JPH06238412A - Device and method for controlling molten metal surface height at the time of continuously casting - Google Patents

Device and method for controlling molten metal surface height at the time of continuously casting

Info

Publication number
JPH06238412A
JPH06238412A JP3368693A JP3368693A JPH06238412A JP H06238412 A JPH06238412 A JP H06238412A JP 3368693 A JP3368693 A JP 3368693A JP 3368693 A JP3368693 A JP 3368693A JP H06238412 A JPH06238412 A JP H06238412A
Authority
JP
Japan
Prior art keywords
molten metal
continuous casting
casting mold
level
surface height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3368693A
Other languages
Japanese (ja)
Inventor
Masao Takahara
雅男 高原
Osamu Kondo
修 近藤
Terumi Arimoto
輝美 有本
Katsuhiro Araki
勝弘 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3368693A priority Critical patent/JPH06238412A/en
Publication of JPH06238412A publication Critical patent/JPH06238412A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the overflow caused by rapid riding of molten steel surface frequently generate at the initial stage of casting by precisely measuring the molten steel surface height in a continuous casting mold from the initial stage of the casting. CONSTITUTION:A molten metal surface height control device is constituted by combining an electrode type molten metal surface height meter 11 having four sets of electrodes 12a-12d composed of two lead wires and arranged on the inner surface or its neighborhood of the continuous casting mold 1 while mutually separated in the casting direction at these tip parts of the electrodes 12a-12d and a device for adjusting the opening degree of a sliding nozzle in a tundish arranged above the continuous casting mold 1 based on the outputted signal from the electrode type molten metal surface height meter 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属の連続鋳造工
程において、鋳込み初期、すなわち連続鋳造鋳型内にお
ける溶融金属の湯面高さが、従来から設置されている例
えば渦流式湯面高さ計によっては測定できない程度に低
い時期 (ダミーバーによる連続鋳造鋳片の引き抜き開始
直後の引き抜き速度一定時) から、湯面高さを高精度で
検出するとともに自動的に制御することができる連続鋳
造時の湯面高さ制御装置および制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention In the continuous casting process of molten metal, the present invention relates to the level of molten metal at the initial stage of casting, that is, the level of molten metal in the continuous casting mold, which has been conventionally set. During continuous casting, the level of the molten metal can be detected with high accuracy and automatically controlled from a time that is too low to be measured by a meter (when the drawing speed is constant immediately after the continuous casting slab is drawn by the dummy bar). The present invention relates to a level control device and a control method.

【0002】[0002]

【従来の技術】溶融金属 (以下、本明細書においては
「溶融金属」の一例として「溶鋼」を例にとって説明を
行う) の連続鋳造では、図5に示すように、一般に連続
鋳造設備において、水冷された連続鋳造鋳型1内に浸漬
された浸漬ノズル2を介してタンディッシュ3に収容さ
れた溶鋼が鋳込まれ、連続鋳造鋳型1および水冷ノズル
(図示しない) により冷却されて凝固した連続鋳造鋳片
4は下方に設置されたピンチロール (図示せず) によっ
て引き抜かれる。
2. Description of the Related Art In continuous casting of molten metal (hereinafter, "molten steel" will be described as an example of "molten metal" in the present specification), as shown in FIG. Molten steel contained in a tundish 3 is cast through a submerged nozzle 2 immersed in a water-cooled continuous casting mold 1 to form a continuous casting mold 1 and a water cooling nozzle.
The continuously cast slab 4 which is cooled and solidified by (not shown) is pulled out by a pinch roll (not shown) installed below.

【0003】この連続鋳造工程における操業トラブルと
しては、連続鋳造鋳片4の凝固シェルが破れ内部の未凝
固の溶鋼が流れ出すブレークアウトが知られているが、
ブレークアウト以外にも、連続鋳造鋳型1内の未凝固の
溶鋼が連続鋳造鋳型1の上部から溢れ出すオーバーフロ
ーが知られている。
A known operating problem in this continuous casting process is breakout in which the solidified shell of the continuously cast slab 4 is broken and the unsolidified molten steel flows out.
In addition to breakout, it is known that the unsolidified molten steel in the continuous casting mold 1 overflows from the upper part of the continuous casting mold 1.

【0004】これは、急冷・凝固した連続鋳造鋳片4の
引き抜き速度よりもタンディッシュ3からの溶鋼の供給
量が大となる場合に生じる現象であって、歩留りおよび
生産性の低下さらには設備損傷の原因になるものであ
る。
This is a phenomenon that occurs when the amount of molten steel supplied from the tundish 3 is larger than the drawing speed of the rapidly cast and solidified continuous cast slab 4, which lowers the yield and the productivity. It causes damage.

【0005】したがって、一般的に、連続鋳造鋳型内の
溶鋼が溢れ出ないように連続鋳造鋳型内の溶鋼の湯面高
さを所定の範囲に制御する必要がある。連続鋳造鋳型内
の溶鋼の湯面高さの制御は以前から行われており、例え
ばコバルト60からγ線を放射し、溶鋼により減衰された
γ線を計測することにより溶鋼湯面高さを検知するRi法
により、溶鋼の湯面高さが制御されてきた。
Therefore, it is generally necessary to control the molten steel level in the continuous casting mold within a predetermined range so that the molten steel in the continuous casting mold does not overflow. The control of the molten steel level in the continuous casting mold has been performed for a long time.For example, γ-rays are emitted from cobalt 60 and the molten steel level is detected by measuring the γ-rays attenuated by the molten steel. The level of molten steel has been controlled by the Ri method.

