JPH06241003A - Starting method for steam turbine - Google Patents

Starting method for steam turbine

Info

Publication number
JPH06241003A
JPH06241003A JP2952093A JP2952093A JPH06241003A JP H06241003 A JPH06241003 A JP H06241003A JP 2952093 A JP2952093 A JP 2952093A JP 2952093 A JP2952093 A JP 2952093A JP H06241003 A JPH06241003 A JP H06241003A
Authority
JP
Japan
Prior art keywords
turbine
thermal stress
rotor
life consumption
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2952093A
Other languages
Japanese (ja)
Inventor
Takayuki Marume
隆之 丸目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2952093A priority Critical patent/JPH06241003A/en
Publication of JPH06241003A publication Critical patent/JPH06241003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To optimize life consumption in sequence by estimating a turbine operation parameter so as to optimize an evaluation function, and controlling a turbine controller in advance according to the estimated value. CONSTITUTION:Based on the signals of temperature detection parts 8, 9, a high pressure rotor thermal stress computation part 10 and a medium pressure rotor stress computation part 11 compute rotor radial temperature distribution and thermal stress generated at a surface and a bore to output the computed values to a model estimation part 1. The model estimation part 1 receives the rotor radial temperature distribution, the thermal stress generated at the surface and the bore, and present turbine state values of a main steam pressure detection part 5, a main steam temperature detection part 6, generator output from a generator 14 and so on. A prediction section Sn+1 is determined as its initial value to give a speed increasing rate Vtn+1 in the case of operating only for the next one section to a valve opening controller 2. It is thus possible to always keep an optimum operating condition taking into consideration life consumption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラと蒸気タービン
からなるプラントの起動方法にかかり特に発電用中間負
荷運用プラント等、急速かつ頻繁な起動停止運用が要求
されるようなプラントの蒸気タービン起動方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a plant consisting of a boiler and a steam turbine, and particularly for starting a steam turbine of a plant such as an intermediate load operating plant for power generation, where rapid and frequent start / stop operations are required. Regarding the method.

【0002】[0002]

【従来の技術】蒸気タービン起動時には昇速、負荷変化
により蒸気の温度が大きく変動し、その結果、肉圧部材
であるタービンロータ内部にメタル温度分布が生じ、ロ
ータ表面とボア部に大きな熱応力が発生する。この熱応
力がある値以上になるとロータの寿命消費につながるこ
とが知られている。また、1回の起動に対する寿命消費
はその時の熱応力のピークの大きさと回数により図3の
寿命消費曲線によって定量的把握を行っている。
2. Description of the Related Art When a steam turbine is started, the steam temperature fluctuates significantly due to acceleration and load changes. As a result, a metal temperature distribution is generated inside the turbine rotor, which is a wall pressure member, and a large thermal stress is applied to the rotor surface and bore. Occurs. It is known that when the thermal stress exceeds a certain value, the life of the rotor is consumed. Further, the life consumption per one start is quantitatively grasped by the life consumption curve of FIG. 3 according to the peak size and the number of times of the thermal stress at that time.

【0003】近年、発電用中間負荷運用プラントでは急
速かつ頻繁な起動停止運用が要求されている。従ってこ
の急速起動時には上記熱応力を制限値内に抑制し、かつ
1回の起動に対するロータ寿命消費も適正にするような
起動方法が必要である。この問題に対し、従来方法の一
例を示す。
In recent years, rapid and frequent start-stop operation has been required for intermediate load operation plants for power generation. Therefore, at the time of this rapid start-up, there is a need for a start-up method that suppresses the thermal stress within the limit value and also makes the rotor life consumption appropriate for one start-up. An example of a conventional method for this problem will be shown.

