JPH06240435A - Production of airtight film - Google Patents

Production of airtight film

Info

Publication number
JPH06240435A
JPH06240435A JP5031997A JP3199793A JPH06240435A JP H06240435 A JPH06240435 A JP H06240435A JP 5031997 A JP5031997 A JP 5031997A JP 3199793 A JP3199793 A JP 3199793A JP H06240435 A JPH06240435 A JP H06240435A
Authority
JP
Japan
Prior art keywords
film
substrate
raw material
diameter
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5031997A
Other languages
Japanese (ja)
Inventor
Shinji Kawasaki
真司 川崎
Shigenori Ito
重則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5031997A priority Critical patent/JPH06240435A/en
Publication of JPH06240435A publication Critical patent/JPH06240435A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To enhance the yield of powdery starting material at the time of a thermal spraying, to enhance the yield of substrates by suppressing the cracking of them, to improve productivity by increasing the rate of film formation and to form a film having high airtightness. CONSTITUTION:Powdery starting material for the thermal spraying is thermally sprayed on a substrate to form a thermally sprayed film and this film is heat- treated to form an airtight film. The average particle diameter (d50) of the powdery starting material is regulated to 20-40mum, preferably 25-35mum. Value [(d90-d10)/d50] given by dividing the difference between 90% diameter (d90) and 10% diameter (d10) of the volume cumulative particle size distribution of the powdery starting material by the average particle diameter (d50) is regulated to >=0.9, preferably 1.1-1.6. This invention is preferably applied at the time of producing the solid electrolyte membrane of a solid electrolyte type fuel cell or an interconnector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
(SOFC)の固体電解質膜、インターコネクター等の
気密膜を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolyte membrane of a solid oxide fuel cell (SOFC), an airtight membrane such as an interconnector.

【0002】[0002]

【従来の技術】SOFCの固体電解質膜の形成法は、乾
式法と湿式法とに分けられる。乾式法としてはEVD
法、溶射法が代表的であり、湿式法としてはテープキャ
スティング法、スリップキャスティング法、押し出し成
形法等がある(エネルギー総合工学13−2,1990年)。
化学蒸着法(CVD法)や電気化学的蒸着法(EVD
法)等のいわゆる気相法によると、装置が大型化し、処
理面積、処理速度が小さすぎる。また、塩化ジルコニウ
ム等を使用したり、水蒸気を酸素と混合して使用したり
するので、ランニングコストが嵩む。
2. Description of the Related Art A method of forming a solid electrolyte membrane of SOFC is divided into a dry method and a wet method. EVD as a dry method
A typical method is a thermal spraying method, and a wet method includes a tape casting method, a slip casting method, and an extrusion molding method (Energy Engineering 13-2, 1990).
Chemical vapor deposition (CVD) and electrochemical vapor deposition (EVD)
According to a so-called vapor phase method such as a method), the apparatus becomes large and the processing area and processing speed are too small. Further, since zirconium chloride or the like is used or steam is mixed with oxygen to be used, running cost is increased.

【0003】プラズマ溶射によって固体電解質膜を形成
すれば、成膜速度を大きくでき、装置等の取り扱いも簡
単であり、かつ薄膜を比較的緻密に成膜できる。このた
め、プラズマ溶射法は従来から使用されている(サンシ
ャイン1981,Vol.2,No.1:エネルギー総合工学13−
2,1990年)。
If the solid electrolyte membrane is formed by plasma spraying, the film formation rate can be increased, the handling of the apparatus and the like is simple, and the thin film can be formed relatively densely. For this reason, the plasma spraying method has been used conventionally (Sunshine 1981, Vol.2, No. 1: Integrated Energy Engineering 13-
2, 1990).

【0004】しかし、プラズマ溶射により形成した固体
電解質膜の気孔率は一般に5%を越え、10%にも及ぶの
で、SOFC用の固体電解質膜としては緻密性が不充分
であり、プラズマ溶射の段階でこの膜内にクラックや層
状をなした欠陥が発生する。
However, since the porosity of the solid electrolyte membrane formed by plasma spraying generally exceeds 5% and reaches 10%, the solid electrolyte membrane for SOFC is not sufficiently dense, and the solid phase of plasma spraying is insufficient. As a result, cracks and layered defects are generated in this film.

【0005】また、SOFCでは、一般に、隣接する単
電池の燃料電極と空気電極とを、インターコネクター及
び接続端子を介して直列に接続する。従って、特にイン
ターコネクターを薄膜化し、その電気抵抗を小さくする
ことが望まれている。一方、インターコネクターは、酸
化剤と燃料とを分離するものであるため、気密性が要求
される。
In the SOFC, generally, the fuel electrode and the air electrode of the adjacent unit cells are connected in series via the interconnector and the connection terminal. Therefore, it is particularly desired to thin the interconnector to reduce its electrical resistance. On the other hand, since the interconnector separates the oxidant and the fuel, airtightness is required.

【0006】現在、溶射膜の上記欠点を改善する方法と
して、溶射膜を熱処理してこれを緻密化させる方法、溶
射膜に対してスラリーを含浸させる方法、溶射法とEV
D法を組み合わせる方法が知られている。
At present, as a method for improving the above-mentioned drawbacks of the sprayed coating, a method of heat treating the sprayed coating to densify it, a method of impregnating the sprayed coating with a slurry, a spraying method and an EV.
A method of combining the D method is known.