【0006】図5に示す従来の連続鋳造装置において
も、連続鋳造鋳型1の上方に湯面高さ計5が設置されて
いる。この湯面高さ計5には通常は渦流式の距離測定計
が用いられ、±3.0 mmの測定精度を維持して湯面高さを
測定できる距離 (湯面〜距離測定計間距離) は最大で15
0 mmであるため、湯面高さ計5は通常時の湯面位置のか
なり上方に設置せざるを得ない。そのため、連続鋳造工
程の鋳込み初期である鋳型内湯留め時には、湯面高さは
湯面高さ計5の測定可能範囲外である下方に位置してい
るため湯面高さ計5を使用することができず、タンディ
ッシュ3のスライディングノズル7の開度を所定の値に
保って溶鋼の供給量を経験的に制御しながら、湯面高さ
が測定可能範囲に上昇した時から湯面高さ計5により湯
面高さの検出および制御を行うこととしていた。なお、
同図に示す装置では、湯面高さ計5からの信号はマイク
ロコンピュータへ出力され、 DDC(ダイレクトデジタル
コントローラ)8によりスライディングノズル7の開度
信号に変換され、油圧サーボアンプ9および油圧サーボ
10を介してスライディングノズル7の開度が制御されて
いた。
Also in the conventional continuous casting apparatus shown in FIG. 5, a molten metal level gauge 5 is installed above the continuous casting mold 1. A swirl type distance meter is normally used for this level gauge 5, and the distance at which the level height can be measured while maintaining the measurement accuracy of ± 3.0 mm (distance between level and distance meter) is Up to 15
Since the height is 0 mm, the level gauge 5 must be installed considerably above the normal position of the level. Therefore, when the molten metal is held in the mold at the beginning of casting in the continuous casting process, the molten metal level is located below the measurable range of the molten metal level gauge 5, so the molten metal level gauge 5 should be used. However, while maintaining the opening of the sliding nozzle 7 of the tundish 3 at a predetermined value and empirically controlling the supply amount of molten steel, the level It was decided to detect and control the height of the molten metal surface by a total of 5. In addition,
In the device shown in the figure, the signal from the bath level gauge 5 is output to the microcomputer, converted into the opening signal of the sliding nozzle 7 by the DDC (Direct Digital Controller) 8, and the hydraulic servo amplifier 9 and the hydraulic servo are used.
The opening of the sliding nozzle 7 was controlled via 10.

【0007】近年では、例えばCAMP−ISIJ(材
料とプロセス、Vol.5 、294 頁) に、鋳込み開始から定
常状態に至るまでの湯面高さを制御するために、連続鋳
造鋳型の内周に配設されたCu板に、鋳込み方向について
定ピッチになるように熱電対を複数埋め込んでおき、こ
れらの熱電対からの測定値により得られる温度推移か
ら、連続鋳造鋳型1内の溶鋼の湯面高さを検出する技術
が紹介されている。以下、この技術を図6ないし図8を
参照しながら詳細に説明する。
In recent years, for example, in CAMP-ISIJ (Materials and Processes, Vol. 5, p. 294), in order to control the level of the molten metal from the start of casting to the steady state, the inner circumference of the continuous casting mold is A plurality of thermocouples were embedded in the arranged Cu plate so as to have a constant pitch in the casting direction, and from the temperature transition obtained from the measured values from these thermocouples, the molten steel level in the continuous casting mold 1 Techniques for detecting height are introduced. Hereinafter, this technique will be described in detail with reference to FIGS. 6 to 8.

【0008】近年、連続鋳造鋳型の小断面化に伴い湯面
高さの制御にこれまで以上の高精度が要求されるように
なってきたため、この技術は、熱電対を用いた湯面高さ
検出の弱点である応答性の悪さ (熱伝導遅れ) を解消す
ることを目的に、図6に示すように、湯面状態 (湯面上
昇時、湯面停止時または湯面下降時) と、連続鋳造鋳型
への伝導熱量の位置的・時間的変化Δqとの対応関係に
着目した。なお、同図において、Δq>0は連続鋳造鋳
型への伝導熱量の増加を、Δq<0は連続鋳造鋳型への
伝導熱量の減少をそれぞれ示す。
In recent years, as the continuous casting mold has been made smaller in cross-section, higher precision has been required to control the height of the molten metal surface. For the purpose of eliminating the poor response (heat conduction delay), which is the weak point of detection, as shown in Fig. 6, the level of the surface (when the surface is rising, when the surface is stopped or when the surface is descending), Attention was paid to the correspondence with the positional and temporal change Δq of the amount of heat transferred to the continuous casting mold. In the figure, Δq> 0 indicates an increase in the amount of heat transferred to the continuous casting mold, and Δq <0 indicates a decrease in the amount of heat transferred to the continuous casting mold.

【0009】湯面上昇時には、鋳込速度は小さく溶鋼と
Cu板との接触時間は連続鋳造鋳型の上部ほど長いものの
溶鋼は連続鋳造鋳型の上部ほど高温であるために図6
(a) に示すようなΔqの分布となる。湯面下降時は、鋳
込速度は大きく溶鋼とCu板との接触時間は下部ほど長い
ものの溶鋼は連続鋳造鋳型の下部ほど高温であるために
図6(c) に示すようなΔqの分布となる。さらに、湯面
停止時は、鋳込速度と注湯速度とが等しいためにCu板の
下方ほど冷え易く図6(b) に示すようなΔqの分布とな
る。なお、いずれの場合も注湯温度がCu板の抜熱量を上
回っている。
When the molten metal rises, the casting speed is low and
Although the contact time with the Cu plate is longer in the upper part of the continuous casting mold, the temperature of molten steel is higher in the upper part of the continuous casting mold.
The distribution of Δq is as shown in (a). When the molten metal is descending, the casting speed is high and the contact time between the molten steel and the Cu plate is longer in the lower part, but since the molten steel is hotter in the lower part of the continuous casting mold, there is a distribution of Δq as shown in Fig. 6 (c). Become. Further, when the molten metal is stopped, since the pouring speed and the pouring speed are equal, the lower the Cu plate is, the easier it is to cool, and the distribution of Δq shown in FIG. In each case, the pouring temperature exceeds the heat removal amount of the Cu plate.

