JPH06241941A - Measuring method and device for dynamic elasticity and rigidity - Google Patents

Measuring method and device for dynamic elasticity and rigidity

Info

Publication number
JPH06241941A
JPH06241941A JP5047429A JP4742993A JPH06241941A JP H06241941 A JPH06241941 A JP H06241941A JP 5047429 A JP5047429 A JP 5047429A JP 4742993 A JP4742993 A JP 4742993A JP H06241941 A JPH06241941 A JP H06241941A
Authority
JP
Japan
Prior art keywords
rigidity
vibration
elastic modulus
dynamic elastic
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5047429A
Other languages
Japanese (ja)
Other versions
JP3189241B2 (en
Inventor
Yoshitaka Morimoto
喜隆 森本
Tadayoshi Hayazaki
忠義 早崎
Takamitsu Kashiwamura
隆光 柏村
Hideo Yoshitome
英雄 吉留
Chiyomi Mitamura
千代美 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP04742993A priority Critical patent/JP3189241B2/en
Publication of JPH06241941A publication Critical patent/JPH06241941A/en
Application granted granted Critical
Publication of JP3189241B2 publication Critical patent/JP3189241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To accurately and easily measure dynamic elasticity and rigidity of material at the same time. CONSTITUTION:A supporting part 2 holds a node of vibration at resonance of a material 1. The material 1 held by the supporting part 2 is agitated with the sound wave projected, through a voice pipe 4, by a sound wave generator 5. A laser-Doppler vibrator 7 detects vibration generated when the material 1 is agitated. An electronic computer 15, from the vibration of the material 1 inputted through a frequency analyzer 12, calculates the resonance frequency specific to the material 1, for measurement of dynamic elasticity and rigidity of the material 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、材料の動的弾性率及び
剛性率の測定方法及びその測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a dynamic elastic modulus and a rigidity of a material and a measuring apparatus therefor.

【0002】[0002]

【従来の技術】セラミックス、金属、プラスチックス、
木材などの材料の動的弾性率や剛性率は、材料を加振し
て材料固有の共振周波数を算出する共振法により精度良
く測定することができる。
2. Description of the Related Art Ceramics, metals, plastics,
The dynamic elastic modulus and rigidity of a material such as wood can be accurately measured by a resonance method in which the material is vibrated to calculate a resonance frequency peculiar to the material.

【0003】従来の共振法としては、材料を2本の白金
線などの吊り糸によって吊り下げ、これらの吊り糸を介
して材料を加振し、この加振振動数を変化させつつ材料
の振動を検出する事によって材料固有の共振周波数を算
出して材料の動的弾性率や剛性率を測定する方法がある
(JIS R 1602,JIS R 1605)。と
ころが、この方法では、吊り糸自身の共振が生じ、材料
固有の共振周波数を算出しづらいという欠点や、材料を
加振する際に吊り糸が加振振動を吸収してしまい、材料
を効率よく加振できないなどの欠点がある。
As a conventional resonance method, the material is hung by two hanging wires such as platinum wires, the material is vibrated through these hanging threads, and the vibration frequency of the material is changed while changing the vibration frequency. There is a method of calculating the resonance frequency peculiar to a material by detecting the material and measuring the dynamic elastic modulus and the rigidity of the material (JIS R 1602, JIS R 1605). However, in this method, the suspension thread itself resonates, which makes it difficult to calculate the resonance frequency peculiar to the material, and when the material is vibrated, the suspension thread absorbs the vibration and the material is efficiently oscillated. It has the drawback that it cannot be excited.

【0004】そこで、上述した欠点を解消するために、
材料を交番電圧で加振し、加振振動数を変化させつつ材
料の振動を検出する事によって材料固有の共振周波数を
算出して材料の動的弾性率や剛性率を測定する方法が提
案されている(特開昭63−1955号公報参照)。
Therefore, in order to eliminate the above-mentioned drawbacks,
A method has been proposed to measure the dynamic elastic modulus and rigidity of a material by exciting the material with an alternating voltage and detecting the vibration of the material while changing the vibration frequency. (See JP-A-63-1955).