【0007】[0007]

【発明が解決しようとする課題】しかし、溶射膜に対し
てスラリーを含浸させる方法や、溶射法をEVD法等と
組み合わせる方法では、製造時間が長く、設備費が高
い。このため、製造技術上、溶射膜を熱処理で緻密化さ
せる方法が優れている。しかし、SOFCの基体上に固
体電解質膜やインターコネクターの材料を溶射する際、
原料粉末の歩留が低く、また基体に割れが生ずることが
多く、基体の歩留が低くなっていた。
However, the method of impregnating the sprayed film with the slurry and the method of combining the spraying method with the EVD method require a long manufacturing time and a high equipment cost. Therefore, the method of densifying the sprayed film by heat treatment is excellent in terms of manufacturing technology. However, when spraying the material of the solid electrolyte membrane or interconnector on the SOFC substrate,
The yield of the raw material powder was low, and the substrate was often cracked, resulting in a low yield of the substrate.

【0008】本発明の課題は、溶射時に原料粉末の歩留
を向上させ、基体の割れを少なくして基体の歩留を向上
させ、成膜速度を大きくして生産性を向上させ、かつ気
密性の高い膜を形成できるようにすることである。
An object of the present invention is to improve the yield of raw material powder during thermal spraying, to reduce the cracking of the substrate to improve the yield of the substrate, to increase the film forming rate to improve the productivity, and to improve the airtightness. It is to be able to form a film having high properties.

【0009】[0009]

【課題を解決するための手段】本発明は、溶射用の原料
粉末を基体上に溶射して溶射膜を形成し、この溶射膜を
熱処理して気密膜を形成するのに際し、前記原料粉末の
平均粒径(d50)が20μm〜40μmであり、前記原料粉
末の体積累積粒度分布の90%径(d90)と10%径
(d10)との差を前記平均粒径で除した値(d90
10)/d50が 0.9以上であることを特徴とする、気密
膜の製造方法に係るものである。
According to the present invention, a raw material powder for thermal spraying is sprayed on a substrate to form a sprayed film, and the sprayed film is heat treated to form an airtight film. A value obtained by dividing the difference between the 90% diameter (d 90 ) and the 10% diameter (d 10 ) of the volume cumulative particle size distribution of the raw material powder by the average particle diameter, which has an average particle diameter (d 50 ) of 20 μm to 40 μm. (D 90
d 10 ) / d 50 is 0.9 or more, and relates to a method for producing an airtight film.

【0010】[0010]

【作用】本発明者は、溶射用の原料粉末の原料粒度が、
熱処理後の溶射膜の気密性や溶射膜の生産性に極めて重
要であることを発見し、本発明に到達した。即ち、溶射
原料粉末の選択が致命的に重要であった。
The present inventors have found that the raw material particle size of the raw material powder for thermal spraying is
The inventors have found that it is extremely important for the airtightness of the sprayed film after heat treatment and the productivity of the sprayed film, and arrived at the present invention. That is, selection of the thermal spraying raw material powder was fatally important.

【0011】即ち、溶射後の基体の歩留については、原
料粉末の粒子を大きくした方が、歩留が上昇することが
判明した。特に、原料粉末の平均粒径(d50)を20μm
以上、更に好ましくは25μm以上とすることで、溶射後
の基体の歩留が著しく向上した。また、原料粉末の平均
粒径を20μm以上にすると、溶射時の成膜速度も大きく
なる。
That is, with respect to the yield of the substrate after thermal spraying, it was found that the yield increased as the particles of the raw material powder were made larger. Especially, the average particle size (d 50 ) of the raw material powder is 20 μm
As described above, more preferably 25 μm or more markedly improves the yield of the substrate after thermal spraying. Further, if the average particle size of the raw material powder is 20 μm or more, the film formation rate during thermal spraying also increases.

【0012】また、溶射原料の歩留については、原料粉
末の粒径を特定することが重要であった。ここで、溶射
原料の歩留とは、原料粉末の供給量を 100%としたとき
の、溶射膜の着肉重量(%)のことである。即ち、原料
粉末の平均粒径が20〜40μmの範囲内であると、溶射原
料の歩留が非常に向上した。
Further, regarding the yield of the sprayed raw material, it was important to specify the particle size of the raw material powder. Here, the yield of the sprayed raw material means the inking weight (%) of the sprayed coating when the supply amount of the raw material powder is 100%. That is, when the average particle size of the raw material powder was within the range of 20 to 40 μm, the yield of the thermal spray raw material was greatly improved.

【0013】原料粉末の平均粒径が20μmよりも小さい
と、微小粉末がプラズマフレーム中にうまく入らないた
め、溶射原料の歩留が低くなったものと考えられる。ま
た、原料粉末の平均粒径が40μmよりも大きいと、大き
な粒子が未溶融又は半溶融状態となり、基体上に付着し
にくくなった。
When the average particle size of the raw material powder is smaller than 20 μm, it is considered that the yield of the thermal spraying raw material is low because the fine powder does not enter the plasma flame well. Further, when the average particle size of the raw material powder is larger than 40 μm, large particles are in an unmelted or semi-molten state, and it becomes difficult to adhere to the substrate.

【0014】更に、本発明者は、原料粉末の粒度分布
が、膜の気密性や微構造、基体の歩留に大きく影響する
ことを見出した。即ち、上記粒度分布がブロードな原料
粉末の方が、粒度分布がシャープな原料粉末よりも、膜
の気密性がより高く、緻密質となり、また基体の歩留も
高くなることが判明した。
Furthermore, the present inventor has found that the particle size distribution of the raw material powder has a great influence on the airtightness and microstructure of the film and the yield of the substrate. That is, it was found that the raw material powder having a broad particle size distribution had a higher film airtightness and a denser quality than the raw material powder having a sharp particle size distribution, and the yield of the substrate was also high.