【0010】そして、これらの湯面状態と、連続鋳造鋳
型への伝導熱量の位置的・時間的変化Δqとの対応関係
は、図6(a) ないし図6(c) に示すように、湯面上昇時
ではΔqが0と正との境界位置に湯面高さが対応し、湯
面下降時ではΔqが負と正との境界位置に湯面高さが対
応し、さらに湯面停止時では凝固シェルの成長によりΔ
qが0と負との境界位置に湯面高さが対応する。
The relationship between these molten metal surface states and the positional and temporal changes Δq in the amount of heat transferred to the continuous casting mold is as shown in FIGS. 6 (a) to 6 (c). When the surface rises, the bath height corresponds to the boundary position between Δq and 0, and when the bath surface descends, the bath height corresponds to the boundary position between Δq and negative, and when the bath surface stops. Then, due to the growth of the solidified shell Δ
The level of the molten metal corresponds to the boundary position between q and 0.

【0011】そして、伝導熱量の位置的・時間的変化Δ
qの変化を、サンプリング周期Δθ毎の温度変化量ΔTi
=〔 Ti(θ) − Ti(θ−Δθ) 〕で検出し、その連続鋳
造鋳型内分布から溶鋼の湯面高さを計算する。
Then, the positional / temporal change Δ in the amount of conduction heat
The change in q is represented by the temperature change amount ΔTi for each sampling period Δθ.
= [Ti (θ) -Ti (θ-Δθ)], and the molten steel surface height is calculated from the distribution in the continuous casting mold.

【0012】この計算の際の主な手順を、図7を参照し
ながら説明する。図7(a) および図7(b) はそれぞれ、
サンプリング周期Δθ毎の温度変化量ΔTi、および温度
変化量ΔTiとサンプリング位置の鋳込み方向距離ΔLと
の比ΔTi/ΔLについて、サンプリング位置でのそれぞ
れの値を示すグラフである。なお、図7において、Cu板
の上部では下方につれて凝固シェルにより保温される
が、凝固シェルが固まり始めると半凝固シェルを介して
Cu板により抜熱される。また、Cu板の下部では下方につ
れて、半凝固シェルを介してCu板により抜熱されるが、
さらに下方につれて、凝固シェルにより保温されるため
Cu板による抜熱を防ぐ。これは、Cu板の上部の抜熱は熱
湯→半凝固シェル→Cu板であり、Cu板の下部の抜熱は熱
湯→熱凝固シェル→Cu板であって、両者の熱伝導率の差
による。
The main procedure for this calculation will be described with reference to FIG. 7 (a) and 7 (b) respectively,
6 is a graph showing respective values at the sampling position with respect to the temperature change amount ΔTi for each sampling cycle Δθ, and the ratio ΔTi / ΔL of the temperature change amount ΔTi and the casting direction distance ΔL of the sampling position. In FIG. 7, the upper part of the Cu plate is kept warm by the solidified shell as it goes downward, but when the solidified shell begins to solidify,
Heat is removed by the Cu plate. Also, in the lower part of the Cu plate, heat is removed by the Cu plate through the semi-solidified shell as it goes downward,
As it goes further down, it is kept warm by the solidified shell
Prevents heat removal by Cu plate. This is because the heat removal at the top of the Cu plate is hot water → semi-solidified shell → Cu plate, and the heat removal at the bottom of the Cu plate is hot water → heat solidified shell → Cu plate, depending on the difference in thermal conductivity between the two. .

【0013】(i) 図7(a) は、連続鋳造鋳型の上方から
下方への検知であって、溶鋼の湯面状態をΔTiの正負の
符号 (図中における符号s) から判定し、上記の境界位
置をその位置的勾配の変曲位置 (図中a、b) に仮想す
る。
(I) FIG. 7 (a) shows detection from the upper side to the lower side of the continuous casting mold, in which the molten steel surface state is determined from the positive / negative sign of ΔTi (reference sign s in the figure), and The boundary position of is assumed to be an inflection position (a, b in the figure) of the positional gradient.

【0014】(ii)次に、図7(b) に示すように、変曲位
置a、bの勾配値を中心として隣合う勾配値との近似曲
線を描き、そのピーク点を湯面高さとして判定し、溶鋼
の湯面高さの制御にフィードバックする。なお、ΔTi=
0の場合には、従来のTi (θ) の鋳型内分布による方法
を併用して、鋳型内温度分布を測定する。
(Ii) Next, as shown in FIG. 7 (b), draw an approximate curve with adjacent gradient values centering on the gradient values at the inflection points a and b, and draw the peak point of the approximate curve. And feed back to the control of the level of molten steel. Note that ΔTi =
In the case of 0, the temperature distribution in the mold is measured by using the conventional method based on the distribution of Ti (θ) in the mold.

【0015】このように、この従来の技術は、略述すれ
ば、連続鋳造鋳型の鋳込み方向に関する連続鋳造鋳型へ
の伝熱量の変化Δqを、サンプリング周期Δθの温度変
化量ΔTiとして検出し、ΔTi/ ΔL から湯面高さを算出
する技術である。
As described above, in this prior art, in brief, the change Δq in the amount of heat transfer to the continuous casting mold in the casting direction of the continuous casting mold is detected as the temperature change amount ΔTi in the sampling cycle Δθ, and ΔTi This is a technology to calculate the molten metal height from ΔL.

【0016】この技術によれば、実際の湯面高さを従来
から用いられている浸漬式のガスパージ式レベル計で測
定した結果を比較して示す図8からも明らかなように、
例えば溶鋼の湯面がオーバーシュートする場合や下降お
よび再上昇する場合にも優れた湯面高さ検出精度が得ら
れる。
According to this technique, as is apparent from FIG. 8 which shows a comparison of the results obtained by measuring the actual molten metal surface level with the conventionally used immersion type gas purging type level meter,
For example, when the level of molten steel overshoots or when the level of molten steel descends and rises again, excellent accuracy of level detection is obtained.

