pending JPH06242087A (en) 1993-02-16 1993-02-16 Ultrasonic flaw detecting system

Country Status (1)

Country Link
JP (1) JPH06242087A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051241A1 (en) 2007-10-19 2009-04-23 Kabushiki Kaisha Toshiba Profiling apparatus
WO2009051242A1 (en) 2007-10-19 2009-04-23 Kabushiki Kaisha Toshiba Profiling apparatus
JP2009137578A (en) * 2007-12-07 2009-06-25 Boeing Co:The Modular composite manufacturing method
US8613301B2 (en) 2008-09-30 2013-12-24 The Boeing Company Compaction of prepreg plies on composite laminate structures
US8752293B2 (en) 2007-12-07 2014-06-17 The Boeing Company Method of fabricating structures using composite modules and structures made thereby
US8936695B2 (en) 2007-07-28 2015-01-20 The Boeing Company Method for forming and applying composite layups having complex geometries
US9046437B2 (en) 2006-12-22 2015-06-02 The Boeing Company Leak detection in vacuum bags
KR20160050253A (en) * 2014-10-29 2016-05-11 모니텍주식회사 ultrasonic probe
US9770871B2 (en) 2007-05-22 2017-09-26 The Boeing Company Method and apparatus for layup placement

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046437B2 (en) 2006-12-22 2015-06-02 The Boeing Company Leak detection in vacuum bags
US10603848B2 (en) 2007-05-22 2020-03-31 The Boeing Company Apparatus for layup placement
US9770871B2 (en) 2007-05-22 2017-09-26 The Boeing Company Method and apparatus for layup placement
US8936695B2 (en) 2007-07-28 2015-01-20 The Boeing Company Method for forming and applying composite layups having complex geometries
US10052827B2 (en) 2007-07-28 2018-08-21 The Boeing Company Method for forming and applying composite layups having complex geometries
US7987723B2 (en) 2007-10-19 2011-08-02 Kabushiki Kaisha Toshiba Copying apparatus
US8191422B2 (en) 2007-10-19 2012-06-05 Kabushiki Kaisha Toshiba Copying apparatus
WO2009051241A1 (en) 2007-10-19 2009-04-23 Kabushiki Kaisha Toshiba Profiling apparatus
WO2009051242A1 (en) 2007-10-19 2009-04-23 Kabushiki Kaisha Toshiba Profiling apparatus
US8752293B2 (en) 2007-12-07 2014-06-17 The Boeing Company Method of fabricating structures using composite modules and structures made thereby
US8916010B2 (en) 2007-12-07 2014-12-23 The Boeing Company Composite manufacturing method
US9764499B2 (en) 2007-12-07 2017-09-19 The Boeing Company Structures using composite modules and structures made thereby
JP2009137578A (en) * 2007-12-07 2009-06-25 Boeing Co:The Modular composite manufacturing method
US8613301B2 (en) 2008-09-30 2013-12-24 The Boeing Company Compaction of prepreg plies on composite laminate structures
KR20160050253A (en) * 2014-10-29 2016-05-11 모니텍주식회사 ultrasonic probe

Similar Documents

Publication Publication Date Title
KR102121821B1 (en) Linear-scan ultrasonic inspection apparatus and linear-scan ultrasonic inspection method
CN101101277B (en) High-resolution welding seam supersonic image-forming damage-free detection method
WO2009107745A1 (en) Ultrasonic examination device
CN111610254B (en) Laser ultrasonic full-focusing imaging detection device and method based on high-speed galvanometer cooperation
JP3766210B2 (en) 3D ultrasonic imaging device
JP6578534B1 (en) Ultrasonic high-speed scanning device
CN101281172A (en) Laser sonic surface wave stress test system
JPH06242087A (en) Ultrasonic flaw detecting system
KR102485090B1 (en) Position control device, position control method, and ultrasonic image system
KR102213449B1 (en) Ultrasound scanner
US3832888A (en) Acoustical imaging equipment capable of inspecting an object without submerging the object in a liquid
JP5748417B2 (en) Ultrasonic flaw detection system
EP1798550B1 (en) Device for inspecting the interior of a material
JPH06174703A (en) Curved surface shape-follow-up type ultrasonic flaw detector and control method for probe attitude
KR20150123607A (en) Apparatus for adjusting horizontal of ultrasonic immersion testing system
WO2022270363A1 (en) Array type ultrasonic wave transmitting and receiving device
JP2001324484A (en) Ultrasonic flaw detection method and apparatus
JP7463605B1 (en) Ultrasound Imaging Device
CN114485476B (en) Wafer measurement equipment, system and method
JPH08136518A (en) Ultrasonic inspection equipment
JPS61145454A (en) Apparatus for measuring and inspecting ultrasonic probe
Kang et al. An Experimental Platform for Electromagnetic Ultrasonic Guided Wave Tomography Technique
JP2008175661A (en) Method and device for measuring acoustic parameter
KR101729570B1 (en) Projected Area Setting Method Using Gate Bars And Phased Array Ultrasonic Testing Device And Testing Method Using Thereof
JPS6383664A (en) Ultrasonic flaw detector