JPH06242001A - In situ semiconductor process observing system employing laser raman spectroscopy - Google Patents

In situ semiconductor process observing system employing laser raman spectroscopy

Info

Publication number
JPH06242001A
JPH06242001A JP2327593A JP2327593A JPH06242001A JP H06242001 A JPH06242001 A JP H06242001A JP 2327593 A JP2327593 A JP 2327593A JP 2327593 A JP2327593 A JP 2327593A JP H06242001 A JPH06242001 A JP H06242001A
Authority
JP
Japan
Prior art keywords
semiconductor
laser light
window
laser
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2327593A
Other languages
Japanese (ja)
Inventor
Takashi Katoda
隆 河東田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2327593A priority Critical patent/JPH06242001A/en
Publication of JPH06242001A publication Critical patent/JPH06242001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a system for observing the characteristics of a semiconductor under processing in real time using laser Raman spectroscopy. CONSTITUTION:An electric furnace 1 contains a heater 2 and is inserted with a silicon reaction tube 4 containing a semiconductor 3 to be processed. The silicon reaction tube 4 is provided with a flat window 5 at the tip thereof and the semiconductor 3 is held while standing in the vicinity of the tip of the silicon reaction tube 4 with the surface thereof opposing the window 5. A gas introduction pipe 7 has an ejection end extending to the tip part of the silicon reaction tube 4. An alumina tube 9 surrounds the silicon reaction tube 4. A laser light source 11 and a spectrometer 12 are disposed on the window 5 side. The semiconductor 3 is irradiated with a laser light L emitted from the laser light source 11 and Raman light emitted from the semiconductor is introduced to the spectrometer through a connection optical system 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、処理中の半導体をレー
ザラマン分光法を用いてその場観察することのできる装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for in-situ observation of a semiconductor being processed by laser Raman spectroscopy.

【0002】[0002]

【従来の技術】半導体の特性評価のためにいろいろな分
析手法が用いられるが、レーザラマン分光法では、例え
ば以下のような特性が評価できることが知られている。 1)結晶構造の乱れとその回復 2)結晶の面方位 3)材料中の応力 4)結晶中のキャリア密度 5)結晶中の不純物 6)物質の同定 例えば上記1)に関しては、イオン注入をすると半導体
の結晶構造が乱れ、アモルファス状態になったり、例え
ばせん亜鉛鉱型結晶構造を持つ半導体の(100)面では本
来禁制であるTOフォノンによるピークがラマンスペク
トル中に見られたりするようになる。その様な半導体を
アニールすると構造が回復し、ラマンスペクトル中に結
晶のピークが現れたり、禁制モードのピークが消滅した
りすることでその回復状態を確認できる。ただし、過度
にアニールすると、かえって構造を乱してしまうことも
あり、その様な状態もラマンスペクトルから判定でき
る。
2. Description of the Related Art Various analysis techniques are used for evaluating the characteristics of semiconductors, and it is known that the following characteristics can be evaluated by laser Raman spectroscopy. 1) Disorder of crystal structure and its recovery 2) Crystal plane orientation 3) Stress in material 4) Carrier density in crystal 5) Impurity in crystal 6) Identification of substance For example, regarding the above 1), when ion implantation is performed The crystal structure of the semiconductor is disturbed and becomes amorphous, or a peak due to TO phonon, which is originally forbidden on the (100) plane of a semiconductor having a zincblende crystal structure, is observed in the Raman spectrum. When such a semiconductor is annealed, the structure is recovered, and a crystalline peak appears in the Raman spectrum or a forbidden mode peak disappears, whereby the recovered state can be confirmed. However, if it is annealed excessively, the structure may be disturbed, and such a state can be determined from the Raman spectrum.

【0003】[0003]

【発明が解決しようとする課題】ところで、この様に半
導体の各種特性を評価できるレーザラマン分光法である
が、処理中の状態をリアルタイムでその場観察すること
は従来困難であった。すなわち、半導体プロセスの多く
は加熱を伴い、ほとんどが500 〜600 ℃以上の環境であ
り、しかも真空以外の雰囲気中であることが多いため、
その様な環境でラマン測定を行うことが技術的に困難で
あったからである。そのため、ラマン分光法で処理中の
半導体のその場観察を行ったという報告は従来無かっ
た。
By the way, in the laser Raman spectroscopy capable of evaluating various characteristics of the semiconductor as described above, it has been difficult to observe the state during processing in real time in situ. In other words, most of the semiconductor processes are accompanied by heating, and most of them are in the environment of 500 to 600 ° C or higher, and often in an atmosphere other than vacuum.
This is because it was technically difficult to perform Raman measurement in such an environment. Therefore, there has been no report that Raman spectroscopy performed in-situ observation of the semiconductor being processed.