【0004】蒸気タービン起動時に、熱応力的に最も厳
しい状況下にあるのは高圧タービン第1段後のロータ部
分である。そこで従来の起動時には、図6に示されるよ
うなミスマッチチャートを用いて自動起動操作を行って
いた。このチャートは起動時の主蒸気温度から高圧第1
段後蒸気温度を仮定し、同時にオンラインで実測した高
圧第1段後のケーシング内面メタル温度(タービンロー
タ表面メタル温度と同等と仮定)とのミスマッチ量よ
り、昇速率、ヒートソーク時間、初負荷量、負荷変化率
等の運転パラメータをいくつかのパターンから選び出す
ものである。
At the time of starting the steam turbine, it is the rotor portion after the first stage of the high pressure turbine that is in the most severe thermal stress condition. Therefore, at the time of conventional activation, the automatic activation operation is performed using a mismatch chart as shown in FIG. This chart shows the high pressure
Assuming the post-stage steam temperature, the speed increase rate, heat soak time, initial load amount, from the amount of mismatch with the casing inner surface metal temperature after the first high pressure (assumed to be equivalent to the turbine rotor surface metal temperature) measured online at the same time, The operation parameters such as the load change rate are selected from several patterns.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
なタービン起動方法においては、起動時の蒸気とタービ
ンメタル間のミスマッチ温度より、有限個のパターンの
起動方法でしか対応できないのでタービン熱応力に関し
て、必ずしも最適な運転を行えるとは限らない。
However, in the turbine start-up method as described above, since the mismatch temperature between the steam and the turbine metal at the time of start-up can be dealt with by only a finite number of patterns of start-up methods, the turbine thermal stress can be reduced. However, optimum driving cannot always be performed.

【0006】また寿命消費については、決められた起動
パターンに対する寿命消費に対してある程度予測できる
だけであり、ボイラ側による急激な蒸気条件の変動等の
外乱が生じた場合等の寿命消費について積極的な制御対
応が行われていない。
The life consumption can only be predicted to some extent with respect to the life consumption with respect to a predetermined starting pattern, and the life consumption is positively considered when a disturbance such as a sudden change in steam condition occurs on the boiler side. Control correspondence is not performed.

【0007】そこで本発明の目的は、蒸気タービン起動
時動特性モデルに従って、蒸気タービン起動操作パラメ
ータを逐次最適化することにより、起動前のタービン状
態や運転中の外乱にかかわらず、起動時間と熱応力及び
それによる寿命消費を逐次最適にするような蒸気タービ
ン起動方法を提供することにある。
Therefore, an object of the present invention is to sequentially optimize steam turbine start-up operating parameters in accordance with a steam turbine start-up dynamic characteristic model, so that the start-up time and heat can be reduced regardless of the turbine state before start-up and disturbance during operation. It is an object of the present invention to provide a steam turbine starting method that sequentially optimizes stress and life consumption.

【0008】[0008]

【課題を解決するための手段】本発明の蒸気タービン起
動方法は、蒸気タービン起動時の動特性モデルを備え、
該モデルに従って起動時間とロータに発生する熱応力、
ロータ寿命消費により構成された評価関数を、ある時間
周期毎に将来のある区間までの間最適にするように、タ
ービン運転操作パラメータの予測を行い、該予測値に従
ってタービン制御装置を先行制御することを特徴とす
る。
A steam turbine starting method of the present invention comprises a dynamic characteristic model at the time of starting a steam turbine,
According to the model, the starting time and the thermal stress generated in the rotor,
To predict the turbine operation parameter so as to optimize the evaluation function constituted by the rotor life consumption up to a certain section in the future every certain time period, and to pre-control the turbine controller according to the predicted value. Is characterized by.

【0009】[0009]

【作用】上記のようなタービン制御方法では、予測計算
を逐次繰り返すことでフィードバック効果が生じモデル
と実機の違い、及び外乱たとえばボイラ原因の急激な主
蒸気圧力変動等の影響による最適値からのずれを小さく
できる。
In the turbine control method as described above, a feedback effect is generated by repeating the predictive calculation one after another, and a deviation from the optimum value due to the difference between the model and the actual machine and the influence of disturbance such as a rapid main steam pressure fluctuation caused by the boiler. Can be made smaller.

【0010】[0010]

【実施例】以下、本発明の一実施例を説明する。本発明
では、プロセス制御の一手法であるモデル予測制御技術
を使用することによって、逐次予測区間内でタービン起
動操作パラメータを最適化し、タービン運転を行う。
EXAMPLE An example of the present invention will be described below. In the present invention, by using the model predictive control technique, which is one of the process control methods, the turbine start-up operation parameter is optimized within the sequential prediction section, and the turbine operation is performed.