【0017】[0017]

【発明が解決しようとする課題】しかしこの技術では、
その構成上連続鋳造鋳型のCu板が溶鋼からの熱を伝導す
る時間だけ応答遅れが生じてしまい、その応答遅れは湯
面の変化速度が速い程大きくなるという問題がある。し
たがって、例えば鋳込み初期にタンディッシュのスライ
ディングゲートが過度に開いた場合やスライディングゲ
ートの孔径が設計値より大きい場合等に、この応答遅れ
により連続鋳造鋳型内の湯面が急上昇して連続鋳造鋳型
からの溶鋼のオーバーフローが発生してしまうおそれが
ある。
However, with this technique,
Due to its structure, there is a problem that a response delay occurs during the time when the Cu plate of the continuous casting mold conducts heat from the molten steel, and the response delay becomes larger as the molten metal change rate is faster. Therefore, for example, when the sliding gate of the tundish is excessively opened in the early stage of casting or when the hole diameter of the sliding gate is larger than the design value, this response delay causes the molten metal surface in the continuous casting mold to rise rapidly from the continuous casting mold. There is a possibility that the molten steel overflows.

【0018】このように、従来の技術では、溶融金属の
連続鋳造工程において、鋳込み初期、すなわち連続鋳造
鋳型内における溶融金属の湯面高さが、従来から設置さ
れている例えば渦流式湯面高さ計によっては測定できな
い程度に低い時期 (ダミーバーによる連続鋳造鋳片の引
き抜き開始直後の引き抜き速度一定時) から、湯面高さ
を高精度で検出するとともに自動的に制御することはで
きなかったのである。ここに、本発明の目的は、上記課
題を解決することができる連続鋳造時の湯面高さ制御装
置および方法を提供することにある。
As described above, according to the prior art, in the continuous casting process of molten metal, the molten metal level at the initial stage of casting, that is, the molten metal level in the continuous casting mold is, for example, a swirl type molten metal level that is conventionally set. It was not possible to detect the molten metal height with a high degree of accuracy and automatically control it from a time that was too low to be measured by a gauge (when the drawing speed was constant immediately after the start of drawing the continuously cast slab by the dummy bar). Of. An object of the present invention is to provide a molten metal height control apparatus and method during continuous casting that can solve the above problems.

【0019】[0019]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため種々検討を重ねた結果、連続鋳造鋳型内
の溶鋼の湯面高さを、従来から設置されている渦流式の
湯面高さ計5だけではなく、鋳込み初期には、2本の導
線からなる電極を複数組有し、これらの電極は、それぞ
れの先端が鋳込み方向について互いに離間するようにし
て連続鋳造鋳型の内表面またはその近傍に配設される電
極式湯面高さ計を設置して測定することにより、上記課
題を解決することが可能となることを知見し、本発明を
完成した。
As a result of various studies to solve the above-mentioned problems, the inventors of the present invention have determined that the level of molten steel in the continuous casting mold is higher than that of the vortex flow type which has been conventionally installed. In addition to the molten metal level gauge 5, in the initial stage of casting, there are a plurality of sets of electrodes consisting of two conducting wires, and these electrodes are formed in a continuous casting mold with their tips separated from each other in the casting direction. The inventors have found that it is possible to solve the above-mentioned problems by installing and measuring an electrode-type molten metal level gauge arranged on the inner surface or in the vicinity thereof, and completed the present invention.

【0020】ここに、本発明の要旨とするところは、2
本の熱電対からなる電極を複数組有し、電極はそれぞれ
の先端が鋳込み方向について互いに離間するようにして
連続鋳造鋳型の内表面またはその近傍に配設される電極
式湯面高さ計と、電極式湯面高さ計から出力される信号
に基づいて連続鋳造鋳型の上方に配置されるタンディッ
シュのスライディングノズルの開度を調整する装置とを
組み合わせて有することを特徴とする連続鋳造時の湯面
高さ制御装置であり、溶鋼の連続鋳造を行う際には、鋳
込み初期における連続鋳造鋳型内の溶鋼の湯面高さを、
上記の本発明にかかる連続鋳造時の湯面高さ制御装置を
用いて制御することにより、溶鋼の連続鋳造の鋳込み初
期から、連続鋳造鋳型内の湯面高さを高精度で検出する
とともに自動的に制御することが可能となる。
The gist of the present invention is 2
Having a plurality of sets of electrodes consisting of a book thermocouple, the electrodes are electrode type molten metal level gauges arranged on or near the inner surface of the continuous casting mold so that the tips of the electrodes are separated from each other in the casting direction. During continuous casting, characterized by having a combination with a device for adjusting the opening of the sliding nozzle of the tundish arranged above the continuous casting mold based on the signal output from the electrode type molten metal level gauge Is a molten metal height control device, when performing continuous casting of molten steel, the molten metal height in the continuous casting mold at the initial stage of casting,
By controlling using the molten metal height control device during continuous casting according to the present invention, from the initial casting of continuous casting of molten steel, the molten metal height in the continuous casting mold is detected with high accuracy and automatically. It becomes possible to control it physically.

【0021】図1は、本発明にかかる連続鋳造時の湯面
高さ制御装置の構成例を一部抽出して示す説明図であ
り、符号1は連続鋳造鋳型、符号2は浸漬ノズル、符号
11は電極式湯面高さ計、符号12a ないし12d は電極、符
号13は電極固定用カバー、符号14はフロート、符号15は
ダミーバー、符号16は吊上用フックであり、従来の例え
ば渦流式レベル計の測定可能範囲よりも下方における湯
面高さを計測可能である。
FIG. 1 is an explanatory view showing a partially extracted structural example of a molten metal height control device for continuous casting according to the present invention. Reference numeral 1 is a continuous casting mold, reference numeral 2 is a dipping nozzle, and reference numeral is shown.
Reference numeral 11 is an electrode type molten metal level gauge, reference numerals 12a to 12d are electrodes, reference numeral 13 is an electrode fixing cover, reference numeral 14 is a float, reference numeral 15 is a dummy bar, and reference numeral 16 is a lifting hook. It is possible to measure the molten metal level below the measurable range of the level meter.