【0004】本発明は、上述した点に鑑みてなされたも
のであり、処理中の半導体の特性をレーザラマン分光法
によりリアルタイムでその場観察することが可能な装置
を提供することを目的としている。
The present invention has been made in view of the above points, and an object thereof is to provide an apparatus capable of observing the characteristics of a semiconductor being processed in real time by laser Raman spectroscopy.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明のレーザラマン分光法による半導体プロセス
その場観察装置は、加熱炉と、処理すべき半導体を収容
し該加熱炉内に配置される反応容器と、該反応容器内に
処理用ガスを導入するためのガス導入手段と、レーザ光
源と、外部から反応容器内の半導体に該レーザ光源から
のレーザ光を照射すると共に半導体からのラマン光を外
部に取り出すために加熱炉に設けられた窓と、該窓を介
して外部に取り出されたラマン光が導入される分光計と
を備え、前記反応容器は前記窓を介して導入されるレー
ザ光を内部の半導体に到達させるためのレーザ光透過部
を有し、前記半導体は反応容器内の前記窓に面する部位
に配置されるようにしたことを特徴としている。
In order to achieve this object, an apparatus for in-situ observation of a semiconductor process by laser Raman spectroscopy according to the present invention is provided with a heating furnace and a semiconductor to be processed, which is arranged in the heating furnace. A reaction vessel, a gas introduction means for introducing a processing gas into the reaction vessel, a laser light source, and a semiconductor in the reaction vessel irradiated with laser light from the laser light source from outside and Raman light from the semiconductor. A window provided in the heating furnace for taking out to the outside, and a spectrometer into which the Raman light taken out to the outside through the window is introduced, and the reaction vessel is a laser introduced through the window. It is characterized in that it has a laser light transmitting portion for allowing light to reach an internal semiconductor, and the semiconductor is arranged in a portion facing the window in the reaction container.

【0006】[0006]

【作用】本発明においては、前記レーザ光源からのレー
ザ光が、加熱炉に設けられた窓及び反応容器に設けられ
たレーザ光透過部を介して反応容器内の半導体に照射さ
れると共に、半導体からのラマン光が、逆の経路をたど
って加熱炉の外に取り出され、分光計に導入されて検出
される。前記ガス導入手段は、反応容器内のレーザ光透
過部側から反対側へ流れるようにガスを反応容器内に導
入するため、ガス導入に伴って生成される生成物による
レーザ光透過部の汚染を防ぎつつラマン測定を行うこと
ができる。以下、本発明の一実施例を図面に基づいて詳
説する。
In the present invention, the laser light from the laser light source is applied to the semiconductor in the reaction vessel through the window provided in the heating furnace and the laser light transmitting portion provided in the reaction vessel, and The Raman light from is taken out of the heating furnace following the reverse path, introduced into the spectrometer, and detected. The gas introducing means introduces the gas into the reaction container so that the gas flows from the laser light transmitting part side in the reaction container to the opposite side, so that the laser light transmitting part is contaminated by the products generated by the gas introduction. Raman measurement can be performed while preventing. An embodiment of the present invention will be described below in detail with reference to the drawings.

【0007】[0007]

【実施例】図1は本発明の一実施例を示している。図に
おいて1は電気炉で、その内部に発熱体2を有してい
る。電気炉1内部には、処理対象の半導体3を収容した
石英反応管4が挿入されている。この石英反応管4の先
端部は光を通しやすいように平坦な窓5として形成さ
れ、半導体3は、その表面が窓5に対面するように石英
反応管4の先端部近くに立てて保持されている。電気炉
1にも、石英反応管4の窓5が炉の外から覗けるような
窓6が設けられている。
1 shows an embodiment of the present invention. In the figure, reference numeral 1 denotes an electric furnace, which has a heating element 2 therein. A quartz reaction tube 4 accommodating a semiconductor 3 to be processed is inserted inside the electric furnace 1. The tip of the quartz reaction tube 4 is formed as a flat window 5 so that light can easily pass therethrough, and the semiconductor 3 is held upright near the tip of the quartz reaction tube 4 so that its surface faces the window 5. ing. The electric furnace 1 is also provided with a window 6 through which the window 5 of the quartz reaction tube 4 can be seen from the outside of the furnace.