【0011】タービン入口蒸気条件と蒸気タービン運転
パラメータにより、タービン内の状態、特に高中圧ター
ビンロータに発生する熱応力及びそれによる寿命消費等
の起動制限値を計算できるモデルを用意する。
A model capable of calculating a starting limit value such as a condition inside the turbine, in particular, a thermal stress generated in the high and medium pressure turbine rotor and a life consumption thereof due to the condition is prepared from the turbine inlet steam condition and the steam turbine operating parameter.

【0012】起動制限値、起動時間についての評価関数
を作り該関数を使ってある時間周期毎に予測区間までの
最適化計算を行い、その時刻から将来に渡っての運転パ
ターンを予測してタービンの起動を行う。図1は本発明
の一実施例の構成図であり、図2は最適化計算によっ
て、昇速率がどのように変化していくかを示した特性図
である。
The evaluation function for the starting limit value and the starting time is created, and the function is used to perform the optimization calculation up to the prediction section for each certain time period. The turbine is predicted by predicting the operation pattern from that time to the future. Start up. FIG. 1 is a configuration diagram of an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing how the rate of speed increase changes by optimization calculation.

【0013】温度検出部8、9の信号より、高圧ロータ
熱応力計算部10、中圧ロータ熱応力計算部11では、
それぞれロータ半径方向温度分布、及び表面とボアに発
生する熱応力を計算し、モデル予測部1に計算値を出力
する。
From the signals of the temperature detecting units 8 and 9, the high pressure rotor thermal stress calculating unit 10 and the medium pressure rotor thermal stress calculating unit 11
The temperature distribution in the radial direction of the rotor and the thermal stress generated on the surface and the bore are calculated, and the calculated values are output to the model predicting unit 1.

【0014】モデル予測部1では、これらロータ半径方
向温度分布、及び表面とボアに発生する熱応力と、主蒸
気圧力検出部5、主蒸気温度検出部6、及び発電機14
からの発電機出力等のタービンの現在の状態値を受け、
新たにこれらを初期値として予測区間Sn+1 について最
適化を行い、最速率Vtn+1を決定し弁開度コントローラ
2に次の1区間のみ運転する昇速率Vtn+1の信号を与え
る。
In the model predicting unit 1, the temperature distribution in the radial direction of the rotor, the thermal stress generated on the surface and the bore, the main steam pressure detecting unit 5, the main steam temperature detecting unit 6, and the generator 14
The current state value of the turbine such as the generator output from
New optimizes the prediction interval S n + 1 of these as an initial value, a speed increasing ratio V tn + 1 of the signal to drive the fastest rate V tn + 1 to determine the valve opening controller 2 only the following one section give.

【0015】モデル予測部1で使用するモデルはマスバ
ランスおよびエネルギバランスにより定式化した一般的
な物理モデルであり、図4で示されるようなものであ
る。モデルの性質上、評価関数Jc を構成するL,T及
び制限値となる熱応力SHB、SHS、SIB、SISが陽に解
けた関数になっておらず、非線形となっている。そこ
で、最適化計算のアルゴリズムとしては、非線形最適化
問題を解くこととなり、前述の関数値のみを用い導関数
は必要としない、直接探索法となる。今回は1例として
図5に示すような直接探索法の一種であるローゼンブロ
ックアルゴリズムを使用した。この手法は、評価関数に
対して座標軸方向に順次探索を行い、成功すれば次にそ
の方向のステップ幅を3倍にし、失敗すれば逆方向へ
0.5倍し、全ての方向にすくなくとも1回は成功した
後で、全ての方向に少なくとも1回ずつ失敗すると座標
軸を回転させ、回転した方向について再び順次探索を行
っていくものである。また、条件付きの最適化問題を解
くことになるので、図5の“成功か?”の判断には熱応
力の制限値を越えていないかという制限がつくことにな
る。また、昇速終了後、タービンターゲットロードまで
については、運転パラメータを負荷変化率に変えた評価
関数を用いれば良い。
The model used in the model predicting section 1 is a general physical model formulated by mass balance and energy balance, as shown in FIG. Due to the nature of the model, L, T and the thermal stresses S HB , S HS , S IB , and S IS constituting the evaluation function J c, which are the limiting values, are not explicit functions but nonlinear. . Therefore, the algorithm for the optimization calculation is to solve a non-linear optimization problem, which is a direct search method that uses only the function value described above and does not require a derivative. This time, as an example, the Rosenbrock algorithm, which is a kind of direct search method as shown in FIG. 5, was used. This method sequentially searches the evaluation function in the direction of the coordinate axis. If it succeeds, the step width in that direction is tripled, and if it fails, it is multiplied by 0.5 in the opposite direction, and at least 1 in all directions. If the number of times succeeds and then fails at least once in all directions, the coordinate axes are rotated, and the search is sequentially performed again in the rotated direction. Further, since the conditional optimization problem is solved, the judgment of "success?" In FIG. 5 is limited by whether the thermal stress limit value is exceeded. Further, after the end of the speed increase, until the turbine target load, an evaluation function in which the operating parameter is changed to the load change rate may be used.