【0015】具体的には、原料粉末の体積累積粒度分布
の90%径(d90) と10%径(d10)との差を平均粒径
(d50) で除した値 (d90−d10) /d50 を 0.9以上
とすると、加熱処理後の膜の窒素ガス透過係数が一層小
さくなり、径1μm以上の粗大気孔が少なくなり、気孔
率、平均気孔径が減少した。また、溶射工程時の基体の
割れも少なくなった。これは、粒径の比較的大きな粒子
と小さな粒子とが適度に混在することにより、粉末が溶
融して基体に付着するときに、溶融粉末のパッキング状
態が良くなっているためと考えられる。
Specifically, the difference between the 90% diameter (d 90 ) and the 10% diameter (d 10 ) of the volume cumulative particle size distribution of the raw material powder is defined as the average particle diameter.
If the value (d 90 −d 10 ) / d 50 divided by (d 50 ) is set to 0.9 or more, the nitrogen gas permeation coefficient of the membrane after the heat treatment becomes further smaller, and the number of coarse atmosphere pores with a diameter of 1 μm or more decreases and the pores Rate and average pore diameter decreased. Also, the number of cracks in the substrate during the thermal spraying process was reduced. It is considered that this is because when the powder is melted and adheres to the substrate, the packed state of the molten powder is improved by appropriately mixing the relatively large particles and the small particles.

【0016】本発明の製造方法をSOFCの電気伝導膜
に適用すると、特に好ましい。ここで、電気伝導膜と
は、インターコネクター等の電子伝導性膜と、固体電解
質膜等のイオン伝導性膜とを含む。特に、SOFCにお
いては、一本当たりの電圧は小さいので、多数の単電池
を接続してプラントを作製する。このため、単電池の固
体電解質膜やインターコネクターを生産性良く製造し、
かつこれらの気密性を高めることが、長年に亘って強く
要望されてきた。
It is particularly preferable to apply the manufacturing method of the present invention to an electrically conductive film of SOFC. Here, the electrically conductive film includes an electron conductive film such as an interconnector and an ion conductive film such as a solid electrolyte film. Especially, in SOFC, since the voltage per one is small, a large number of unit cells are connected to produce a plant. For this reason, it is possible to manufacture solid electrolyte membranes and interconnectors for single cells with high productivity,
In addition, there has been a strong demand for many years to improve the airtightness.

【0017】本発明において、原料粉末を基体上に溶射
するとは、原料粉末を基体の表面に溶射する場合と、基
体上の他の層の表面に原料粉末を溶射する場合とを含
む。また、基体がSOFC用の多孔質基体である場合に
は、この多孔質基体の表面に空気電極膜又は燃料電極膜
を形成し、これらの電極膜の表面に原料粉末を溶射する
場合を含む。
In the present invention, spraying the raw material powder onto the substrate includes spraying the raw material powder onto the surface of the substrate and spraying the raw material powder onto the surface of another layer on the substrate. Further, when the substrate is a porous substrate for SOFC, this includes the case where an air electrode film or a fuel electrode film is formed on the surface of this porous substrate and the raw material powder is sprayed on the surface of these electrode films.

【0018】[0018]

【実施例】本発明に基いてインターコネクターを形成す
る場合には、基体上にインターコネクター用材料を溶射
し、次いでこの溶射膜を熱処理する。インターコネクタ
ーは、ランタン系ペロブスカイト型複合酸化物、例えば
ランタンクロマイトで形成することが好ましい。仮にイ
ンターコネクターをランタンクロマイトで形成する場合
には、インターコネクター用材料を、ランタンクロマイ
トとするか、又は酸化ランタンと酸化クロムとの混合物
とする。こうしたインターコネクター用材料中に、銅、
亜鉛、カルシウム、ストロンチウム等をドーピングする
と、後の熱処理工程の間に、インターコネクターの緻密
化を促進する効果がある。
EXAMPLES In the case of forming an interconnector according to the present invention, a material for interconnector is sprayed on a substrate and then this sprayed film is heat-treated. The interconnector is preferably formed of a lanthanum-based perovskite complex oxide, for example, lanthanum chromite. If the interconnector is made of lanthanum chromite, the material for the interconnector is lanthanum chromite or a mixture of lanthanum oxide and chromium oxide. In such interconnector materials, copper,
Doping with zinc, calcium, strontium, etc. has the effect of promoting densification of the interconnector during the subsequent heat treatment step.

【0019】本発明に基いて固体電解質膜を形成する場
合には、少なくとも加熱処理後に固体電解質を生ずるよ
うな原料を用いる。固体電解質膜の材質は、例えば、ア
ルカリ土類金属又は希土類元素によって安定化されたジ
ルコニアや、アルカリ土類金属又は希土類元素を含有す
るセリアが、現在のところ有望である。これらの材質か
らなる固体電解質膜を製造するには、原料粉末として、
アルカリ土類金属化合物の粉末又は希土類元素の化合物
粉末と、ジルコニア粉末又はセリア粉末との混合粉末を
用いる。または、アルカリ土類金属化合物又は希土類元
素の化合物と、ジルコニア化合物又はセリア化合物との
固溶物の粉末を用いることができる。
When the solid electrolyte membrane is formed according to the present invention, a raw material that produces a solid electrolyte at least after heat treatment is used. As the material of the solid electrolyte membrane, for example, zirconia stabilized by an alkaline earth metal or a rare earth element and ceria containing an alkaline earth metal or a rare earth element are currently promising. To produce a solid electrolyte membrane made of these materials, as raw material powder,
A mixed powder of a powder of an alkaline earth metal compound or a compound powder of a rare earth element and a zirconia powder or a ceria powder is used. Alternatively, powder of a solid solution of an alkaline earth metal compound or a compound of a rare earth element and a zirconia compound or a ceria compound can be used.