【0005】[0005]

【発明が解決しようとする課題】上述した従来方法で
は、材料の動的弾性率を測定するときの材料のセッティ
ング位置と、剛性率を測定するときのセッティング位置
が異なるため、動的弾性率及び剛性率を測定する場合に
手間がかかり過ぎるという欠点があり、特に高温雰囲気
下における測定において顕著であった。さらに、上述し
た後者の従来方法により非導電性の材料の動的弾性率や
剛性率を測定しようとする場合には、導電性のペースト
等を材料に塗布して電極を材料に付けなければならな
い。そのために、この従来方法によって測定された非導
電性の材料の動的弾性率や剛性率が、ペーストの塗布に
よる影響を受けてしまうという欠点があった。また、ペ
ーストの塗布の作業にも手間がかかるという問題があっ
た。
In the above-mentioned conventional method, since the setting position of the material when measuring the dynamic elastic modulus of the material and the setting position when measuring the rigidity are different, the dynamic elastic modulus and There is a drawback that it takes too much time and effort to measure the rigidity, which is particularly remarkable in the measurement in a high temperature atmosphere. Furthermore, in order to measure the dynamic elastic modulus or rigidity of a non-conductive material by the latter conventional method described above, the conductive paste or the like must be applied to the material and the electrode must be attached to the material. . Therefore, there has been a drawback that the dynamic elastic modulus and the rigidity of the non-conductive material measured by this conventional method are affected by the application of the paste. Further, there is a problem that the work of applying the paste also takes time.

【0006】本発明は上述の様な事情からなされたもの
であり、本発明の目的は、材料の動的弾性率及び剛性率
を同時に、正確に、かつ容易に測定する事ができる動的
弾性率及び剛性率の測定方法及びその測定装置を提供す
ることにある。
The present invention has been made under the circumstances as described above, and an object of the present invention is to provide a dynamic elastic material capable of simultaneously and accurately measuring the dynamic elastic modulus and rigidity of a material. An object of the present invention is to provide a method of measuring the modulus and the rigidity and a measuring device therefor.

【0007】[0007]

【課題を解決するための手段】本発明は、材料の動的弾
性率及び剛性率の測定方法及びその測定装置に関するも
のであり、本発明の上記目的は、前記材料の共振時にお
ける振動の節を把持する事によって達成される。また、
材料の共振時における振動の節を把持するための把持手
段と、前記把持手段により把持された材料を加振するた
めの空気振動を発生する発生手段と、前記材料を加振し
た際の振動を検出する検出手段と、前記検出手段により
検出された振動から前記材料固有の共振周波数を算出す
る算出手段と、前記算出手段により算出された共振周波
数から前記材料の動的弾性率及び剛性率を測定する測定
手段とを具備することによって達成される。
SUMMARY OF THE INVENTION The present invention relates to a method of measuring the dynamic elastic modulus and the rigidity of a material and a measuring apparatus therefor, and the above object of the present invention is to provide a vibration node at the time of resonance of the material. It is achieved by grasping. Also,
A gripping means for gripping a vibration node at the time of resonance of the material, a generating means for generating an air vibration for exciting the material gripped by the gripping means, and a vibration when the material is vibrated. Detecting means for detecting, calculating means for calculating the resonance frequency peculiar to the material from the vibration detected by the detecting means, and measuring the dynamic elastic modulus and rigidity of the material from the resonance frequency calculated by the calculating means And a measuring means for

【0008】[0008]

【作用】本発明は、材料の共振時における共振の節を把
持し、その材料の任意の位置に音波を投射して材料を加
振し、加振された材料の任意の位置にレーザ光を照射し
その反射光を測定する事で材料の振動を検出するように
しているので、材料のセッティング位置を変更する事な
く材料の動的弾性率及び剛性率を測定することができ
る。
According to the present invention, a resonance node at the time of resonance of a material is grasped, a sound wave is projected to an arbitrary position of the material to vibrate the material, and a laser beam is applied to an arbitrary position of the vibrated material. Since the vibration of the material is detected by irradiating and measuring the reflected light, the dynamic elastic modulus and rigidity of the material can be measured without changing the setting position of the material.