【0016】[0016]

【発明の効果】従って本発明では、上記のようなモデル
予測最適化運転を逐次行なうことによって、フィードバ
ック効果が生じモデルと実機の違い及び外乱の影響によ
る最適値からのずれを小さくでき、常に寿命消費を考慮
した最適な運転状態を保つことができる。
Therefore, according to the present invention, by successively performing the model predictive optimizing operation as described above, a feedback effect is generated, and the deviation from the optimum value due to the difference between the model and the actual machine and the influence of disturbance can be reduced, and the life is always maintained. It is possible to maintain the optimum operating condition in consideration of consumption.

【0017】また評価関数中の重みを可変にする事によ
り、起動終了時間重視モード、寿命消費重視モードをプ
ラント運転員の判断でオンラインで無段階で設定するこ
とが可能となる。
Further, by varying the weight in the evaluation function, it is possible to set the start / end time-oriented mode and the life consumption-oriented mode online steplessly at the discretion of the plant operator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】最適化計算によって昇速率がどのように変化し
ていくかを示した特性図
FIG. 2 is a characteristic diagram showing how the speed increase rate changes by optimization calculation.

【図3】熱応力と寿命消費率との特性図[Figure 3] Characteristic diagram of thermal stress and life consumption rate

【図4】本発明のモデル予測部の構成図FIG. 4 is a block diagram of a model predicting unit of the present invention.

【図5】最適化計算に使用するローゼンブロックアルゴ
リズムの説明図
FIG. 5 is an explanatory diagram of a Rosenbrock algorithm used for optimization calculation.

【図6】従来のミスマッチチャートの説明図FIG. 6 is an explanatory diagram of a conventional mismatch chart.

【符号の説明】[Explanation of symbols]

1…モデル予測部、2…弁開度コントローラ、3…主蒸
気止め弁、4…加減弁、5…主蒸気圧力検出部、6…主
蒸気温度検出部、7…高圧第一段後ロータメタル(ケー
シング内面メタル)温度検出部、8…中圧第一段ロータ
メタル(ケーシング内面メタル)温度検出部、9…高圧
ロータ熱応力計算部、10…中圧ロータ熱応力計算部、
11…高圧タービン、12…中圧タービン、13…発電
機。
DESCRIPTION OF SYMBOLS 1 ... Model prediction part, 2 ... Valve opening controller, 3 ... Main steam stop valve, 4 ... Control valve, 5 ... Main steam pressure detection part, 6 ... Main steam temperature detection part, 7 ... High pressure first stage rear rotor metal (Casing inner surface metal) temperature detection unit, 8 ... Medium pressure first stage rotor metal (casing inner surface metal) temperature detection unit, 9 ... High pressure rotor thermal stress calculation unit, 10 ... Medium pressure rotor thermal stress calculation unit,
11 ... High-pressure turbine, 12 ... Medium-pressure turbine, 13 ... Generator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸気タービン起動時の動特性モデルを備
え、該モデルに従って起動時間とロータに発生する熱応
力、ロータ寿命消費により構成された評価関数を、ある
時間周期毎に将来のある区間までの間最適にするよう
に、タービン運転操作パラメータの予測を行い、該予測
値に従ってタービン制御装置を先行制御することを特徴
とする蒸気タービン起動方法。
1. A dynamic characteristic model at the time of starting the steam turbine is provided, and an evaluation function constituted by the starting time, the thermal stress generated in the rotor, and the rotor life consumption according to the model is used every certain time period until a certain section in the future. A method for starting a steam turbine, comprising predicting a turbine operation parameter and optimally controlling the turbine control device according to the predicted value so as to optimize during the period.
JP2952093A 1993-02-19 1993-02-19 Starting method for steam turbine Pending JPH06241003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2952093A JPH06241003A (en) 1993-02-19 1993-02-19 Starting method for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2952093A JPH06241003A (en) 1993-02-19 1993-02-19 Starting method for steam turbine