【0020】基体として、自己支持型の空気電極基体を
採用した場合には、ジルコニア製の多孔質基体の表面に
空気電極膜を形成する場合にくらべて、製造プロセスを
簡略化できる。また、基体として、自己支持型の燃料電
極基体を採用した場合にも、本発明を適用することがで
きる。
When a self-supporting air electrode substrate is used as the substrate, the manufacturing process can be simplified as compared with the case where the air electrode film is formed on the surface of the zirconia porous substrate. The present invention can also be applied when a self-supporting fuel electrode substrate is adopted as the substrate.

【0021】本発明は、平板型SOFC,円筒型SOF
Cなど、溶射法を採用しうるあらゆる型式のSOFCに
対して適用できる。しかし、特に円筒型SOFCに対し
て好適である。
The present invention relates to a flat plate type SOFC and a cylindrical type SOF.
It can be applied to any type of SOFC such as C that can adopt the thermal spraying method. However, it is particularly suitable for a cylindrical SOFC.

【0022】円筒型SOFCに対して本発明を適用する
場合、基体の形状は、両端が開口した円筒状とするか、
又は一端が開口して他端が封鎖された円筒状とすること
ができる。図1,図2は、こうした円筒型SOFCの破
断斜視図である。
When the present invention is applied to a cylindrical SOFC, the substrate should have a cylindrical shape with both ends open, or
Alternatively, it may have a cylindrical shape with one end open and the other end closed. 1 and 2 are perspective cutaway views of such a cylindrical SOFC.

【0023】図1においては、空気電極材料からなる単
層の円筒状の空気電極基体1の外側表面に、固体電解質
膜2、燃料電極膜3が配設され、また図1において右上
側の領域では空気電極基体1の表面にインターコネクタ
ー4が設けられ、この上に接続端子が付着している。そ
して、円筒状SOFCを直列接続するには、SOFCの
空気電極基体1と隣接SOFCの燃料電極膜3とをイン
ターコネクター4及び接続端子を介して接続し、また円
筒状SOFCを並列接続するには、隣接するSOFC素
子の燃料電極膜3間をNiフェルト等で接続する。固体
電解質膜2、インターコネクター4を、本発明に従って
設ける。
In FIG. 1, a solid electrolyte membrane 2 and a fuel electrode membrane 3 are arranged on the outer surface of a single-layer cylindrical air electrode substrate 1 made of an air electrode material, and an upper right region in FIG. In the above, the interconnector 4 is provided on the surface of the air electrode substrate 1, and the connection terminal is attached thereon. Then, in order to connect the cylindrical SOFCs in series, the air electrode substrate 1 of the SOFC and the fuel electrode film 3 of the adjacent SOFC are connected via the interconnector 4 and the connection terminal, and the cylindrical SOFCs are connected in parallel. The fuel electrode films 3 of the adjacent SOFC elements are connected by Ni felt or the like. The solid electrolyte membrane 2 and the interconnector 4 are provided according to the present invention.

【0024】図2のSOFCにおいては、円筒状の多孔
質セラミックス基体5の外側表面に空気電極膜11が設け
られ、空気電極膜11の外側表面に、固体電解質膜2及び
インターコネクター4が設けられている。
In the SOFC of FIG. 2, the air electrode film 11 is provided on the outer surface of the cylindrical porous ceramic substrate 5, and the solid electrolyte film 2 and the interconnector 4 are provided on the outer surface of the air electrode film 11. ing.

【0025】次に、図1に示すSOFCを例にとって、
固体電解質膜2及びインターコネクター4の形成手順を
例示する。まず空気電極基体1を表面処理し、基体1上
にインターコネクター用マスクを設置し、この基体を予
熱し、基体上にインターコネクター用材料を溶射して第
一の溶射膜を形成し、インターコネクター用マスクを基
体から除去し、第一の溶射膜を熱処理して、インターコ
ネクター4を形成する。基体1のインターコネクター4
以外の部分を表面処理し、この基体1上に固体電解質膜
用マスクを設置し、この基体1を予熱し、基体1上に固
体電解質材料を溶射して第二の溶射膜を形成し、固体電
解質膜用マスクを前記基体から除去し、第二の溶射膜を
熱処理して固体電解質膜を形成する。
Next, taking the SOFC shown in FIG. 1 as an example,
A procedure for forming the solid electrolyte membrane 2 and the interconnector 4 will be illustrated. First, the air electrode substrate 1 is surface-treated, a mask for interconnector is placed on the substrate 1, the substrate is preheated, and the material for interconnector is sprayed on the substrate to form a first sprayed film. The mask for use is removed from the substrate, and the first sprayed film is heat-treated to form the interconnector 4. Interconnector 4 of base 1
Other than the above, the surface treatment is performed, a mask for a solid electrolyte membrane is installed on the base body 1, the base body 1 is preheated, and a solid electrolyte material is sprayed on the base body 1 to form a second sprayed film. The electrolyte membrane mask is removed from the substrate, and the second sprayed membrane is heat treated to form a solid electrolyte membrane.