【0022】フロート14は、材質すなわち比重を略一定
として (異なる場合には材質変更により対応) 、連続鋳
造鋳型1内の未凝固の溶鋼に一定深さαで浸漬されて浮
遊する距離測定器である。
The float 14 is a distance measuring device which floats by being immersed in the unsolidified molten steel in the continuous casting mold 1 at a constant depth α, with the material, that is, the specific gravity being substantially constant (if different, corresponding by changing the material). is there.

【0023】本発明にかかる湯面高さ制御装置のポイン
トは、図1に示すように、電極式湯面高さ計11を用いた
点にある。すなわち、2本の導線(熱電対) を一対とし
た電極12a ないし12d をそれぞれの先端AないしDが鋳
込み方向に離間(A〜B:l3、B〜C:l2、C〜D:
l1) するようにして4個設けておき、測定時には各導線
の一方に適当な電位を与えておき、湯面高さが各電極の
先端に到達した時に導線同士が導通して電位を与えてい
なかった導線に電流が流れることを利用して湯面高さを
検知する。導線の先端位置のピッチ (l1、l2、l3) と設
置位置 (例えば、電極AB間の幅方向間隔)を変更する
ことにより測定範囲および測定精度を自在に調整でき
る。
The point of the molten metal level control device according to the present invention is that an electrode type molten metal level gauge 11 is used as shown in FIG. In other words, two conductors (thermocouple) through respective tips A electrodes 12a to 12d has a pair of spaced apart in the direction casting is D (A~B: l 3, B~C : l 2, C~D:
l 4 ) As described above, provide an appropriate potential to one of the conductors during measurement, and when the level of the molten metal reaches the tip of each electrode, the conductors conduct electricity to each other to apply the potential. The level of the molten metal is detected by utilizing the fact that the electric current flows through the conductor that was not open. The measuring range and the measuring accuracy can be freely adjusted by changing the pitch (l 1 , l 2 , l 3 ) of the tip positions of the conductors and the installation position (for example, the widthwise interval between the electrodes AB).

【0024】なお、この湯面高さ計11は、予めタンディ
ッシュの開孔時の浸漬ノズル2からの溶鋼スプラッシュ
が付着しないような位置、例えば浸漬ノズル2と連続鋳
造鋳型1との間の空間であって、連続鋳造鋳型の内表面
またはその近傍等に設置する。
The molten metal level gauge 11 is provided at a position where the molten steel splash from the immersion nozzle 2 does not adhere when the tundish is opened, for example, the space between the immersion nozzle 2 and the continuous casting mold 1. And, it is installed on the inner surface of the continuous casting mold or in the vicinity thereof.

【0025】図1に示す本発明にかかる湯面高さ制御装
置では、以下のようにして湯面高さが制御される。同図
において、距離Lは連続鋳造鋳型1の上面からダミーバ
ー15の上面までの距離とし、距離 (L1+α) は連続鋳造
鋳型1の上面からL04{最初の設定値L04=L−(L1
α) }とすると、距離Lおよび距離αは実測または予測
可能であるが距離L1 は実測し難い。このため、距離L
および距離αを基準として距離L1すなわちL04 を決定
する。なお、導線の先端位置のピッチl1、l2およびl3
任意であって適宜設定すればよい。電極12a の先端位置
AはL04=L−(L1 +α) で与えられるから、電極12b
、12c および12d の先端位置B、CおよびDは、それ
ぞれ L03=L− (L1 +α) − l302=L− (L1 +α) − (l3+l2) L02=L− (L1 +α) − (l3+l2+l1) により与えられる。
In the molten metal height control apparatus according to the present invention shown in FIG. 1, the molten metal height is controlled as follows. In the figure, the distance L is the distance from the upper surface of the continuous casting mold 1 to the upper surface of the dummy bar 15, and the distance (L 1 + α) is from the upper surface of the continuous casting mold 1 to L 04 {initial setting value L 04 = L- ( L 1 +
α)}, it is possible to measure or predict the distance L and the distance α, but it is difficult to measure the distance L 1 . Therefore, the distance L
And the distance L 1 or L 04 is determined based on the distance α. The pitches l 1 , l 2 and l 3 at the tip positions of the conductors are arbitrary and may be set as appropriate. Since the tip position A of the electrode 12a is given by L 04 = L- (L 1 + α), the electrode 12b
, 12c and 12d, the tip positions B, C and D are L 03 = L- (L 1 + α) -l 3 L 02 = L- (L 1 + α)-(l 3 + l 2 ) L 02 = L- (L 1 + α) - it is given by (l 3 + l 2 + l 1).

【0026】なお、図1ではその記載を省略している
が、本発明にかかる湯面高さ制御装置では電極式湯面高
さ計11を追加した以外は前述の図5に示す装置と同様に
構成すればよい。電極式湯面高さ計11の設置位置は、図
5においては符号6で示す連続鋳造鋳型1の内表面また
はその近傍であって、例えば各電極の先端が連続鋳造鋳
型1の上端から 250〜260 mm程度の範囲である。すなわ
ち、図5に示すように、湯面高さ計5からの信号はマイ
クロコンピュータへ出力されるとともに電極式湯面高さ
計11からの信号はDDC 8に出力され、これらの信号に基
づいて DDC8によりスライディングノズル7の開度信号
に変換される。
Although not shown in FIG. 1, the molten metal height control apparatus according to the present invention is the same as the apparatus shown in FIG. 5 except that an electrode type molten metal level gauge 11 is added. Can be configured as. The electrode-type molten metal level gauge 11 is installed at the inner surface of the continuous casting mold 1 shown in FIG. 5 or in the vicinity thereof. For example, the tip of each electrode is 250 to 250 mm from the upper end of the continuous casting mold 1. The range is about 260 mm. That is, as shown in FIG. 5, the signal from the bath level gauge 5 is output to the microcomputer, and the signal from the electrode type bath level gauge 11 is output to the DDC 8 based on these signals. The opening signal of the sliding nozzle 7 is converted by the DDC 8.