Publications (1)

Publication Number Publication Date
JPH06241003A true JPH06241003A (en) 1994-08-30

Family

ID=12278386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2952093A Pending JPH06241003A (en) 1993-02-19 1993-02-19 Starting method for steam turbine

Country Status (1)

Country Link
JP (1) JPH06241003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051794A (en) * 2002-12-13 2004-06-19 주식회사 포스코 A Method for Controlling Turbine Speed on Turbine Start
CN102692875A (en) * 2012-06-07 2012-09-26 王卫良 Method for realizing main steam pressure tracking optimization of steam turbine
CN104074562A (en) * 2013-03-27 2014-10-01 株式会社日立制作所 Steam turbine power plant
CN113279824A (en) * 2021-05-25 2021-08-20 河北邯峰发电有限责任公司 HMN steam turbine X-criterion fixed value real-time comparison system based on TSE stress estimation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051794A (en) * 2002-12-13 2004-06-19 주식회사 포스코 A Method for Controlling Turbine Speed on Turbine Start
CN102692875A (en) * 2012-06-07 2012-09-26 王卫良 Method for realizing main steam pressure tracking optimization of steam turbine
CN104074562A (en) * 2013-03-27 2014-10-01 株式会社日立制作所 Steam turbine power plant
CN113279824A (en) * 2021-05-25 2021-08-20 河北邯峰发电有限责任公司 HMN steam turbine X-criterion fixed value real-time comparison system based on TSE stress estimation

Similar Documents

Publication Publication Date Title
EP1707757B1 (en) Turbine starting controller and turbine starting control method
US7058552B2 (en) Optimizing plant control values of a power plant
JP3673017B2 (en) Steam turbine start control device
US4320625A (en) Method and apparatus for thermal stress controlled loading of steam turbines
RU2478807C2 (en) Systems and methods of application of combustion behaviour adjustment algorithm by means of combustion chamber with multiple individual compartments
US8757105B2 (en) System and method for controlling liquid level in a vessel
US4868754A (en) Method of starting thermal power plant
CN110285403A (en) Main Steam Temperature Control method based on controlled parameter prediction
CA2509207A1 (en) Method and apparatus for optimizing refrigeration systems
US20090138211A1 (en) Method and Apparatus for Determination of the Life Consumption of Individual Components in a Fossil Fuelled Power Generating Installation, in Particular in a Gas and Steam Turbine Installation
US20030100974A1 (en) Optimal operation of a power plant
RU2193671C2 (en) Turbine control device and method to control turbine loading cycle
JPH10116105A (en) Generalized predictive control system and denitration controller
JPH06241003A (en) Starting method for steam turbine
JP2006200493A (en) Rankine cycle device
JPH09242507A (en) Start controller for steam turbine
JPS6410722B2 (en)
KR20180138372A (en) Method for controlling of chillers optimally using an online/offline hybrid machine learning models
JP3723931B2 (en) Plant startup predictive control device
JP2009197637A (en) Governor-free control device and governor-free control method
Thornhill et al. Adaptive fuzzy logic control of engine idle speed
CN116557095A (en) Method for determining load set value of gas turbine of gas-steam combined cycle unit
JPS6149483B2 (en)
JPS6394006A (en) Starting device for power generation plant
JPH0791964B2 (en) Power plant starter