【0026】他の方法では、まず空気電極基体1を表面
処理し、この基体1上にインターコネクター用マスクを
設置し、この基体1を予熱し、基体1上にインターコネ
クター用材料を溶射して第一の溶射膜を形成し、インタ
ーコネクター用マスクを基体1から除去し、この基体1
上に固体電解質膜用マスクを設置し、この基体1を予熱
し、基体1上に固体電解質材料を溶射して第二の溶射膜
を形成し、固体電解質膜用マスクを前記基体1から除去
する。そして、この構造物の全体を熱処理することで、
固体電解質膜2とインターコネクター4とを形成する。
In another method, first, the air electrode substrate 1 is surface-treated, an interconnector mask is placed on the substrate 1, the substrate 1 is preheated, and the interconnector material is sprayed on the substrate 1. The first sprayed film is formed, and the interconnector mask is removed from the substrate 1.
A solid electrolyte membrane mask is placed on the base 1, the base body 1 is preheated, a solid electrolyte material is sprayed on the base body 1 to form a second sprayed film, and the solid electrolyte membrane mask is removed from the base body 1. . And by heat-treating the entire structure,
The solid electrolyte membrane 2 and the interconnector 4 are formed.

【0027】こうした方法によれば、一度の熱処理によ
り、第一の溶射膜と第二の溶射膜とを同時に緻密化さ
せ、気密質のインターコネクターと固体電解質膜とを製
作することができる。従って、時間、労力が大幅に短縮
される。溶射法としては、低圧プラズマ溶射、常圧プラ
ズマ溶射、爆裂溶射等も含まれる。
According to such a method, the first sprayed film and the second sprayed film can be simultaneously densified by a single heat treatment, and an airtight interconnector and a solid electrolyte film can be manufactured. Therefore, the time and labor are greatly reduced. The thermal spraying method also includes low pressure plasma spraying, atmospheric pressure plasma spraying, and explosion spraying.

【0028】〔実験1〕以下、更に具体的な実験結果を
説明する。表1に示す平均粒径、90%径、10%径を有す
る8モル%イットリア安定化ジルコニアの各原料粉末を
用意した。La0.9 Sr0.1 n 3 からなる、外径20
mm、内径16mm、長さ300mm の多孔質空気電極基体1を準
備した。上記の各原料粉末を、プラズマ溶射機を用いて
空気電極基体1にプラズマ溶射した。プラズマガスとし
てアルゴンと水素との混合ガスを用い、出力を40kwと
し、粉末供給量を15g/分とし、溶射距離を120mm とし
た。
[Experiment 1] Hereinafter, more specific experimental results will be described. Raw material powders of 8 mol% yttria-stabilized zirconia having average particle diameter, 90% diameter and 10% diameter shown in Table 1 were prepared. La 0.9 Sr 0.1 M n O 3 composed of outer diameter 20
A porous air electrode substrate 1 having a diameter of 16 mm, an inner diameter of 16 mm and a length of 300 mm was prepared. Each of the above raw material powders was plasma sprayed onto the air electrode substrate 1 using a plasma sprayer. A mixed gas of argon and hydrogen was used as the plasma gas, the output was 40 kw, the powder supply amount was 15 g / min, and the spraying distance was 120 mm.

【0029】円筒状の空気電極基体1を、その長さ方向
の中心軸を回転軸として回転させながら、溶射ガンを、
回転軸と平行に移動させた。この際、溶射ガンの移動速
度を100mm /秒とし、空気電極基体1の回転数を800rpm
とし、厚さ 100μmの溶射膜を形成した。
While rotating the cylindrical air electrode substrate 1 with the central axis in the longitudinal direction as the axis of rotation, the spray gun
It was moved parallel to the axis of rotation. At this time, the moving speed of the spray gun is 100 mm / sec, and the rotation speed of the air electrode substrate 1 is 800 rpm.
Then, a sprayed film having a thickness of 100 μm was formed.

【0030】各原料粉末の平均粒径(d50),10%径
(d10),90%径(d90)は、レーザー回析散乱法によ
って測定した。そして、各例について、溶射時の空気電
極基体1の歩留と、溶射時の原料の歩留とを測定した。
空気電極基体1の歩留は、前記の溶射条件でプラズマ溶
射したときに、空気電極基体1が割れなかった比率
(%)である。
The average particle diameter (d 50 ), 10% diameter (d 10 ) and 90% diameter (d 90 ) of each raw material powder were measured by the laser diffraction scattering method. Then, for each example, the yield of the air electrode substrate 1 during thermal spraying and the yield of the raw material during thermal spraying were measured.
The yield of the air electrode substrate 1 is the ratio (%) at which the air electrode substrate 1 was not cracked when plasma sprayed under the above-mentioned spraying conditions.

【0031】溶射時の原料の歩留は、以下のようにして
求めた。即ち、空気電極基体に原料粉末を溶射している
時間と、原料粉末の供給量と、溶射前後の空気電極基体
1の重量変化とによって求めた。
The yield of the raw material during thermal spraying was determined as follows. That is, it was determined by the time during which the raw material powder was sprayed on the air electrode substrate, the supply amount of the raw material powder, and the weight change of the air electrode substrate 1 before and after the thermal spraying.

【0032】溶射時の原料歩留=(溶射後の空気電極基
体1の重量(g)−溶射前の基体1の重量(g))× 100
%/原料粉末の供給量(g/分)×溶射時間(分)。こ
の結果は下記の表1に示してある。
Raw material yield during thermal spraying = (weight of air electrode substrate 1 after thermal spraying (g) -weight of substrate 1 before thermal spraying (g)) × 100
% / Feeding amount of raw material powder (g / min) × spraying time (min). The results are shown in Table 1 below.

【0033】表1から解るように、原料粉末の平均粒径
を20〜40μmとすることにより、溶射時の基体の歩留が
著しく向上している。また、原料粉末の平均粒径が20〜
40μmの範囲内では、原料の歩留が高かった。
As can be seen from Table 1, by setting the average particle size of the raw material powder to 20 to 40 μm, the yield of the substrate during thermal spraying is remarkably improved. Also, the average particle size of the raw material powder is 20 to
Within the range of 40 μm, the raw material yield was high.