【0027】DDC 8では、油圧サーボアンプ9および油
圧サーボ10を介してスライディングノズル7の開度信号
が出力される。スライディングノズル7はこの開度信号
に基づいて開閉され、タンディッシュ3からの溶鋼の流
量は連続鋳造鋳型1からオーバーフローしないように制
御される。そして、連続鋳造鋳型1の湯面高さが、従来
から設置されている例えば渦流式の湯面高さ計5の測定
可能範囲に入るまで上昇した後は、この湯面高さ計5に
よる制御に自動的に切り替え、湯面高さを制御すればよ
い。
The DDC 8 outputs an opening signal of the sliding nozzle 7 via a hydraulic servo amplifier 9 and a hydraulic servo 10. The sliding nozzle 7 is opened and closed based on this opening signal, and the flow rate of molten steel from the tundish 3 is controlled so as not to overflow from the continuous casting mold 1. Then, after the level of the molten metal of the continuous casting mold 1 rises to within the measurable range of the conventionally installed swirl type molten metal level gauge 5, for example, control by the molten metal level gauge 5 is performed. It is sufficient to automatically switch to and control the level of the molten metal.

【0028】図2には、このようにして制御した場合の
各電極位置におけるスライディングノズル開度 (%) の
関係の一例を示すグラフである。同図に示すように、連
続鋳造鋳型内における湯面の急上昇を防ぐため、曲線は
上に凸の放物線状になっている。このようにして、本発
明によれば、溶鋼の連続鋳造の鋳込み初期から、連続鋳
造鋳型内の湯面高さを高精度で検出するとともに自動的
に制御することが可能となる。
FIG. 2 is a graph showing an example of the relationship of the sliding nozzle opening (%) at each electrode position when controlled in this way. As shown in the figure, in order to prevent the molten metal surface from rapidly rising in the continuous casting mold, the curve has a parabolic shape that is convex upward. In this way, according to the present invention, it is possible to detect the molten metal surface height in the continuous casting mold with high accuracy and automatically control it from the initial stage of continuous casting of molten steel.

【0029】[0029]

【作用】本発明によれば、連続鋳造鋳型の内部の溶鋼の
湯面高さが従来から設置されている例えば渦流式湯面高
さ計によっては測定できない程度に低い時期、すなわち
鋳込み初期 (換言すれば、ダミーバーによる連続鋳造鋳
片の引き抜き開始直後の引き抜き速度一定時) から、湯
面高さを高精度で検出することが可能となる。したがっ
て、湯面高さを測定できない時期があることに起因した
溶鋼のオーバーフローを解消することができる。
According to the present invention, the molten steel level inside the continuous casting mold is so low that it cannot be measured by a conventional eddy current level gauge, that is, the initial casting stage (in other words, the casting stage). By doing so, it becomes possible to detect the molten metal height with high accuracy from (when the drawing speed is constant immediately after the start of drawing the continuously cast slab by the dummy bar). Therefore, it is possible to eliminate the overflow of molten steel due to the time when the height of the molten metal cannot be measured.

【0030】本発明において用いる電極式湯面高さ計に
よっては測定できない高さに連続鋳造鋳型内の湯面高さ
が上昇した場合には、湯面高さの測定を従来から設置さ
れている例えば渦流式湯面高さ計に自動的に切り換える
ため、連続鋳造における鋳込み初期の段階から湯面高さ
を測定することができる。
When the molten metal level in the continuous casting mold rises to a level that cannot be measured by the electrode type molten metal level gauge used in the present invention, the molten metal level is conventionally measured. For example, since it is automatically switched to the vortex flow level meter, the level of molten metal can be measured from the initial stage of casting in continuous casting.

【0031】本発明では、連続鋳造鋳型内の溶鋼の湯面
高さの測定を、2本の導線により構成される電極の導通
により行うため、例えば連続鋳造鋳型の内周に配設され
たCu板の熱伝導を利用する方法に比較すると、極めて高
い応答性で行うことができる。
In the present invention, since the molten metal level in the continuous casting mold is measured by the conduction of electrodes composed of two conductors, for example, the Cu disposed on the inner circumference of the continuous casting mold is used. Compared with the method using the heat conduction of the plate, it can be performed with extremely high responsiveness.

【0032】本発明は、連続鋳造鋳型の内表面またはそ
の近傍に電極式湯面高さ計を配設して、この電極式湯面
高さ計からの信号を DDCに入力するだけで実施すること
ができ、設備改造を最小限に抑制することができる。さ
らに、本発明を実施例を参照しながら詳述するが、これ
は本発明の例示でありこれにより本発明が限定されるも
のではない。
The present invention is carried out by disposing an electrode type melt level gauge on the inner surface of the continuous casting mold or in the vicinity thereof and inputting a signal from the electrode type melt level gauge to the DDC. Therefore, the equipment modification can be suppressed to the minimum. Further, the present invention will be described in detail with reference to examples, but this is an example of the present invention and the present invention is not limited thereto.