【0008】7は石英反応管4内部にガスを導入するた
めの導入管、その噴出端が石英反応管4の先端部までの
びている。8は石英反応管4の末端部からガスを排出す
るための排出管、9は石英反応管4と発熱体2の間に介
在させたアルミナ管、10は半導体近傍の温度を検出し
て図示しない電気炉加熱制御装置へ検出信号を送る熱電
対である。
Reference numeral 7 is an introduction tube for introducing gas into the quartz reaction tube 4, and its jet end extends to the tip of the quartz reaction tube 4. Reference numeral 8 is a discharge tube for discharging gas from the end of the quartz reaction tube 4, 9 is an alumina tube interposed between the quartz reaction tube 4 and the heating element 2, and 10 is not shown because it detects the temperature in the vicinity of the semiconductor. It is a thermocouple that sends a detection signal to the electric furnace heating control device.

【0009】ラマン分光計を構成するレーザ光源11及
び分光計12は前記窓5側に配置されると共に、レーザ
光源11からのレーザ光Lを半導体に照射し、半導体か
らのラマン光を分光計12に導くための接続光学系13
が付け加えられている。この接続光学系13は、半導体
表面から取り出されたラマン光Rを分光計12へ向けて
収束させるためのレンズ14,15と、レーザ光源11
から発生し干渉フィルタ16及び反射鏡17を介して導
かれたレーザ光Lを窓5を介して半導体表面に収束させ
つつ照射するためのレンズ18及び反射鏡19から構成
されている。
The laser light source 11 and the spectrometer 12 constituting the Raman spectrometer are arranged on the side of the window 5 and the semiconductor laser is irradiated with the laser light L from the laser light source 11 to emit the Raman light from the semiconductor to the spectrometer 12. Optical system 13 for guiding to
Has been added. The connection optical system 13 includes lenses 14 and 15 for converging the Raman light R extracted from the semiconductor surface toward the spectrometer 12, and the laser light source 11.
It is composed of a lens 18 and a reflecting mirror 19 for irradiating the laser light L generated from the laser beam L and guided through the interference filter 16 and the reflecting mirror 17 onto the semiconductor surface through the window 5 while being converged.

【0010】上述の如き構成において、前記接続光学系
13は、半導体表面からのラマン光Rを半導体表面に対
してほぼ直角方向に効率良く取り出して分光計12へ導
くように設定されると共に、直接分光計に導入されない
ように小さな入射角をつけてレーザ光Lを半導体に入射
させるように設定されている。この様な構成にもとづい
てラマン分光測定を行いつつ、電気炉による加熱の下
で、石英反応管4内にガスを導入して半導体の処理が行
われる。この時、反応生成物が発生し、石英反応管4の
内壁面に付着することは避けられないが、ガスは石英反
応管4内を先端の窓5側から末端側へ流れるため、反応
生成物の窓5への付着は著しく抑制される。このため、
窓5を介したレーザ光Lの導入及びラマン光Rの取り出
しを長時間にわたって効率良く行うことができるし、付
着物を取り除く作業の頻度も著しく少なくすることがで
きる。
In the above-mentioned structure, the connection optical system 13 is set so as to efficiently extract the Raman light R from the semiconductor surface in a direction substantially perpendicular to the semiconductor surface and guide it to the spectrometer 12, and directly. The laser light L is set to enter the semiconductor with a small incident angle so as not to be introduced into the spectrometer. A semiconductor is processed by introducing gas into the quartz reaction tube 4 under heating by an electric furnace while performing Raman spectroscopy measurement based on such a configuration. At this time, it is inevitable that a reaction product is generated and adheres to the inner wall surface of the quartz reaction tube 4. However, since the gas flows in the quartz reaction tube 4 from the end window 5 side to the end side, the reaction product Is significantly suppressed from adhering to the window 5. For this reason,
It is possible to efficiently introduce the laser light L and take out the Raman light R through the window 5 for a long time, and it is possible to significantly reduce the frequency of the work for removing the adhered matter.

