JPH06237998A - Detection of air bubble - Google Patents

Detection of air bubble

Info

Publication number
JPH06237998A
JPH06237998A JP5030231A JP3023193A JPH06237998A JP H06237998 A JPH06237998 A JP H06237998A JP 5030231 A JP5030231 A JP 5030231A JP 3023193 A JP3023193 A JP 3023193A JP H06237998 A JPH06237998 A JP H06237998A
Authority
JP
Japan
Prior art keywords
circuit
blood
clamp
air bubble
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5030231A
Other languages
Japanese (ja)
Inventor
Yasushi Shimomura
泰志 下村
Yuzo Kuromatsu
勇蔵 黒松
Hiroyuki Ikeda
博之 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5030231A priority Critical patent/JPH06237998A/en
Publication of JPH06237998A publication Critical patent/JPH06237998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

PURPOSE:To provide an exact detection method which does not erroneously recognize the air bubble existing in a circuit as a transparent liquid such as physiological salt soln. by detecting the discontinuous point of the continuous signals of the light transmitted quantity or light reflected quantity taken out of an air bubble detector. CONSTITUTION:The light transmitted quantity or light reflected quantity possessed in the intra-circuit liquid is continuously taken out as signals from the air bubble detector based on a photodetection system installed in an external- circuit device and the air bubble in the circuit is detected by detecting the discontinuous points of the continuous signals. The measurement is executed by the following procedure: First, a blood pump 5 is rotated and a clamp 4 is opened to circulate the physiological salt soln. This clamp 4 is closed and a clamp 3 is opened to circulate the blood after the circuit is internally filled with the physiological salt soln. The clamp 3 is closed and the clamp 4 is opened to fill the inside of the circuit again with the physiological salt soln. after the operation for a specified period of time since the circuit is internally filled with the blood alone. The prescribed quantity of the air is injected into the circuit and is detected by the air bubble detector 7 in the respective processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、体外血液循環装置或い
は体内へリンゲル液等の液体を導入する装置回路等の回
路内の気泡を確実に検出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reliably detecting bubbles in a circuit such as an extracorporeal blood circulation device or a device circuit for introducing a liquid such as Ringer's solution into the body.

【0002】[0002]

【従来の技術】人工心肺、透析、血漿交換療法等、体外
に血液を導出し、何らかの処理を施した後、体内へ返血
する血液体外循環回路或いは点滴時に使用されるリンゲ
ル液等の液体を体内へ導入、還流する回路等において
は、回路内の気泡を検出し、装置停止等何らかの措置を
講ずることにより、この気泡を含む血液がそのまま体内
へ返されることを防止することが必須である。気泡の検
出方法としては、光検検知式、超音波検知方式等が常用
されている。
2. Description of the Related Art Blood such as cardiopulmonary bypass, dialysis, and plasmapheresis is derived from the outside of the body and subjected to some treatment and then returned to the body. In a circuit or the like that introduces into or recirculates into, it is essential to detect air bubbles in the circuit and take some measures such as stopping the device to prevent blood containing these air bubbles from returning to the body as it is. As a method for detecting bubbles, an optical detection detection method, an ultrasonic detection method, etc. are commonly used.

【0003】[0003]

【従来技術の問題点】しかし、光検知方式は、装置組み
込み時の簡便性、低価格等の面で優れるものの、検出精
度に問題があり、一方、超音波検知方式は、検出精度は
優れるが、回路と検出器の位置合わせが難しく、また、
価格も高いという問題がある。さらに、従来の検出方法
では、血液のみを検知している間は、光透過量を電圧信
号として取り出すと0Vであり、血液中の気泡を検知し
た場合は、電圧が高くなるという、所謂、域値という捉
え方で気泡の検出がなされており、通常、それぞれの光
検出器の電気特性によって域値電圧を設定し、検出器か
ら域値電圧より高い電圧が出力された場合を気泡として
認識し、警報、装置停止等の措置がなされる。
[Problems of the prior art] However, although the optical detection method is excellent in terms of simplicity in assembling into a device and low cost, it has a problem in detection accuracy. On the other hand, the ultrasonic detection method is excellent in detection accuracy. , It is difficult to align the circuit and the detector,
There is a problem that the price is also high. Furthermore, in the conventional detection method, the amount of light transmission is 0 V when the voltage signal is extracted while only blood is being detected, and the voltage is high when bubbles in blood are detected, which is a so-called range. Bubbles are detected by the way of thinking as a value.Normally, the threshold voltage is set according to the electrical characteristics of each photodetector, and when the detector outputs a voltage higher than the threshold voltage, it is recognized as a bubble. Measures such as alarms, equipment stoppage, etc. will be taken.