【0033】[0033]

【実施例】図1および図5に示す構成の本発明にかかる
装置を用いて、連続鋳造時の連続鋳造鋳型内の湯面高さ
制御を行った。4本の電極12a ないし12d から構成され
る電極式湯面高さ計11は連続鋳造鋳型1の内表面から
3.0mmだけ離間されて、連続鋳造鋳型1内に設置され
た。各電極12a ないし12d の先端AないしDの鋳込み方
向に関する距離は、l1:50mm、l2:50mm、l3:50mmであ
り、深さα:40mm、L:280 mmであった。なお、鋳込条
件を以下に列記する。
EXAMPLES The level of molten metal in the continuous casting mold during continuous casting was controlled by using the apparatus of the present invention having the structure shown in FIGS. 1 and 5. The electrode type molten metal level gauge 11 composed of four electrodes 12a to 12d is formed from the inner surface of the continuous casting mold 1.
It was placed in the continuous casting mold 1 separated by 3.0 mm. Distance relates to the casting direction of the distal end A to D of the respective electrodes 12a to 12d, l 1: 50mm, l 2: 50mm, l 3: a 50 mm, depth α: 40mm, L: was 280 mm. The casting conditions are listed below.

【0034】 鋼種: [C] 含有量が0.01〜0.50重量%の普通鋼 連続鋳造鋳型幅:1240〜2300mm 連続鋳造鋳型厚: 235mmおよび300 mmの2種類 ストランド数:2 個 また、比較例として、図5に示す従来の装置を用いて、
全く同様の条件により連続鋳造時の連続鋳造鋳型内の湯
面高さの制御を行った。測定した湯面高さおよびオーバ
ーシュート量を連続して3ヵ月間測定した。なお、オー
バーシュート量とは (実際の湯面の最大高さ) − (目標
の湯面高さ) の距離を意味する。
Steel type: [C] Ordinary steel with a content of 0.01 to 0.50% by weight Continuous casting mold width: 1240 to 2300 mm Continuous casting mold thickness: 235 mm and 300 mm, two types Number of strands: 2 Also, as a comparative example, Using the conventional device shown in FIG.
The level of the molten metal in the continuous casting mold during continuous casting was controlled under exactly the same conditions. The measured molten metal height and the amount of overshoot were continuously measured for 3 months. The amount of overshoot means the distance of (actual maximum height of the molten metal)-(target molten metal height).

【0035】結果を図3にグラフにまとめて示す。これ
らの二つの湯面高さの制御方法による一年当たりのオー
バーフロー発生件数を算出した。結果を図4にグラフで
示す。
The results are shown in the graph of FIG. The number of overflow occurrences per year by these two methods of controlling the level of the molten metal was calculated. The results are shown graphically in FIG.

【0036】図3から、本発明によれば、湯面高さ、特
に鋳込み初期における湯面高さを正確に測定でき、オー
バーフローにつながるオーバーシュートの発生量を大幅
に低減できることがわかる。また、図4から、本発明に
よれば、オーバーフローを略完全に解消することができ
たことがわかる。
From FIG. 3, it is understood that according to the present invention, the height of the molten metal surface, particularly the height of the molten metal surface at the initial stage of casting can be accurately measured, and the amount of overshoot leading to overflow can be greatly reduced. Further, it can be seen from FIG. 4 that according to the present invention, the overflow can be almost completely eliminated.

【0037】[0037]

【発明の効果】以上詳述したように、本発明によれば、
連続鋳造鋳型内の溶鋼の湯面高さを鋳込み初期から正確
に測定することができ、鋳込み初期に多発する湯面の急
上昇に起因したオーバーフローを防止することが可能と
なった。
As described in detail above, according to the present invention,
It is possible to accurately measure the height of the molten steel surface in the continuous casting mold from the early stage of casting, and it is possible to prevent overflow caused by the rapid rise of the molten metal surface frequently occurring in the early stage of casting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる連続鋳造時の湯面高さ制御装置
の一例の構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of an example of a molten metal height control device during continuous casting according to the present invention.

【図2】本発明により制御された、各電極位置 (l1
l2、l3およびl4) におけるスライディングノズル開度
(%) の関係の一例を示すグラフである。
FIG. 2 shows each electrode position (l 1 ,
Sliding nozzle opening at l 2 , l 3 and l 4 )
It is a graph which shows an example of the relationship of (%).

【図3】実施例の結果を従来例および本発明例について
示すグラフである。
FIG. 3 is a graph showing a result of an example of a conventional example and an example of the present invention.

【図4】実施例の結果を示すグラフである。FIG. 4 is a graph showing the results of Examples.

【図5】従来の連続鋳造設備の構成の一例を示す説明図
である。
FIG. 5 is an explanatory diagram showing an example of the configuration of a conventional continuous casting facility.

【図6】湯面状態 (湯面上昇時、湯面停止時または湯面
下降時) と、連続鋳造鋳型への伝導熱量の位置的・時間
的変化Δqとの対応関係を示すグラフであり、図6(a)
は湯面上昇の場合を、図6(b) は湯面停止の場合を、図
6(c) は湯面下降の場合をそれぞれ示す。
FIG. 6 is a graph showing a correspondence relationship between the molten metal surface state (when the molten metal surface is rising, when the molten metal surface is stopped or when the molten metal surface is descending), and the positional / temporal change Δq in the amount of heat transferred to the continuous casting mold; Figure 6 (a)
6 (b) shows the case where the level is raised, FIG. 6 (b) shows the case where the level is stopped, and FIG. 6 (c) shows the case where the level is lowered.

【図7】図7(a) および図7(b) はそれぞれ、サンプリ
ング周期Δθ毎の温度変化量ΔTi、および温度変化量Δ
Tiとサンプリング位置の鋳込み方向距離ΔLとの比ΔTi
/ΔLについて、サンプリング位置でのそれぞれの値を
示すグラフである。
7A and 7B are a temperature change amount ΔTi and a temperature change amount Δ for each sampling period Δθ, respectively.
Ratio of Ti to casting direction distance ΔL at sampling position ΔTi
9 is a graph showing respective values at sampling positions for / ΔL.

【図8】実際の湯面高さを従来から用いられている浸漬
式のガスパージ式レベル計で測定した結果を比較して示
すグラフである。
FIG. 8 is a graph showing a comparison of actual results of measurement of a molten metal surface level with a conventionally used immersion type gas purging level meter.