【0011】更に、発熱体2は、通常の使用状態では白
熱状態で幅広い波長の光を発生するため、もし、アルミ
ナ管9が無いと、発熱体2からの光が半導体表面で反射
されるなどして分光計12へ到達し、分光計で取得した
ラマンスペクトル中にノイズとして出現することを本発
明者は確認した。本実施例では、高温になっても発光し
にくいアルミナで形成した管で石英反応管4の外周を囲
ったため、発熱体2からの光が分光計へ到達することを
防止することができ、ラマンスペクトル中へのノイズの
混入を防止することが可能である。なお、本実施例では
アルミナを材料として用いたが、高温でも発光しにくい
他の物質を用いることができるし、発熱体の表面を高温
でも発光しにくい物質で覆うようにしても良い。
Further, since the heating element 2 emits light having a wide wavelength in an incandescent state in a normal use state, if the alumina tube 9 is not provided, the light from the heating element 2 is reflected on the semiconductor surface. Then, the present inventor has confirmed that it reaches the spectrometer 12 and appears as noise in the Raman spectrum acquired by the spectrometer. In this embodiment, since the outer circumference of the quartz reaction tube 4 is surrounded by a tube made of alumina that hardly emits light even at high temperatures, it is possible to prevent the light from the heating element 2 from reaching the spectrometer. It is possible to prevent noise from entering the spectrum. Although alumina is used as the material in this embodiment, another substance that does not easily emit light at high temperature may be used, and the surface of the heating element may be covered with a substance that does not easily emit light even at high temperature.

【0012】図2及び図3のGa P/Si は、シリコン
基板上に成長させたGa Pからのラマンスペクトル(G
a PのTOフォノン)を示している。図2は成長中70
0℃で測定したもので、図3は成長後冷却し、室温で測
定したものである。図2及び図3でGa P bulk とある
のは、基準となるGa P単独の場合のスペクトルを示し
ている。成長中でも、室温測定に劣らない質の良いスペ
クトルが得られていることが分る。
GaP / Si in FIGS. 2 and 3 are Raman spectra (G) from GaP grown on a silicon substrate.
a P TO phonon). Figure 2 is growing 70
It was measured at 0 ° C., and FIG. 3 is measured at room temperature after cooling after growth. In FIG. 2 and FIG. 3, “Ga P bulk” indicates a spectrum when Ga P alone is used as a reference. It can be seen that even during growth, a good-quality spectrum comparable to that measured at room temperature was obtained.

【0013】また、成長中のGa PのTOフォノンは、
Ga P単独の場合より高波数側にあり、成長中のGa P
には圧縮性の応力が存在することがわかる。一方、室温
まで冷やしたGa PのTOフォノンは、Ga P単独の場
合より低波数側にあり、冷却後のGa Pには伸長性の応
力が存在することがわかる。かかる応力の変化は、本発
明の装置を用いた測定により、初めて明らかになったも
のである。
The TO phonon of growing Ga P is
Ga P is on the higher wave number side than that of Ga P alone and is growing.
It can be seen that there is compressive stress. On the other hand, the TO phonon of Ga P cooled to room temperature is on the lower wave number side than the case of Ga P alone, and it can be seen that Ga P after cooling has a tensile stress. Such a change in stress was clarified for the first time by measurement using the device of the present invention.