【0004】しかしながら、体外血液循環装置等では、
例えば、治療開始時、血液を体外に導出するに際し、血
液と空気とが界面で接触することを避けるため、回路内
には必ず生理食塩水等の液体が充満され、血液は生理食
塩水と界面を保ちながら或いは一部混合しながら回路内
を搬送され、患者の体内へ還流される。また、治療終了
時には、回路内に残った血液を生理食塩水によって押し
出し還流する。
However, in an extracorporeal blood circulation device or the like,
For example, at the start of treatment, when drawing blood out of the body, in order to avoid contact between blood and air at the interface, the circuit must be filled with a liquid such as saline, and the blood should not contact the interface with saline. While being maintained or partly mixed, it is transported in the circuit and returned to the patient's body. Further, at the end of the treatment, the blood remaining in the circuit is pushed out and returned by physiological saline.

【0005】上記の場合、回路内の流体は、生理食塩
水、血液の他、場合によって空気が存在することとな
り、それらの出力電圧は、高い方から透明液体(生理食
塩水)、空気、血液となり、域値により検出する場合
は、透明液体と血液との界面での電圧の変化を気泡の存
在と捕らえてしまう可能性が大きい。このように、光検
知方式では、誤動作を起こす相が必ず存在しており、そ
れを防ぐために操作者が監視するという手段が採られて
いる。
In the above case, the fluid in the circuit includes physiological saline, blood, and air depending on the case, and the output voltage of these fluids is higher from the clear liquid (physiological saline), air, and blood. Therefore, in the case of detection using the threshold value, there is a high possibility that a change in voltage at the interface between the transparent liquid and blood is caught as the presence of bubbles. As described above, in the light detection method, there is always a phase that causes a malfunction, and an operator monitors the phase to prevent it.

【0006】[0006]

【発明が解決すべき課題】本発明は、体外血液循環装置
等の運転時、回路中に存在する気泡(空気)を、生理食
塩水等の透明液体と誤って認識することのない、正確な
検出方法を提供することを課題とする。
SUMMARY OF THE INVENTION According to the present invention, when operating an extracorporeal blood circulation device or the like, an air bubble (air) existing in the circuit is not erroneously recognized as a transparent liquid such as physiological saline, and is accurately measured. An object is to provide a detection method.

【0007】[0007]

【課題を解決するための手段】血液体外循環装置等の回
路内の流体は、運転開始時或いは終了時等に、生理食塩
水等の透明液体、血液と透明液体の混合物、血液、血液
と透明液体の混合物、透明液体という過程を経る。その
ため、検出器から得られる出力信号は必ず連続的に変化
する。従って、出力信号の突然の変化(不連続性)は、
上記の過程以外の流体、即ち、気泡の混入を意味する。
A fluid in a circuit of a blood extracorporeal circulation device is a transparent liquid such as physiological saline, a mixture of blood and a transparent liquid, blood, blood and a transparent liquid at the start or end of operation. It goes through the process of liquid mixture, transparent liquid. Therefore, the output signal obtained from the detector always changes continuously. Therefore, the sudden change (discontinuity) in the output signal is
It means mixing of fluid other than the above process, that is, bubbles.

【0008】本発明は、体外回路装置内に設置された光
検知方式に基づく気泡検出器から、回路内液体の有する
光透過量或いは光反射量を信号として連続的に取り出
し、この連続信号の不連続点を検出することにより、回
路内の気泡を検知することを特徴とする体外回路装置内
の気泡を検出する方法に関する。本発明において、体外
回路装置とは、人工心肺、透析、血液浄化等、体外に血
液を導出し循環させる場合及び点滴等、外部より体内に
リンゲル液、医薬等を導入する場合の何れの回路をも意
味する。
According to the present invention, the amount of light transmission or the amount of light reflection of the liquid in the circuit is continuously taken out as a signal from a bubble detector based on the light detection system installed in the extracorporeal circuit device, and the continuous signal is not detected. The present invention relates to a method for detecting bubbles in a circuit by detecting bubbles in a circuit by detecting continuous points. In the present invention, the extracorporeal circuit device means any circuit in case of introducing cardiopulmonary bypass, dialysis, blood purification, etc. to circulate and circulate blood outside the body, and drip, etc., and to introduce Ringer's solution into the body from the outside, medicine, etc. means.