【0009】[0009]

【実施例】図1は本発明の動的弾性率及び剛性率の測定
装置の一例を示す構成図であり、加振装置、検出装置、
恒温装置及び解析装置で構成される。加振装置は、増幅
器14からの信号により音波を発生する音波発生器5
と、その音波を材料1に伝達するための伝声管4とで構
成される。検出装置としては、例えばレーザドップラー
振動計7が用いられる。恒温装置は、材料1,支持部2
及び治具3等が収納可能な恒温容器6、恒温容器6内を
加熱あるいは冷却する手段、恒温容器6内の温度を検出
する熱電対等の温度検出器8及び温度検出器8からの信
号により恒温容器6内の温度を制御する温度コントロー
ラ13とで構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an example of a dynamic elastic modulus and rigidity measuring device of the present invention.
It consists of a thermostat and an analyzer. The vibrating device includes a sound wave generator 5 that generates a sound wave by a signal from the amplifier 14.
And a voice tube 4 for transmitting the sound wave to the material 1. For example, a laser Doppler vibrometer 7 is used as the detection device. The thermostat consists of material 1, support 2
And a constant temperature container 6 in which the jig 3 and the like can be stored, a means for heating or cooling the constant temperature container 6, a temperature detector 8 such as a thermocouple for detecting the temperature in the constant temperature container 6, and a constant temperature by a signal from the temperature detector 8. The temperature controller 13 controls the temperature inside the container 6.

【0010】恒温容器6には、伝声管4を接続するため
の伝声管用開口部9、レーザドップラー振動計7から出
力されるレーザを材料1に照射するためのレーザ用開口
部10及び恒温容器6内を非酸化性雰囲気にするための
窒素等の不活性気体を送り込むための不活性気体注入用
開口部11が設けられている。解析装置は、レーザドッ
プラー振動計7からの信号により周波数を分析する周波
数分析器12と、周波数分析器12からの信号や温度コ
ントローラ13からの信号を解析したり、増幅器14に
信号を送出する電子計算機15とで構成される。
In the constant temperature container 6, a voice tube opening 9 for connecting the voice tube 4, a laser opening 10 for irradiating the material 1 with the laser beam output from the laser Doppler vibrometer 7, and the constant temperature container 6 are provided. There is provided an inert gas injection opening 11 for feeding an inert gas such as nitrogen to make the non-oxidizing atmosphere. The analysis device analyzes the frequency from the signal from the laser Doppler vibrometer 7 for frequency analysis, the signal from the frequency analyzer 12 and the signal from the temperature controller 13, and sends the signal to the amplifier 14. It is composed of a computer 15.

【0011】このような構成において、例えば図2に示
すような直方体の材料1の動的弾性率及び剛性率の測定
方法を説明する。材料1の共振時における振動の節、例
えば図2の18の位置を支持部2に把持させる。そし
て、材料1の一端、例えば図2の16の位置に伝声管4
からの音波が投射され、かつ図2の17の位置にレーザ
ドップラー振動計7からのレーザが照射されるように材
料1及び支持部2を治具3上に載置する。材料1が酸化
され易い場合は、不活性気体を不活性気体注入用開口部
11から恒温容器6内に注入することで、恒温容器6内
を非酸化性雰囲気にする。そして、加熱手段若しくは冷
却手段により恒温容器6内を希望の温度に加熱あるいは
冷却する。この際、恒温容器6内の温度は温度検出器8
によって検出されて温度コントローラ13に読み取ら
れ、予め電子計算機15から温度コントローラ13に指
令されている温度設定値と比較され、その結果に従って
温度コントローラ13により調節される。
A method of measuring the dynamic elastic modulus and the rigidity modulus of the rectangular parallelepiped material 1 having the above structure will be described below. The support section 2 is caused to grip the node of vibration at the time of resonance of the material 1, for example, the position of 18 in FIG. Then, at one end of the material 1, for example, at the position 16 in FIG.
The material 1 and the supporting portion 2 are placed on the jig 3 so that the sound wave from the laser beam is projected and the laser beam from the laser Doppler vibrometer 7 is applied to the position 17 in FIG. When the material 1 is easily oxidized, an inert gas is injected into the constant temperature container 6 through the inert gas injection opening 11 to make the inside of the constant temperature container 6 a non-oxidizing atmosphere. Then, the inside of the constant temperature container 6 is heated or cooled to a desired temperature by the heating means or the cooling means. At this time, the temperature inside the constant temperature container 6 is controlled by the temperature detector 8
Is detected by the temperature controller 13 and read by the temperature controller 13. The temperature controller 13 compares the temperature setting value with a command from the electronic computer 15 to the temperature controller 13 in advance, and adjusts the temperature controller 13 according to the result.