【0014】以上述べたように、本発明により半導体プ
ロセスのラマン分光法によるその場観察が可能になった
が、その場観察を用いた適用例を以下に例示する。 1)アニールによる結晶構造の回復過程をその場観察す
れば、過度のアニールに至らない最適なアニール時間を
決定することができる。 2)多結晶シリコンを形成するのに、アモルファスシリ
コンを堆積させた後加熱するという手法があるが、結晶
化の進行をその場観察すれば、適切な加熱条件が決定で
きる。 3)段差や溝のある基板上に結晶を成長させる場合、成
長した面の面方位がどのようになるかは解明されていな
い。成長過程をその場観察すると、必要に応じて一定以
上の面方位のずれが生じた時点で成長を停止させること
が可能である。 4)半導体基板上に異質の半導体を成長させたり(ヘテ
ロエピタキシャル成長)半導体上にシリコン酸化膜やシ
リコン窒化膜を形成すると、格子定数や熱膨張係数の違
いにより、半導体中に応力が発生する。しかし、応力を
緩和するために半導体中に欠陥が発生することもあるの
で、生じる応力を予め正確に計算することは不可能であ
る。その場観察により、許容限界までの応力の発生が確
認されたら、それ以上の堆積を中止させることが可能と
なる。 5)半導体中にイオン注入を行った場合、イオンが電気
的に働き、キャリアが発生するためには、アニールが必
要である。その場観察により、キャリア密度の測定と、
格子位置に入った不純物が観測できれば、アニールを停
止させ、過度のアニールによる半導体の劣化が防止でき
る。
As described above, according to the present invention, the in-situ observation of the semiconductor process by the Raman spectroscopy is possible. An application example using the in-situ observation will be illustrated below. 1) In-situ observation of the recovery process of the crystal structure by annealing makes it possible to determine the optimum annealing time that does not lead to excessive annealing. 2) In order to form polycrystalline silicon, there is a method of depositing amorphous silicon and then heating, but an appropriate heating condition can be determined by observing the progress of crystallization in situ. 3) When growing a crystal on a substrate having a step or a groove, it has not been clarified what the plane orientation of the grown surface is. If the growth process is observed in-situ, it is possible to stop the growth at the time when a deviation of the plane orientation of a certain amount or more occurs, if necessary. 4) When a heterogeneous semiconductor is grown on a semiconductor substrate (heteroepitaxial growth) or a silicon oxide film or a silicon nitride film is formed on the semiconductor, stress is generated in the semiconductor due to the difference in lattice constant and thermal expansion coefficient. However, since a defect may occur in the semiconductor in order to relax the stress, it is impossible to accurately calculate the resulting stress in advance. If in-situ observation confirms the occurrence of stress up to the allowable limit, it is possible to stop further deposition. 5) When ions are implanted into a semiconductor, ions work electrically and carriers are generated, so that annealing is necessary. By in-situ observation, measurement of carrier density,
If impurities entering the lattice position can be observed, the annealing can be stopped and the deterioration of the semiconductor due to excessive annealing can be prevented.

【0015】[0015]

【発明の効果】以上詳述の如く、本発明によれば、処理
中の半導体の特性をレーザラマン分光法によりリアルタ
イムでその場観察することが可能な装置が実現される。
As described in detail above, according to the present invention, an apparatus capable of observing the characteristics of a semiconductor being processed in situ by laser Raman spectroscopy is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】700℃で成長中のGa Pのラマンスペクトル
を示す図。
FIG. 2 is a diagram showing a Raman spectrum of Ga P during growth at 700 ° C.

【図3】成長後のGa Pの室温におけるラマンスペクト
ルを示す図。
FIG. 3 is a diagram showing a Raman spectrum of Ga P at room temperature after growth.

【符号の説明】[Explanation of symbols]

1 電気炉 2 発熱体 3 半導体 4 石英反応管 5 窓 6 窓 7 導入管 8 排出管 9 アルミナ管 10 熱電対 11 レーザ光源 12 分光計 13 接続光学系 DESCRIPTION OF SYMBOLS 1 Electric furnace 2 Heating element 3 Semiconductor 4 Quartz reaction tube 5 Window 6 Window 7 Introduction tube 8 Discharge tube 9 Alumina tube 10 Thermocouple 11 Laser light source 12 Spectrometer 13 Connection optical system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉と、処理すべき半導体を収容し該
加熱炉内に配置される反応容器と、該反応容器内に処理
用ガスを導入するためのガス導入手段と、レーザ光源
と、外部から反応容器内の半導体に該レーザ光源からの
レーザ光を照射すると共に半導体からのラマン光を外部
に取り出すために加熱炉に設けられた窓と、該窓を介し
て外部に取り出されたラマン光が導入される分光計とを
備え、前記反応容器は前記窓を介して導入されるレーザ
光を内部の半導体に到達させるためのレーザ光透過部を
有し、前記半導体は反応容器内の前記窓に面する部位に
配置されるように構成したことを特徴とするレーザラマ
ン分光法による半導体プロセスその場観察装置
1. A heating furnace, a reaction container that accommodates a semiconductor to be processed and is arranged in the heating furnace, a gas introduction unit for introducing a processing gas into the reaction container, and a laser light source. A window provided in a heating furnace for irradiating the semiconductor light in the reaction container with laser light from the laser light source from the outside and taking out Raman light from the semiconductor to the outside, and Raman taken out to the outside through the window And a spectrometer into which light is introduced, wherein the reaction vessel has a laser light transmitting portion for making laser light introduced through the window reach an internal semiconductor, and the semiconductor is the reaction vessel inside the reaction vessel. Semiconductor process in-situ observation apparatus by laser Raman spectroscopy characterized in that it is arranged at a portion facing a window
【請求項2】 前記反応容器外周面と加熱炉内面の間
に、高温になっても発光しにくい材料で形成された遮蔽
体で囲んだことを特徴とする請求項1記載のレーザラマ
ン分光法による半導体プロセスその場観察装置。
2. A laser Raman spectroscopic method according to claim 1, further comprising: a shield formed between the outer peripheral surface of the reaction container and the inner surface of the heating furnace, the shield being made of a material that hardly emits light even at high temperatures. Semiconductor process in-situ observation equipment.
【請求項3】 前記ガス導入手段は、前記反応容器内の
レーザ光透過部側から反対側へ流れるようにガスを反応
容器内に導入するように構成したことを特徴とする請求
項1記載のレーザラマン分光法による半導体プロセスそ
の場観察装置。
3. The gas introducing means is configured to introduce the gas into the reaction container so that the gas flows from the laser light transmitting portion side to the opposite side in the reaction container. In-situ observation system for semiconductor processes by laser Raman spectroscopy.
JP2327593A 1993-01-18 1993-01-18 In situ semiconductor process observing system employing laser raman spectroscopy Pending JPH06242001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327593A JPH06242001A (en) 1993-01-18 1993-01-18 In situ semiconductor process observing system employing laser raman spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327593A JPH06242001A (en) 1993-01-18 1993-01-18 In situ semiconductor process observing system employing laser raman spectroscopy