【0009】[0009]

【発明の効果】本発明の気泡の検出方法によれば、生理
食塩水等の透明な液体を気泡と誤って検知することはな
く、また、検出器の域値を下回るような小さな電圧(言
い換えれば、極めて少量の気泡)であっても確実に回路
内の気泡の存在を検知することができる。
According to the bubble detecting method of the present invention, a transparent liquid such as physiological saline is not erroneously detected as a bubble, and a small voltage (in other words, a voltage lower than the threshold of the detector). For example, the presence of bubbles in the circuit can be reliably detected even with an extremely small amount of bubbles).

【0010】以下に実施例によって本発明を詳しく説明
する。図1は実施例に使用した回路である。血液ポンプ
5を所定回転数で回転させ、先ず、クランプ4を開放し
て生理食塩水を流通させる。回路内が生理食塩水によっ
て満たされた時点で、クランプ4を閉止し、クランプ3
を開放し血液を流通させる。回路内が血液のみで満たさ
れてから一定時間そのまま運転を続けた後、今度はクラ
ンプ3を閉止し、クランプ4を開放して、再び回路内を
生理食塩水で満たす。その間に各過程において、注射器
6によって所定量の空気を回路中に注入する。気泡検出
器7からの出力電圧はA/D変換器によってデジタル信
号に変換され、演算処理回路9によつて演算処理された
後、記録計10により記録される。
The present invention will be described in detail below with reference to examples. FIG. 1 shows a circuit used in the embodiment. The blood pump 5 is rotated at a predetermined rotation speed, and first, the clamp 4 is opened to allow the physiological saline to flow. When the circuit is filled with physiological saline, the clamp 4 is closed and the clamp 3
To open the blood for circulation. After the circuit is filled with blood only and the operation is continued for a certain time, the clamp 3 is closed, the clamp 4 is opened, and the circuit is filled with physiological saline again. Meanwhile, in each process, a predetermined amount of air is injected into the circuit by the syringe 6. The output voltage from the bubble detector 7 is converted into a digital signal by the A / D converter, processed by the processing circuit 9, and then recorded by the recorder 10.

【0011】[0011]

【実施例】【Example】

実施例1 図1に示す回路によって気泡の検出を行った。先ず、生
理食塩水側の回路を開放し、回路内に生理食塩水を満た
し、2秒後、血液側回路を開放し、血液を回路内に導入
した。約15秒後に、回路内が完全に血液に置換された
ことを確認した後、約14秒間そのまま運転を続けた。
次いで、回路内に再度生理食塩水を導入した。約15秒
後には、回路内は再び生理食塩水で完全に置換された。
そして、それぞれの過程で回路中に注射器によって0.
5mlの空気を注入し、気泡検出器(出力電圧は、血液
で0V、空気で9V、透明な液体で12V)からの出力
電圧を連続的に記録した。また、実験中を通じてポンプ
流量は100ml/分とした。回路を形成する材料とし
ては内径3.2mmの塩化ビニル製のチューブを使用し
た。
Example 1 Bubbles were detected by the circuit shown in FIG. First, the circuit on the physiological saline side was opened, the circuit was filled with physiological saline, and after 2 seconds, the circuit on the blood side was opened and blood was introduced into the circuit. After about 15 seconds, after confirming that the inside of the circuit was completely replaced with blood, the operation was continued for about 14 seconds.
Then, physiological saline was again introduced into the circuit. After about 15 seconds, the inside of the circuit was completely replaced with physiological saline again.
Then, in each process, a 0.
5 ml of air was injected and the output voltage from the bubble detector (output voltage was 0V for blood, 9V for air, 12V for clear liquid) was continuously recorded. The pump flow rate was 100 ml / min throughout the experiment. A vinyl chloride tube having an inner diameter of 3.2 mm was used as a material for forming the circuit.