【0012】一方、増幅器14は電子計算機15から指
示された周波数に従って音波発生器5に電流を流し、音
波発生器5を駆動する。増幅器14によって駆動された
音波発生器5は、音波発生器5から伝声管用開口部9を
通じて材料1まで達している伝声管4を介して材料1に
音波を投射して材料1を加振する。
On the other hand, the amplifier 14 supplies a current to the sound wave generator 5 in accordance with the frequency instructed by the electronic computer 15, and drives the sound wave generator 5. The sound wave generator 5 driven by the amplifier 14 vibrates the material 1 by projecting a sound wave onto the material 1 through the sound transmission tube 4 reaching the material 1 from the sound wave generator 5 through the sound transmission tube opening 9.

【0013】レーザドップラー振動計7は、レーザ用開
口部10を介してレーザを材料1に照射してその反射光を
測定することにより材料1の振動を検出し、検出した振
動波形の時間応答を周波数分析装置12により解析し共
振周波数を求める。電子計算機15は、周波数分析装置
12で解析して得られた共振周波数を用いて演算するこ
とにより材料1の動的弾性率及び剛性率を測定するよう
になっている。
The laser Doppler vibrometer 7 detects the vibration of the material 1 by irradiating the material 1 with a laser through the opening 10 for the laser and measuring the reflected light, and obtains the time response of the detected vibration waveform. The frequency analysis device 12 analyzes and finds the resonance frequency. The electronic computer 15 measures the dynamic elastic modulus and rigidity of the material 1 by calculating using the resonance frequency obtained by the analysis by the frequency analysis device 12.

【0014】本発明においては材料の共振時における振
動の節を把持しているので、その把持位置を変更せずに
材料の動的弾性率及び剛性率を同時に測定することがで
きる。従って、低温から高温にかけての材料の動的弾性
率及び剛性率を連続的に測定することができる。図3
は、窒化珪素を100mm×20mm×2mmの大きさ
に加工し、本発明方法及び装置を用いて恒温容器内の温
度を変化させたときの窒化珪素の動的弾性率及び剛性率
の測定結果を示す図である。
In the present invention, since the vibration node at the time of resonance of the material is gripped, the dynamic elastic modulus and rigidity of the material can be simultaneously measured without changing the gripping position. Therefore, the dynamic elastic modulus and rigidity of the material can be continuously measured from low temperature to high temperature. Figure 3
Shows the measurement results of the dynamic elastic modulus and the rigidity of silicon nitride when the silicon nitride was processed into a size of 100 mm × 20 mm × 2 mm and the temperature in the constant temperature container was changed by using the method and apparatus of the present invention. FIG.

【0012】[0012]

【発明の効果】以上のように本発明の動的弾性率及び剛
性率の測定方法及びその測定装置によれば、材料の共振
時における振動の節を把持して材料固有の共振周波数を
算出するようにしているので、材料を一度セットしたら
その位置を変更せずに材料の動的弾性率及び剛性率を測
定することができ、特に高温雰囲気中での測定を容易に
行なうことができる。
As described above, according to the method for measuring the dynamic elastic modulus and the rigidity of the present invention and the measuring apparatus therefor, the resonance frequency peculiar to the material is calculated by gripping the vibration node at the time of resonance of the material. Therefore, once the material is set, the dynamic elastic modulus and the rigidity of the material can be measured without changing the position, and the measurement can be easily performed especially in a high temperature atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動的弾性率及び剛性率の測定装置の一
例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a dynamic elastic modulus and rigidity measuring device of the present invention.

【図2】本発明における測定時の材料の支持位置、加振
位置及び振動検出位置を示すための図である。
FIG. 2 is a diagram showing a support position, a vibration position, and a vibration detection position of a material at the time of measurement in the present invention.

【図3】本発明により温度を変化させて測定した動的弾
性率及び剛性率の変化の一例を示す図である。
FIG. 3 is a diagram showing an example of changes in dynamic elastic modulus and rigidity measured by changing temperature according to the present invention.