【符号の説明】[Explanation of symbols]

1:連続鋳造鋳型 2:浸漬ノズル 3:タンディッシュ 4:連続鋳造鋳
片 5:渦流式湯面高さ計 6:本発明にか
かる装置の設置位置 7:スライディングノズル 8:DDC 9:油圧サーボアンプ 10:油圧サーボ 11:電極式湯面高さ計 12a〜12d :電極 13:導線固定用カバー 14:フロート 15:ダミーバー 16:吊上用フッ
1: Continuous casting mold 2: Immersion nozzle 3: Tundish 4: Continuous casting slab 5: Vortex flow level gauge 6: Installation position of device according to the present invention 7: Sliding nozzle 8: DDC 9: Hydraulic servo amplifier 10: Hydraulic servo 11: Electrode type melt level gauge 12a to 12d: Electrode 13: Conductor fixing cover 14: Float 15: Dummy bar 16: Lifting hook

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒木 勝弘 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiro Araki No.3 Hikari, Kashima-cho, Kashima-cho, Kashima-gun, Ibaraki Prefecture Sumitomo Metal Industries, Ltd. Kashima Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2本の導線からなる電極を複数組有し、
前記電極はそれぞれの先端が鋳込み方向について互いに
離間するようにして連続鋳造鋳型の内表面またはその近
傍に配設される電極式湯面高さ計と、前記電極式湯面高
さ計から出力される信号に基づいて前記連続鋳造鋳型の
上方に配置されるタンディッシュのスライディングノズ
ルの開度を調整する装置とを組み合わせて有することを
特徴とする連続鋳造時の湯面高さ制御装置。
1. A plurality of sets of electrodes composed of two conductors are provided,
The electrodes are output from the electrode-type molten metal level gauge, which is disposed on or near the inner surface of the continuous casting mold so that the respective tips are separated from each other in the casting direction, and are output from the electrode-type molten metal height meter. And a device for adjusting the opening of the sliding nozzle of the tundish arranged above the continuous casting mold on the basis of the signal.
【請求項2】 溶融金属の連続鋳造を行う際に、鋳込み
初期における連続鋳造鋳型内の溶融金属の湯面高さを、
請求項1記載の連続鋳造時の湯面高さ制御装置を用いて
制御することを特徴とする連続鋳造時の湯面高さ制御方
法。
2. When performing continuous casting of molten metal, the molten metal level in the continuous casting mold at the initial stage of casting is
A molten metal height control method at the time of continuous casting, which is controlled using the molten metal height control device at the time of continuous casting.
JP3368693A 1993-02-23 1993-02-23 Device and method for controlling molten metal surface height at the time of continuously casting Withdrawn JPH06238412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3368693A JPH06238412A (en) 1993-02-23 1993-02-23 Device and method for controlling molten metal surface height at the time of continuously casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3368693A JPH06238412A (en) 1993-02-23 1993-02-23 Device and method for controlling molten metal surface height at the time of continuously casting

Publications (1)

Publication Number Publication Date
JPH06238412A true JPH06238412A (en) 1994-08-30

Family

ID=12393318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3368693A Withdrawn JPH06238412A (en) 1993-02-23 1993-02-23 Device and method for controlling molten metal surface height at the time of continuously casting

Country Status (1)

Country Link
JP (1) JPH06238412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026800A1 (en) * 1995-02-28 1996-09-06 Nkk Corporation Method of controlling continuous casting and apparatus therefor
JP2000293223A (en) * 1999-04-06 2000-10-20 Mitsubishi Electric Corp Monitor controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026800A1 (en) * 1995-02-28 1996-09-06 Nkk Corporation Method of controlling continuous casting and apparatus therefor
US5918662A (en) * 1995-02-28 1999-07-06 Nkk Corporation Method of controlling the operation of continuous casting and apparatus therefor
CN1116138C (en) * 1995-02-28 2003-07-30 日本钢管株式会社 Method of controlling continuous casting and apparatus thereof
JP2000293223A (en) * 1999-04-06 2000-10-20 Mitsubishi Electric Corp Monitor controller

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
EP0196746B1 (en) Method and apparatus for preventing cast defects in continuous casting plant
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
TWI762264B (en) Method for predicting temperature of molten steel
KR100783082B1 (en) Method for continuous casting
CN105057608B (en) A kind of apparatus and method detected for gravitational casting alloy critical solidification coefficient
KR20110073788A (en) Monitoring method and device for continuous casting
JPH06238412A (en) Device and method for controlling molten metal surface height at the time of continuously casting
CN102974794B (en) Device and method for reducing superheat degree of molten steel of continuous casting ladle or intermediate ladle
JP2004034090A (en) Continuous casting method for steel
JPH06320245A (en) Heat extraction control device in mold
CN105081283B (en) A kind of apparatus and method detected for low pressure casting alloy critical solidification coefficient
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JPH02220751A (en) Apparatus and method for controlling casting in continuous casting machine
NL8204522A (en) METHOD AND SYSTEM FOR MELT LEVEL CONTROL IN CONTINUOUS CASTING.
CN103341597B (en) Device and method for measuring temperature of steel liquid below casting powder in continuous casting crystallizer
JP4232491B2 (en) Continuous casting mold
KR101654206B1 (en) Apparatus and method for measuring nozzle clogging and method for controlling flow of molten steel using the same
Moon et al. Re-start technology for reducing sticking-type breakout in thin slab caster
JPS6333153A (en) Cast starting method for multi-connecting electromagnetic casting
JP2004276050A (en) Method for starting continuous casting
JP2012086249A (en) Method and device for detecting breakout in continuous casting
CN109374147B (en) Method for measuring ingot casting temperature distribution in electroslag remelting process
CN115889712A (en) Novel automatic casting method for full-endless thin slab continuous casting machine
JP2010194548A (en) Method for estimating solidification shell thickness in continuous casting and apparatus therefor, and method for detecting breakout in continuous casting and apparatus therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509