【0012】回路内に生理食塩水を満たした時点では出
力電圧は12Vであった。次いで、血液の導入により電
圧は逐次、直線的に低下し、回路内が完全に血液に置換
された時点で0Vとなった。一定時間運転後、再び生理
食塩水を導入することにより、電圧は逐次、直線的に上
昇し、回路内が完全に生理食塩水に置換された時点で1
2Vとなった。それぞれの過程で0.5mlの空気を注
入したが、出力電圧は瞬間的に9.2Vに上昇し、連続
的な電圧直線に乱れ(不連続点)を生じ、気泡の混入を
確実に捕捉することができた。
When the circuit was filled with physiological saline, the output voltage was 12V. Then, the voltage was successively and linearly decreased by the introduction of blood, and became 0 V when the inside of the circuit was completely replaced with blood. After operating for a certain period of time, by introducing physiological saline again, the voltage sequentially and linearly rises, and when the inside of the circuit is completely replaced with physiological saline, 1
It became 2V. Although 0.5 ml of air was injected in each process, the output voltage instantaneously rises to 9.2 V, and the continuous voltage line is disturbed (discontinuity point) to reliably trap the inclusion of bubbles. I was able to.

【0013】本実施例では、空気の場合の電圧が9Vで
あるため、この数値が域値となり、仮に域値という捉え
方で運転を開始した場合、回路内が生理食塩水で満たさ
れた初期の段階で気泡と認識され、それ以上運転は進ま
なくなる。
In the present embodiment, since the voltage in the case of air is 9 V, this numerical value becomes the threshold value, and if the operation is started in the view of the threshold value, the circuit is initially filled with physiological saline. At the stage of, it is recognized as a bubble and the driving cannot proceed any further.

【0014】実施例2 実施例1と同一の回路を使用し、同一の手順で、空気注
入量のみ0.05mlとして運転を実施した。基本的な
電圧の変化は実施例1と同様であった。しかし、空気注
入量が少量であるため、血液と生理食塩水との混合過程
では、約1V程度の電圧変化が観察され、血液が満たさ
れている過程では、0Vであった電圧が、気泡を捉えた
時点で3.2V程度の電圧になった。それでも気泡の検
出という目的は充分に達せられた。この場合にも域値と
いう捉え方であれば、実施例1と同様、回路内が生理食
塩水で満たされた初期の段階で気泡と認識され、それ以
上運転は進まなくなる。この実施例2のように空気量が
非常に少ない場合は、それに加えて、仮に初期の段階で
は検出器を停止し、血液が増加して電圧が域値9Vを越
えてから検出器を作動させるという面倒な操作をしたと
しても、血液が満たされている過程での気泡による電圧
は3.2Vであるため、使用した域値9Vの検出器では
これを検知することはできず、気泡の混入は見逃されて
しまう。
Example 2 The same circuit as in Example 1 was used, and the operation was carried out by the same procedure with only an air injection amount of 0.05 ml. The basic voltage change was the same as in Example 1. However, since the amount of air injected was small, a voltage change of about 1 V was observed in the process of mixing blood and physiological saline, and a voltage of 0 V was generated in the process of filling blood with bubbles. When it was captured, the voltage was about 3.2V. Still, the goal of bubble detection was fully achieved. Also in this case, if it is regarded as a threshold value, as in the case of the first embodiment, it is recognized as bubbles at the initial stage when the inside of the circuit is filled with the physiological saline, and the operation cannot proceed any further. When the amount of air is very small as in the second embodiment, in addition to that, the detector is temporarily stopped in the initial stage, and the detector is activated after the blood increases and the voltage exceeds the threshold value 9V. Even if such a troublesome operation is performed, the voltage due to the bubbles in the process of being filled with blood is 3.2 V, so the detector with the threshold value of 9 V used cannot detect this, and the bubbles are mixed. Will be overlooked.

【0015】[0015]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、気泡を検出するための血流回路を示
す。尚、破線は信号の流れを示す。
FIG. 1 shows a blood flow circuit for detecting air bubbles. The broken line shows the flow of signals.