【0034】また、溶射膜を熱処理し、得られた膜の緻
密性を評価した。空気電極基体1に溶射膜を形成した
後、1500℃で3時間熱処理し、固体電解質膜を設けた。
Further, the sprayed coating was heat-treated to evaluate the denseness of the obtained coating. After forming the sprayed film on the air electrode substrate 1, it was heat-treated at 1500 ° C. for 3 hours to provide a solid electrolyte film.

【0035】加熱処理後の固体電解質膜の断面を露出さ
せ、断面を鏡面研磨し、この断面を走査型電子顕微鏡
(SEM)で観察し、微構造写真を撮影した。この写真
を画像処理装置で処理し、平均気孔径、径1μm以上の
気孔の数、気孔率を求めた。SEMによる微構造写真の
撮影に際しては、倍率を2000倍とし、写真を数枚撮影
し、合計で0.005mm2の面積を測定した。また、固体電解
質膜のN2 ガス透過係数を測定した。
The cross section of the solid electrolyte membrane after the heat treatment was exposed, the cross section was mirror-polished, the cross section was observed with a scanning electron microscope (SEM), and a microstructure photograph was taken. This photograph was processed by an image processor to determine the average pore diameter, the number of pores having a diameter of 1 μm or more, and the porosity. When taking a microstructure photograph by SEM, the magnification was 2000 times, several photographs were taken, and the total area of 0.005 mm 2 was measured. Further, the N 2 gas permeation coefficient of the solid electrolyte membrane was measured.

【0036】[0036]

【表1】 [Table 1]

【0037】表1から解るように、(d90−d10)/d
50が 0.9より大きい原料粉末、即ちブロードな粒度分布
を持つ原料粉末の方が、熱処理後において、固体電解質
膜の平均気孔径、径1μm以上の気孔の数、気孔率が小
さくなることが解った。また、平均粒径が35μm以下の
方が、一層緻密性の高い膜が得られることも確認され
た。
As can be seen from Table 1, (d 90 −d 10 ) / d
It was found that the average particle diameter of the solid electrolyte membrane, the number of pores having a diameter of 1 μm or more, and the porosity of the raw material powder having a value of 50 larger than 0.9, that is, the raw material powder having a broad particle size distribution, became smaller after the heat treatment. . It was also confirmed that a film having a higher density can be obtained when the average particle size is 35 μm or less.

【0038】〔実験2〕SOFCの単電池を作製し、そ
の性能を確認した。La2 3 106.1 gと、MnO2 6
8.4gと、SrCO3 10.8gとを秤量した。玉石 800g
と、水 200gと、前記秤量した3種の化合物を、2リッ
トルのボールミルに入れ、3時間混合してスラリーとし
た。このスラリーを 110℃で20時間乾燥した後、乾燥物
を 149μm以下に解砕し、空気中1200℃で10時間仮焼
し、La 0.9 Sr0.1 MnO3 を合成した。
[Experiment 2] An SOFC unit cell was prepared and
Confirmed the performance of. La2O3 106.1 g and MnO26
8.4g and SrCO310.8 g was weighed. 800 g of cobblestone
, 200 g of water and 2 liters of the above-mentioned weighed three compounds
Place in a tor ball mill and mix for 3 hours to form a slurry.
It was After drying this slurry at 110 ° C for 20 hours,
Crushed to 149 μm or less and calcined in air at 1200 ° C for 10 hours
And La 0.9Sr0.1MnO3Was synthesized.

【0039】その後これをボールミルで解砕、粉砕し
て、平均粒径1μmの粉末とし、セルロースを20wt%添
加して混合し、これをラバープレスによって内径φ16m
m,外径φ20mmの円筒状に成形した。これを1500℃×10
時間で焼成し多孔質空気電極基体1とした。
Thereafter, this was crushed and crushed by a ball mill to obtain a powder having an average particle size of 1 μm, 20 wt% of cellulose was added and mixed, and this was pressed by a rubber press to give an inner diameter of 16 m.
It was molded into a cylindrical shape with m and an outer diameter of 20 mm. This is 1500 ℃ × 10
The porous air electrode substrate 1 was fired for a period of time.

【0040】平均粒径28.9μm,90%径が50μm,10%
径が12μm,(d90−d10)/d50=1.31の8モル%イッ
トリア安定化ジルコニア粉末を用意した。また、ランタ
ンクロマイトの合成物を解砕して得た粉末をスラリー化
し、このスラリーを乾燥、造粒し、空気中で1500℃で1
時間仮焼し、次いで分級し、平均粒径34.5μm,(d90
10)/d50=1.51のランタンクロマイトの溶射用粉末
を得た。
Average particle size 28.9 μm, 90% diameter 50 μm, 10%
An 8 mol% yttria-stabilized zirconia powder having a diameter of 12 μm and (d 90 −d 10 ) / d 50 = 1.31 was prepared. Further, the powder obtained by crushing the lanthanum chromite compound is slurried, and the slurry is dried and granulated, and the slurry is dried in air at 1500 ° C. for 1 hour.
Calcination for an hour, then classification, average particle size 34.5 μm, (d 90
A lanthanum chromite thermal spraying powder having d 10 ) / d 50 = 1.51 was obtained.

【0041】円筒状の基体1の表面の軸方向に向って帯
状に、幅5mmの溶射領域を残してマスキングし、上記の
ランタンクロマイト溶射用原料を基体1の表面に溶射
し、厚さ 150μmの帯状の溶射膜を形成した。次いで、
ランタンクロマイトの溶射膜部のみマスキングし、その
他の部分に、上記の8モル%イットリア安定化ジルコニ
ア粉末を溶射し、厚さ 100μmの溶射膜を得た。次い
で、この構造体を基体ごと1500℃で5時間熱処理し、気
密なインターコネクター及び固体電解質膜を備えた基体
1を得た。この後、Ni/8mol %イットリア安定化ジ
ルコニア=4/6(重量比)のスラリーを固体電解質膜
の表面に塗布し、1300℃で5時間焼成して燃料電極を形
成し、SOFCの単電池を作製した。
Masking was performed on the surface of the cylindrical substrate 1 in the form of a strip in the axial direction, leaving a spraying area having a width of 5 mm, and the above-mentioned lanthanum chromite spraying raw material was sprayed on the surface of the substrate 1 to give a thickness of 150 μm. A belt-shaped sprayed film was formed. Then
Only the sprayed film portion of the lanthanum chromite was masked, and the other portion was sprayed with the above 8 mol% yttria-stabilized zirconia powder to obtain a sprayed film having a thickness of 100 μm. Then, this structure was heat treated together with the substrate at 1500 ° C. for 5 hours to obtain a substrate 1 having an airtight interconnector and a solid electrolyte membrane. After that, a slurry of Ni / 8 mol% yttria-stabilized zirconia = 4/6 (weight ratio) is applied to the surface of the solid electrolyte membrane and fired at 1300 ° C for 5 hours to form a fuel electrode to form an SOFC unit cell. It was made.

【0042】こうして作製した単電池を切り出して長さ
50mmの部材を得、この内側空間に空気を酸化ガスとして
導入し、室温で加湿した水素を燃料ガスとして導入し、
この単電池を1000℃で作動させ、起電力(開放端電圧)
を測定した。起電力は1.07Vを示した。
The unit cell thus produced is cut out and length
A member of 50 mm was obtained, air was introduced into this inner space as an oxidizing gas, and hydrogen humidified at room temperature was introduced as a fuel gas,
This cell is operated at 1000 ℃, electromotive force (open end voltage)
Was measured. The electromotive force was 1.07V.

【0043】また、上記の固体電解質膜の気密性を評価
するため、上記の条件で、空気電極基体1の全表面に、
マスキングをしないで上記の8モル%イットリア安定化
ジルコニア粉末を溶射し、1500℃で5時間熱処理し、こ
うして得たジルコニア膜の窒素ガス透過係数を測定し
た。この結果、2×10-8cm4 /g・sec の測定値が得ら
れた。このように極めて気密性の高い固体電解質膜が得
られることを確認した。
Further, in order to evaluate the airtightness of the above solid electrolyte membrane, under the above conditions, the entire surface of the air electrode substrate 1 was
The above 8 mol% yttria-stabilized zirconia powder was sprayed without masking and heat-treated at 1500 ° C. for 5 hours, and the nitrogen gas permeability coefficient of the zirconia film thus obtained was measured. As a result, a measured value of 2 × 10 −8 cm 4 / g · sec was obtained. Thus, it was confirmed that a solid electrolyte membrane having an extremely high airtightness was obtained.

【0044】また、上記のインターコネクターの気密性
を評価するため、上記の条件で、空気電極基体1の全表
面に、マスキングをしないで上記のランタンクロマイト
の溶射用粉末を溶射し、1500℃で5時間熱処理し、こう
して得たインターコネクターの窒素ガス透過係数を測定
した。この結果、8×10-8cm4 /g・sec の測定値が得
られた。このように極めて気密性の高いインターコネク
ターが得られることを確認した。
Further, in order to evaluate the airtightness of the interconnector, the lanthanum chromite thermal spraying powder was sprayed on the entire surface of the air electrode substrate 1 under the above conditions without masking, and at 1500 ° C. After heat treatment for 5 hours, the nitrogen gas permeability coefficient of the interconnector thus obtained was measured. As a result, a measured value of 8 × 10 −8 cm 4 / g · sec was obtained. Thus, it was confirmed that an interconnector having an extremely high airtightness was obtained.

【0045】なお、本発明で溶射に用いる原料粉末は、
スプレードライヤーによって造粒したもの、焼結体を粉
砕したもの、高温溶融物を固化させてから粉砕したもの
などであってよい。ただし、本発明で規定した平均粒径
及び粒度分布を有している必要がある。
The raw material powder used for thermal spraying in the present invention is
It may be granulated by a spray dryer, crushed sinter, or crushed after solidifying a high temperature melt. However, it is necessary to have the average particle size and the particle size distribution defined in the present invention.

【0046】[0046]

【発明の効果】以上述べたように、本発明によれば、溶
射後の基体の割れが少なくなって基体の歩留が向上し、
溶射時の成膜速度が大きくなり、溶射原料の歩留も向上
する。これらの相乗的効果により、気密膜の生産量が大
幅に向上し、生産コストが著しく低下する。しかも、加
熱処理後に、気密膜の緻密性が一層向上し、窒素ガス透
過係数が低くなる。
As described above, according to the present invention, the cracking of the substrate after thermal spraying is reduced and the yield of the substrate is improved.
The film formation rate during thermal spraying is increased, and the yield of thermal spraying raw material is also improved. Due to these synergistic effects, the production amount of the airtight film is significantly improved, and the production cost is significantly reduced. Moreover, after the heat treatment, the denseness of the airtight film is further improved and the nitrogen gas permeability coefficient is lowered.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型SOFCの一例を示す部分破断斜視図で
ある。
FIG. 1 is a partially cutaway perspective view showing an example of a cylindrical SOFC.

【図2】円筒型SOFCの一例を示す部分破断斜視図で
ある。
FIG. 2 is a partially cutaway perspective view showing an example of a cylindrical SOFC.

【符号の説明】[Explanation of symbols]

1 空気電極基体 2 固体電解質膜 3 燃料電極膜 4 インターコネクター 5 多孔質基体 11 空気電極膜 1 Air Electrode Substrate 2 Solid Electrolyte Membrane 3 Fuel Electrode Membrane 4 Interconnector 5 Porous Substrate 11 Air Electrode Membrane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶射用の原料粉末を基体上に溶射して溶
射膜を形成し、この溶射膜を熱処理して気密膜を形成す
るのに際し、前記原料粉末の平均粒径(d50)が20μm
〜40μmであり、前記原料粉末の体積累積粒度分布の90
%径(d90)と10%径(d10)との差を前記平均粒径で
除した値(d90−d10)/d50が0.9以上であることを
特徴とする、気密膜の製造方法。
1. A raw material powder for thermal spraying is sprayed on a substrate to form a sprayed film, and when this sprayed film is heat-treated to form an airtight film, the average particle diameter (d 50 ) of the raw material powder is 20 μm
˜40 μm, which is 90 of the volume cumulative particle size distribution of the raw material powder.
The value (d 90 −d 10 ) / d 50 obtained by dividing the difference between the% diameter (d 90 ) and the 10% diameter (d 10 ) by the average particle diameter is 0.9 or more, and Production method.
【請求項2】 前記原料粉末の平均粒径が25〜35μmで
あり、前記90%径と前記10%径との差を前記平均粒径で
除した値(d90−d10)/d50が 1.1〜1.6である、請
求項1記載の気密膜の製造方法。
2. The raw material powder has an average particle diameter of 25 to 35 μm, and a value obtained by dividing the difference between the 90% diameter and the 10% diameter by the average particle diameter (d 90 −d 10 ) / d 50. Is 1.1 to 1.6, The method for producing an airtight film according to claim 1.
【請求項3】 前記気密膜が固体電解質型燃料電池の電
気伝導膜である、請求項1又は2記載の気密膜の製造方
法。
3. The method for producing an airtight film according to claim 1, wherein the airtight film is an electrically conductive film of a solid oxide fuel cell.
JP5031997A 1993-02-22 1993-02-22 Production of airtight film Withdrawn JPH06240435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5031997A JPH06240435A (en) 1993-02-22 1993-02-22 Production of airtight film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5031997A JPH06240435A (en) 1993-02-22 1993-02-22 Production of airtight film

Publications (1)

Publication Number Publication Date
JPH06240435A true JPH06240435A (en) 1994-08-30

Family

ID=12346557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5031997A Withdrawn JPH06240435A (en) 1993-02-22 1993-02-22 Production of airtight film

Country Status (1)

Country Link
JP (1) JPH06240435A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222661A (en) * 1997-11-18 1999-08-17 Sermatech Internatl Inc Strain-allowable ceramic coating
KR100805455B1 (en) * 2006-08-01 2008-02-20 현대자동차주식회사 A preparating method of SOFC metal interconnector using plasma spraying
JP2008512566A (en) * 2004-09-13 2008-04-24 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
JP2014535155A (en) * 2011-11-15 2014-12-25 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Interconnection cells for solid oxide fuel cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222661A (en) * 1997-11-18 1999-08-17 Sermatech Internatl Inc Strain-allowable ceramic coating
JP2008512566A (en) * 2004-09-13 2008-04-24 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
JP4738414B2 (en) * 2004-09-13 2011-08-03 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
KR100805455B1 (en) * 2006-08-01 2008-02-20 현대자동차주식회사 A preparating method of SOFC metal interconnector using plasma spraying
JP2014535155A (en) * 2011-11-15 2014-12-25 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Interconnection cells for solid oxide fuel cells

Similar Documents

Publication Publication Date Title
KR100904203B1 (en) Method for fabricating electrolyte-electrode composites for a fuel cell
US7261833B2 (en) Ceramic electrolyte coating and methods
EP0633619B1 (en) Air electrode bodies for solid oxide fuel cells, a process for the production thereof, and a production of solid oxide fuel cells
US4861345A (en) Method of bonding a conductive layer on an electrode of an electrochemical cell
US5527633A (en) Solid oxide fuel cells, a process for producing solid electrolyte films and a process for producing solid oxide fuel cells
JPH06103990A (en) Solid electrolytic type fuel cell and manufacture thereof
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
KR101892909B1 (en) A method for manufacturing protonic ceramic fuel cells
WO1992010862A1 (en) Method for manufacturing solid-state electrolytic fuel cell
JP2013079190A (en) Method for producing nio-ceramic composite powder and nio-ceramic composite fuel electrode
US5968673A (en) Solid electrolyte thin film and method for producing the same
US5803934A (en) Method of producing an electrode layer on a solid oxide electrolyte of a solid state fuel cell
JPH0471166A (en) Manufacture of air electrode material for solid electrolyte fuel cell
EP2538474A2 (en) Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the material
US7338624B2 (en) Ceramic manufacture for a composite ion transport membrane
KR101657242B1 (en) high temperature solid oxide cell comprising barrier layer, manufacturing method thereof
JPH06240435A (en) Production of airtight film
US20140193743A1 (en) Method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (soc) technology, and products obtained by the method
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JPH11343123A (en) Production of ni or nio/ysz composite powder, and formation of fuel electrode membrane using the same
Kang et al. Direct production of porous cathode material (La 1− x Sr x MnO 3) using a reactive DC thermal plasma spray system
JP3050328B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH09263961A (en) Formation of lanthanum chromite dense thin film
RU2681771C2 (en) Method for producing gas-tight solid oxide tubular electrolyte for base of sofc
JPH10247502A (en) Method for forming fuel electrode of solid electrolyte type fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509