Publications (1)

Publication Number Publication Date
JPH06242001A true JPH06242001A (en) 1994-09-02

Family

ID=12106058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327593A Pending JPH06242001A (en) 1993-01-18 1993-01-18 In situ semiconductor process observing system employing laser raman spectroscopy

Country Status (1)

Country Link
JP (1) JPH06242001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062342A (en) * 2020-07-30 2022-02-18 顶极科技股份有限公司 Quality change detection system and method for semiconductor process spare and accessory parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062342A (en) * 2020-07-30 2022-02-18 顶极科技股份有限公司 Quality change detection system and method for semiconductor process spare and accessory parts
CN114062342B (en) * 2020-07-30 2024-01-23 顶极科技股份有限公司 Quality change detection system and method for semiconductor manufacturing spare and accessory parts

Similar Documents

Publication Publication Date Title
EP0482648B1 (en) Method of vapour growing a semiconductor crystal
WO2002012585A2 (en) Processing apparatus and cleaning method
US6646752B2 (en) Method and apparatus for measuring thickness of a thin oxide layer
US20100180913A1 (en) Methods for in-situ chamber cleaning process for high volume manufacture of semiconductor materials
US20020129476A1 (en) Device for manufacturing semiconductor device and method of manufacturing the same
JPH1031039A (en) Measuring device and measuring method
KR20190015478A (en) Method of evaluating carbon concentration of silicon sample, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafer, manufacturing method of silicon monocrystalline ingot, silicon monocrystalline ingot and silicon wafer
JPH07283138A (en) Creation of crystallographical match film of carbonization silicon by laser vapor deposition of carbon to silicon
US6989281B2 (en) Cleaning method for a semiconductor device manufacturing apparatus
JP2912842B2 (en) Thin film forming equipment
JPH06242001A (en) In situ semiconductor process observing system employing laser raman spectroscopy
EP3170928B1 (en) Semi-insulating gaas single crystal
JP2632239B2 (en) Method and apparatus for growing semiconductor crystal film
JP2010217012A (en) Infrared detector and device manufacturing apparatus
US4708677A (en) Method of measuring the temperature of a photocathode
US5926691A (en) Methods of fabricating borophosphosilicate glass (BPSG) films having impurity concentrations which remain stable over time, and for using such films testing of microelectronic devices
TWI775689B (en) Inline chamber metrology
US20200354828A1 (en) Deposition system with integrated carrier cleaning modules
KR0162934B1 (en) Apparatus and method for manufacturing semiconductor device
JP3433856B2 (en) Amorphous thin film crystallization method
JPH09330966A (en) Method for detecting carbon in silicon substrate
JP3317247B2 (en) Crystal growth apparatus and semiconductor element manufacturing method
US20230257906A1 (en) Crystal piece of monocrystalline silicon
JPH0443659A (en) Semiconductor manufacturing apparatus
JPH10294346A (en) Method of inspecting semiconductor and inspection jig used for the same