【符号の説明】[Explanation of symbols]

1 材料 2 支持部 3 治具 4 伝声管 5 音波発生器 6 恒温容器 7 レーザドップラー振動計 8 温度検出器 9 伝声管用開口部 10 レーザ用開口部 11 不活性気体注入用開口部 12 周波数分析器 13 温度コントローラ 14 増幅器 15 電子計算機 16 加振位置 17 振動検出位置 18 支持位置 DESCRIPTION OF SYMBOLS 1 Material 2 Support part 3 Jig 4 Voice tube 5 Sound wave generator 6 Constant temperature vessel 7 Laser Doppler vibrometer 8 Temperature detector 9 Voice tube opening 10 Laser opening 11 Inert gas injection opening 12 Frequency analyzer 13 Temperature Controller 14 Amplifier 15 Computer 16 Excitation position 17 Vibration detection position 18 Support position

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏村 隆光 大阪府大阪市城東区関目6丁目14番A− 315号 (72)発明者 吉留 英雄 大阪府岸和田市天神山町3丁目6番15号 (72)発明者 三田村 千代美 大阪府吹田市五月が丘東6番A−210号 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Takamitsu Kashiwamura A 14-315, Sekime 6-chome, Joto-ku, Osaka-shi, Osaka (72) Inventor Hideo Yoshidome 3-6-15 Tenjinyama-cho, Kishiwada-shi, Osaka (72) ) Inventor Chiyomi Mitamura 6-A-210, East of Satsukigaoka, Suita City, Osaka Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 材料を加振してその振動を検出し、前記
材料固有の共振周波数を算出する事によって前記材料の
動的弾性率及び剛性率を測定する方法において、前記材
料の共振時における振動の節を把持するようにしたこと
を特徴とする動的弾性率及び剛性率の測定方法。
1. A method for measuring a dynamic elastic modulus and a rigidity modulus of a material by vibrating the material, detecting the vibration, and calculating a resonance frequency peculiar to the material. A method for measuring dynamic elastic modulus and rigidity, characterized in that a vibration node is grasped.
【請求項2】 前記材料を空気振動により加振するよう
にした請求項1に記載の動的弾性率及び剛性率の測定方
法。
2. The method for measuring dynamic elastic modulus and rigidity according to claim 1, wherein the material is vibrated by air vibration.
【請求項3】 前記材料の加振位置及び振動検出位置
が、前記材料の一端である請求項1に記載の動的弾性率
及び剛性率の測定方法。
3. The method for measuring a dynamic elastic modulus and a rigidity modulus according to claim 1, wherein an exciting position and a vibration detecting position of the material are one end of the material.
【請求項4】 材料の共振時における振動の節を把持す
るための把持手段と、前記把持手段により把持された材
料を加振するための空気振動を発生する発生手段と、前
記材料を加振した際の振動を検出する検出手段と、前記
検出手段により検出された振動から前記材料固有の共振
周波数を算出する算出手段と、前記算出手段により算出
された共振周波数から前記材料の動的弾性率及び剛性率
を測定する測定手段とを備えたことを特徴とする動的弾
性率及び剛性率の測定装置。
4. A gripping means for gripping a node of vibration at the time of resonance of the material, a generating means for generating air vibration for vibrating the material gripped by the gripping means, and a vibrating the material. Detecting means for detecting the vibration at the time, a calculating means for calculating the resonance frequency peculiar to the material from the vibration detected by the detecting means, and a dynamic elastic modulus of the material from the resonance frequency calculated by the calculating means And a measuring means for measuring the rigidity, and a dynamic elastic modulus and rigidity measuring device.
【請求項5】 前記材料を加振するための空気振動の発
生手段が、伝声管を備えた音波発生器である請求項4に
記載の動的弾性率及び剛性率の測定装置。
5. The dynamic elastic modulus and rigidity measuring device according to claim 4, wherein the air vibration generating means for vibrating the material is a sound wave generator having a voice tube.
【請求項6】 前記材料を加振した際の振動の検出手段
が、レーザドップラー振動計である請求項4に記載の動
的弾性率及び剛性率の測定装置。
6. The dynamic elastic modulus and rigidity measuring device according to claim 4, wherein the means for detecting vibration when the material is vibrated is a laser Doppler vibrometer.
【請求項7】 前記材料固有の共振周波数の算出手段
が、前記材料を加振した際の振動波形の時間応答関数を
求め、求めた時間応答関数を周波数分析して加速度、速
度、変位/力の伝達関数を求め、求めた伝達関数から前
記材料固有の共振周波数を算出するようになっている請
求項4に記載の動的弾性率及び剛性率の測定装置。
7. The resonance frequency calculation unit specific to the material obtains a time response function of a vibration waveform when the material is vibrated, and frequency-analyzes the obtained time response function to determine acceleration, velocity, displacement / force. The dynamic elastic modulus and rigidity measuring device according to claim 4, wherein the resonance frequency peculiar to the material is calculated from the obtained transfer function.
【請求項8】 前記材料を内部に設置可能な加熱手段及
び冷却手段を具備する容器を有し、前記容器内の温度を
変化させて前記材料の動的弾性率及び剛性率を測定する
ようにした請求項4に記載の動的剛性率及び剛性率の測
定装置。
8. A container having a heating means and a cooling means capable of installing the material therein, and changing the temperature in the container to measure the dynamic elastic modulus and the rigidity modulus of the material. The dynamic rigidity and rigidity measuring device according to claim 4.
JP04742993A 1993-02-12 1993-02-12 Method and apparatus for measuring dynamic elastic modulus and rigidity Expired - Fee Related JP3189241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04742993A JP3189241B2 (en) 1993-02-12 1993-02-12 Method and apparatus for measuring dynamic elastic modulus and rigidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04742993A JP3189241B2 (en) 1993-02-12 1993-02-12 Method and apparatus for measuring dynamic elastic modulus and rigidity