【符号の説明】[Explanation of symbols]

1 血液バッグ 2 生理食塩水バッグ 3,4 クランプ 5 血液ポンプ 6 注射器(気泡注入器) 7 気泡検出器 8 アナログ・デジタル変換器 9 演算処理回路 10 記録計 1 Blood Bag 2 Saline Solution Bag 3, 4 Clamp 5 Blood Pump 6 Syringe (Bubble Injector) 7 Bubble Detector 8 Analog / Digital Converter 9 Arithmetic Processing Circuit 10 Recorder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】体外回路装置内に設置された光検知方式に
基づく気泡検出器から、回路内液体の有する光透過量或
いは光反射量を信号として連続的に取り出し、この連続
信号の不連続点を検出することにより、回路内の気泡を
検知することを特徴とする体外回路装置内の気泡を検出
する方法。
1. A light-transmission amount or light-reflection amount of a liquid in a circuit is continuously taken out as a signal from a bubble detector based on a light detection system installed in an extracorporeal circuit device, and a discontinuous point of the continuous signal. A method for detecting air bubbles in an extracorporeal circuit device, characterized by detecting air bubbles in a circuit by detecting.
JP5030231A 1993-02-19 1993-02-19 Detection of air bubble Pending JPH06237998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5030231A JPH06237998A (en) 1993-02-19 1993-02-19 Detection of air bubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5030231A JPH06237998A (en) 1993-02-19 1993-02-19 Detection of air bubble

Publications (1)

Publication Number Publication Date
JPH06237998A true JPH06237998A (en) 1994-08-30

Family

ID=12297942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5030231A Pending JPH06237998A (en) 1993-02-19 1993-02-19 Detection of air bubble

Country Status (1)

Country Link
JP (1) JPH06237998A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021932A (en) * 2013-07-23 2015-02-02 パイオニア株式会社 Bubble detector and bubble detection method
JP2018163163A (en) * 2018-06-04 2018-10-18 パイオニア株式会社 Bubble detector
JP2020091299A (en) * 2020-03-03 2020-06-11 パイオニア株式会社 Bubble detector
WO2022065429A1 (en) 2020-09-28 2022-03-31 京セラ株式会社 Measuring device, measuring system, measuring method, and program
JP2022070861A (en) * 2020-03-03 2022-05-13 パイオニア株式会社 Bubble detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021932A (en) * 2013-07-23 2015-02-02 パイオニア株式会社 Bubble detector and bubble detection method
JP2018163163A (en) * 2018-06-04 2018-10-18 パイオニア株式会社 Bubble detector
JP2020091299A (en) * 2020-03-03 2020-06-11 パイオニア株式会社 Bubble detector
JP2022070861A (en) * 2020-03-03 2022-05-13 パイオニア株式会社 Bubble detector
WO2022065429A1 (en) 2020-09-28 2022-03-31 京セラ株式会社 Measuring device, measuring system, measuring method, and program

Similar Documents

Publication Publication Date Title
CA2784524C (en) Apparatus for extracorporeal blood treatment and method of operation
US7879241B2 (en) Method of treating a bodily fluid
US6755801B2 (en) Dialysis pressure monitoring with clot suppression
CN104755114B (en) The device of recycling is detected during for blood treatment in vitro
EP2535066B1 (en) Blood purification device
US6582656B1 (en) System and method for noninvasive hemodynamic measurements in hemodialysis shunts
US8091407B2 (en) Method and device for monitoring a flow of liquid for the presence of air by means of ultrasound
CA1328359C (en) Fluid sample collection and delivery system and methods particularly adapted for body fluid sampling
US6745630B2 (en) Method and device for detecting stenoses in a tubular line system
JPH0396816A (en) Apparatus and method for measuring flow velocity
SE513522C2 (en) Device for monitoring a fluid tube
AU2011291085B2 (en) Device for determining and/or monitoring foreign structures in a fluid or in a fluid stream, and method for doing same
JP5386355B2 (en) Method and apparatus for detecting air in an extracorporeal blood circuit of a flow system, in particular a blood treatment device
JPS62227368A (en) Detection apparatus for checking fluid tube
CN107569739B (en) Detection method and device of capacitive sensor for detecting liquid in infusion tube
CN104837515A (en) Device and method for monitoring extracorporeal blood circulation for detection of air bubbles
CN108853622A (en) A kind of haemodialysis fault detection alarm device
CN107617132A (en) Suitable for the citrate anticoagulation control system during CVVHD and its device and its application
JPH06237998A (en) Detection of air bubble
CN107427621A (en) Apparatus for purifying blood
JP3622984B2 (en) Noninvasive measurement system of hemodynamics in hemodialysis shunt
KR20230034318A (en) Systems and methods for detecting venous needle dislocation
US20230129832A1 (en) Method And System For Determining Plasma Protein Content Of Whole Blood Using Refractometry
JP2005065888A (en) Blood vessel access observation method and medical apparatus
JPH10263078A (en) Method and device for measuring bubble generated in tube