Publications (2)

Publication Number Publication Date
JPH06241941A true JPH06241941A (en) 1994-09-02
JP3189241B2 JP3189241B2 (en) 2001-07-16

Family

ID=12774912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04742993A Expired - Fee Related JP3189241B2 (en) 1993-02-12 1993-02-12 Method and apparatus for measuring dynamic elastic modulus and rigidity

Country Status (1)

Country Link
JP (1) JP3189241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123897A (en) * 2018-04-25 2019-11-04 부경대학교 산학협력단 Device for measuring modal damping coefficient and measuring method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123897A (en) * 2018-04-25 2019-11-04 부경대학교 산학협력단 Device for measuring modal damping coefficient and measuring method using the same

Also Published As

Publication number Publication date
JP3189241B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
WO1990008006A1 (en) Welding method and apparatus
TW378288B (en) Method and apparatus for controlling piezoelectric vibration
JP2002060041A (en) Method and apparatus for controlling piezoelectric vibrating parts feeder
JPH08334431A (en) Nondestructive inspection device
JPH06241941A (en) Measuring method and device for dynamic elasticity and rigidity
JP2002292337A (en) Method and device for controlling part feeder
JP2002128261A (en) Method for controlling electromagnetic parts feeder and device thereof
JPH0758283B2 (en) Mechanical constant measuring device
JP2004086702A (en) Method for automatically setting oscillation suppressing filter
JP2004178447A (en) State amount presentation device and method
JP3802200B2 (en) Fruit ripeness measuring method and ripeness measuring device
JPH0843185A (en) Mass measuring method and device
JP2000197984A (en) Laser beam machining method and its device
JP2726562B2 (en) Resonance frequency detector
JPH0749406Y2 (en) Elastic modulus measuring device
JP4424704B2 (en) Exciter control method and control apparatus
JPH11179426A (en) Wire rod temperature measuring device and wire drawing machine using the same
JP2823952B2 (en) Oscillation drive circuit
JPS59502110A (en) Method and device for alleviating unstable internal residual stress due to vibration
DE69710337D1 (en) METHOD AND DEVICE FOR TORSION MAGNETOMETRY
SU1467471A1 (en) Method of measuring electric force on operating member of separator
JPH05337140A (en) Measuring apparatus for degree of oscillation
JPH0666716A (en) Apparatus and method for measuring adhering strength
JPH04156982A (en) Frequency tracing control method for ultrasonic vibrator transducer
JPH01262000A (en) Amplitude measuring device for ultrasonic vibrator transducer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees