JPH06235947A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH06235947A
JPH06235947A JP4445893A JP4445893A JPH06235947A JP H06235947 A JPH06235947 A JP H06235947A JP 4445893 A JP4445893 A JP 4445893A JP 4445893 A JP4445893 A JP 4445893A JP H06235947 A JPH06235947 A JP H06235947A
Authority
JP
Japan
Prior art keywords
nonlinear optical
thin film
optical effect
orientation
orientation relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4445893A
Other languages
Japanese (ja)
Inventor
Isao Tomomatsu
功 友松
Takuya Nishimoto
卓矢 西本
Takafumi Kuboki
尚文 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4445893A priority Critical patent/JPH06235947A/en
Publication of JPH06235947A publication Critical patent/JPH06235947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an organic nonlinear optical material stable thermally, hardly causing orientation relaxation, and having a large secondary nonlinear optical effect by using the material having a specific cyclic unit. CONSTITUTION:An organic nonlinear optical material has a cyclic unit expressed by the formula. This material has many nonlinear optical units in a fixed volume, and it indicates an excellent nonlinear optical effect. The thin film having the thickness of about 1mum of this material applied with poling process has the SHG efficiency about double that of the thin film added with 2-methyl-4- nitroaniline of 2wt.% to polycarbonate, having the same film thickness, and applied with poling process. When this material is heated into imide while being applied with the electric field in the polyamide acid state of its precursor, a nonlinear optical thin film aligned with orientation can be obtained. This thin film rarely causes orientation relaxation, the SHG efficiency is hardly reduced when it is left at 150 deg.C for one month, and it is excellent in thermal stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、オプトエレクトロニ
クス分野で好適に使用される有機非線形光学材料とそれ
を用いた非線形光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic nonlinear optical material preferably used in the field of optoelectronics and a nonlinear optical element using the organic nonlinear optical material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】非線形
光学材料は、2次の非線形光学効果を用いたものと、3
次の効果を用いたものの2種類に大別でき、また、用途
としては、レーザー光などの周波数変換と、屈折率変化
を利用した光信号処理用材料としての2種類に大きく分
けることが出来る。これらの内、2次の非線形光学効果
を用いた光信号処理用材料として、これま下記の5種類
に大別される有機非線形光学材料が提案されてきた。 イ)有機低分子材料系 ロ)光学用汎用ポリマーに非線形光学効果を有する材料
を添加した系 ハ)非線形光学効果を有する部位をポリマーの側鎖とし
て導入したペンダント型系 ニ)ポリイミドに非線形光学効果を有する材料を添加し
た系 ホ)非線形光学効果を有する部位を連結させた主鎖型系 以下、非線形光学効果を有する部位または分子を「非線
形光学ユニット」と呼ぶことにする。従来、これらの材
料に関して多くの研究がなされているが、実際に光信号
処理用素子として利用するには、それぞれ以下のような
欠点がある。 イ)の材料 配向の揃った薄膜を得ることが難しい。熱的安定性に乏
しい。(例、MNA(2−メチル−4−ニトロアニリ
ン)の融点は約130℃) 化学的安定性に乏しい。 ロ)の材料 配向緩和が起き易い。熱変形を起こし易い。一定体積当
たりの非線形光学ユニットの数が少ないために、巨視的
な非線形光学効果の大きさが小さい。 ハ)の材料 配向緩和が起き易い。熱変形を起こし易い。一定体積当
たりの非線形光学ユニットの数が少ないために、巨視的
な非線形光学効果の大きさが小さい。 ニ)の材料 配向緩和は起き難く、熱的安定性も良いが、一定体積当
たりの非線形光学ユニットの数が少ないために、巨視的
な非線形光学効果の大きさが小さい。 ホ)の材料 その構造によっては、熱変形を起こし難く、配向緩和を
起こしにくいものもあるが、それらを作製するに当たっ
て、LB膜法や触媒添加による重合など重合プロセスが
煩雑である。
2. Description of the Related Art Nonlinear optical materials include those using a second-order nonlinear optical effect and 3
It can be roughly classified into two types using the following effects, and can be broadly divided into two types as materials for frequency conversion of laser light and the like and optical signal processing materials utilizing the change in refractive index. Among these, organic nonlinear optical materials, which are roughly classified into the following five types, have been proposed as materials for optical signal processing using the second-order nonlinear optical effect. B) Organic low-molecular weight materials b) System in which a material having nonlinear optical effect is added to general-purpose polymer for optics c) Pendant type system in which a site having nonlinear optical effect is introduced as side chain of polymer d) Nonlinear optical effect in polyimide A system in which a material having a is added e) A main chain type system in which sites having a non-linear optical effect are connected to each other. Hereinafter, a site or a molecule having a non-linear optical effect is referred to as a “non-linear optical unit”. Although many studies have been conducted on these materials, there are the following drawbacks when they are actually used as optical signal processing elements. Material b) It is difficult to obtain a thin film with uniform orientation. Poor thermal stability. (Example: MNA (2-methyl-4-nitroaniline) has a melting point of about 130 ° C.) Poor chemical stability. Material of b) Orientation relaxation easily occurs. Easy to be thermally deformed. Since the number of nonlinear optical units per fixed volume is small, the magnitude of macroscopic nonlinear optical effect is small. Material of c) Orientation relaxation easily occurs. Easy to be thermally deformed. Since the number of nonlinear optical units per fixed volume is small, the magnitude of macroscopic nonlinear optical effect is small. Material d) The orientation relaxation is unlikely to occur and the thermal stability is good, but the size of the macroscopic nonlinear optical effect is small because the number of nonlinear optical units per fixed volume is small. Material of e) Depending on the structure, some materials are less likely to undergo thermal deformation and less likely to undergo orientation relaxation, but in producing them, the polymerization process such as the LB film method or polymerization by addition of a catalyst is complicated.

【0003】上記した「配向緩和」であるが、2次の非
線形光学効果を利用した光信号処理用素子を作製しよう
としたときに、ポーリング処理により非線形光学ユニッ
トの双極子モーメントを揃える必要がある。一般にTg
(ガラス転移温度)よりやや下の温度領域において、電
場をかけることにより、ポーリング処理を行い、電場を
かけたまま常温に戻すことにより、配向が揃った薄膜を
作製する。しかしながら、上記のロ)、ハ)の場合に
は、ベースポリマーまたは主鎖となるポリマーのTgが
低いためにすぐに双極子モーメントの向きがランダム化
する、いわゆる配向緩和を起こしてしまい、光信号処理
用素子としての機能を失ってしまう。例えば、ロ)のタ
イプのベースポリマーとしてよく用いられるPMMAを
用いた場合、100℃程度で配向状態がランダムになっ
てしまう。また、ハ)のタイプとして主鎖がポリエチレ
ン系の場合には100℃ももたない。さらにロ)、
ハ)、ニ)どのタイプも、非線形光学ユニットがベース
ポリマー中に点在しているような形であるから、どうし
ても一定体積の材料中における非線形光学ユニットの数
には上限があり、巨視的な非線形光学効果を大きくする
ことができない。非線形光学ユニット当たりの非線形光
学効果を大きくするために、共役系を持つ、より大きな
分子、原子団を開発することが、現在の主流の研究であ
るが、これは一定体積当たりの非線形光学ユニットの数
の減少を招いてしまう。
Regarding the above-mentioned "orientation relaxation", it is necessary to align the dipole moments of the nonlinear optical unit by the poling process when an optical signal processing device utilizing the second-order nonlinear optical effect is produced. . Generally Tg
In a temperature range slightly lower than the (glass transition temperature), a poling treatment is performed by applying an electric field, and the thin film having a uniform orientation is prepared by returning the temperature to room temperature while applying the electric field. However, in the cases of the above b) and c), since the Tg of the base polymer or the polymer serving as the main chain is low, the direction of the dipole moment is immediately randomized, so-called orientation relaxation occurs, and the optical signal The function as a processing element is lost. For example, when PMMA, which is often used as the base polymer of type (b), is used, the orientation state becomes random at about 100 ° C. In addition, when the main chain of the type c) is a polyethylene type, it does not have 100 ° C. B),
In both types c) and d), since the non-linear optical units are scattered in the base polymer, the number of non-linear optical units in a material of a certain volume has an upper limit, and it is macroscopic. The nonlinear optical effect cannot be increased. In order to increase the nonlinear optical effect per nonlinear optical unit, it is the current mainstream research to develop larger molecules and atomic groups having a conjugated system. This leads to a decrease in the number.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、発明者らは、一定体積中における非線形光学ユニッ
トの数を多く保つことを主題とし、従来は強度や成形性
をよくするために利用されてきた非線形光学効果とは無
関係なポリマー主鎖自体を、非線形光学効果を示すポリ
マーで構成した。さらに熱的な安定性や、配向緩和抑制
のために、主鎖の構造を芳香族ポリイミド骨格とした。
そして、下記一般式(1)で表わされる繰り返し単位を
有する有機非線形光学材料が高い2次の非線形光学効果
を示し、かつ、配向緩和を起こし難く、熱的にも安定で
あるという事実を見いだし本発明を完成するに至った。
In order to solve the above problems, the present inventors have made the subject of keeping a large number of non-linear optical units in a constant volume, and conventionally, in order to improve strength and formability. The polymer backbone, which is irrelevant to the nonlinear optical effects that have been used, is composed of polymers that exhibit nonlinear optical effects. Further, the main chain structure is an aromatic polyimide skeleton for thermal stability and suppression of orientation relaxation.
The present inventors have found that an organic nonlinear optical material having a repeating unit represented by the following general formula (1) exhibits a high second-order nonlinear optical effect, is less likely to cause orientation relaxation, and is thermally stable. The invention was completed.

【0005】[0005]

【化2】 [Chemical 2]

【0006】本物質は、一定体積中における非線形光学
ユニットの数が多いために、優れた非線形光学効果を示
す。ポーリング処理を施した本物質の約1μm厚の薄膜
は、ポリカーボネートにMNAを2重量%添加した同じ
膜厚の薄膜にポーリング処理を施したものと比べ、その
SHG効率は約2倍であった。この材料の前駆体である
ポリアミド酸状態において、電場をかけながら昇温し、
イミド化を行わせることにより、配向が揃った非線形光
学薄膜を得ることができる。このときのポーリング処理
条件としては、電場の大きさは配向させるだけのエネル
ギーを持たねばならず、100KV/m以上、好ましく
は1MV/m以上である。また、イミド化の温度は一般
のポリイミドと同様であり、250℃以上、好ましくは
300℃以上であり、窒素ガスなどの非酸化性雰囲気中
で行うことが望ましい。
The present substance exhibits excellent nonlinear optical effects due to the large number of nonlinear optical units in a given volume. The thin film having a thickness of about 1 μm of the substance subjected to the poling treatment had the SHG efficiency about twice as high as that of the thin film having the same thickness obtained by adding 2% by weight of MNA to the polycarbonate. In the polyamic acid state which is the precursor of this material, the temperature is raised while applying an electric field,
By performing imidization, a non-linear optical thin film with uniform alignment can be obtained. The poling condition at this time is 100 KV / m or more, preferably 1 MV / m or more, because the magnitude of the electric field must have energy enough to cause the orientation. The imidization temperature is the same as that of general polyimide, and is 250 ° C. or higher, preferably 300 ° C. or higher, and it is desirable to carry out in a non-oxidizing atmosphere such as nitrogen gas.

【0007】このようにして得られた薄膜は、配向緩和
を非常に起こし難く、150℃の状態で1ケ月間放置し
ても、SHG効率はほとんど低下しなかった。さらに本
発明の材料の特徴としては、耐熱性の高い芳香族系ポリ
イミド骨格を主鎖としているため、熱的安定性に優れて
いる。300℃程度の温度雰囲気中でも変形したりする
恐れがない。このため、将来、デバイス化したときに、
基板等に半田付け作業など行っても短時間であれば品質
に影響はない。本物質の薄膜作製の方法として、上記の
ようにアミド酸溶液を作製してから行う方法の他に、蒸
着重合法(参照:特公平2−50984号)を用いて行
うことも可能である。この場合、蒸着重合により、固体
状のポリアミド酸を作製した後、ポーリング処理しなが
らイミド化を行ってもよいし、基板温度を250℃以上
にして基板表面部分に電場を印加することにより、蒸着
重合をしながら、ポーリング処理とイミド化を同時に行
うことにより、配向が揃った本物質の薄膜を一度に得る
ことも可能である。
The thus-obtained thin film is very unlikely to undergo orientation relaxation, and the SHG efficiency was hardly reduced even if it was left at 150 ° C. for 1 month. Further, the material of the present invention is characterized by excellent thermal stability because it has an aromatic polyimide skeleton having high heat resistance as a main chain. There is no risk of deformation even in a temperature atmosphere of about 300 ° C. Therefore, when it is made into a device in the future,
Even if soldering work is performed on a board or the like, the quality is not affected for a short time. As a method for producing a thin film of this substance, it is possible to use a vapor deposition polymerization method (see: Japanese Patent Publication No. 2-50984), in addition to the method of producing an amic acid solution as described above. In this case, after the solid polyamic acid is produced by vapor deposition polymerization, imidization may be performed while poling, or by applying an electric field to the substrate surface portion at a substrate temperature of 250 ° C. or higher, vapor deposition is performed. It is also possible to obtain a thin film of this substance with uniform alignment at once by performing poling treatment and imidization at the same time during polymerization.

【0008】[0008]

【作用】本発明の材料は、熱的安定性がよく、配向緩和
も起きにくく、さらに薄膜形成が容易であり、デバイス
化も容易である。そして、この材料が2次の非線形光学
効果を有することから、電気光学効果による光スイッチ
などの光信号処理用素子として使用することが可能であ
る。
The material of the present invention has good thermal stability, is less likely to undergo orientation relaxation, is easy to form a thin film, and is easy to be made into a device. Since this material has a second-order nonlinear optical effect, it can be used as an optical signal processing element such as an optical switch based on the electro-optical effect.

【0009】[0009]

【実施例】【Example】

実施例1 PMDA(二無水ピロメリット酸)0.01mol 、2−
ニトロ−1,4−フェニレンジアミン0.01mol それ
ぞれをジメチルスルホキシド40mLに溶かし、両溶液
を作製した。PMDA溶液を水浴で冷やし、撹拌しなが
ら、これに2−ニトロ−1,4−フェニレンジアミン溶
液を滴下した。全て滴下し終わった後、吸湿しないよう
にフィルムをかぶせ保護して、スターラーを用いて24
時間、撹拌を続けることにより所望のポリアミド酸溶液
を得た。スピンコート法により、スライドガラス上にポ
リアミド酸薄膜を作製した。このスライドガラスを、図
1のようなポーリング処理用キットを用いてポーリング
処理を行った。すなわちヒーター(3)上に置いたアル
ミ板(2)の上にスライドガラス(4)をセットし、膜
表面より約1mmの間隔を持たせて平板電極(1)をセ
ットした。この平板電極とアルミ板の間に3MV/mの
電場をかけてポーリング処理を行った。電場を印加しな
がら、ヒーターの温度を上昇させ、100℃1時間、そ
の後300℃に昇温し1時間保った。イミド化終了後、
温度を下げ、室温に戻ったところで、印加電圧を0Vに
した。このポーリングの作業は、酸素の影響を防ぐた
め、簡易ドライボックス中で、窒素ガス雰囲気中にて行
った。
Example 1 0.01 mol of PMDA (pyromellitic dianhydride), 2-
0.01 mol of nitro-1,4-phenylenediamine was dissolved in 40 mL of dimethyl sulfoxide to prepare both solutions. The PMDA solution was cooled in a water bath and the 2-nitro-1,4-phenylenediamine solution was added dropwise thereto while stirring. After all the dropping is finished, cover the film with a stirrer to prevent it from absorbing moisture and
The desired polyamic acid solution was obtained by continuing stirring for a time. A polyamic acid thin film was prepared on a slide glass by spin coating. The slide glass was subjected to a poling treatment using a poling treatment kit as shown in FIG. That is, the slide glass (4) was set on the aluminum plate (2) placed on the heater (3), and the flat plate electrode (1) was set at a distance of about 1 mm from the film surface. A poling treatment was performed by applying an electric field of 3 MV / m between the flat plate electrode and the aluminum plate. While applying an electric field, the temperature of the heater was raised to 100 ° C. for 1 hour and then to 300 ° C. and kept for 1 hour. After completion of imidization,
When the temperature was lowered and the temperature was returned to room temperature, the applied voltage was set to 0V. This poling work was performed in a nitrogen gas atmosphere in a simple dry box to prevent the influence of oxygen.

【0010】出来上がった膜をFT−IRにより測定し
たところ、1780,1720cm-1などのイミド結合
に特徴的なピークが観察され、また、モノマーのPMD
Aに特徴的な1850cm-1や、2−ニトロ−1,4−
フェニレンジアミンのアミノ基に特徴的な3400cm
-1付近のピークが消失していた。この薄膜の内、厚さが
1μmのものを、Nd:YAGレーザーを用いて、メー
カーフリンジ法によりSHG効率を測定した。結果を表
1に示した。SHG効率を測定した薄膜を恒温槽中にセ
ットし、150℃の雰囲気にして1ケ月間放置する熱処
理を行った。この薄膜を1ケ月後に取り出して、メーカ
ーフリンジ法により、SHG効率の測定を行った。結果
を表1に示した。
When the finished film was measured by FT-IR, peaks characteristic of imide bonds such as 1780 and 1720 cm -1 were observed, and PMD of the monomer was observed.
1850cm -1 , which is characteristic of A, and 2-nitro-1,4-
Characteristic of the amino group of phenylenediamine 3400 cm
The peak near -1 had disappeared. The SHG efficiency of this thin film having a thickness of 1 μm was measured by the maker fringe method using an Nd: YAG laser. The results are shown in Table 1. The thin film whose SHG efficiency was measured was set in a constant temperature bath, and heat-treated by leaving it in an atmosphere of 150 ° C. for one month. This thin film was taken out one month later, and the SHG efficiency was measured by the maker fringe method. The results are shown in Table 1.

【0011】比較例1 MNA 0.02gと光学グレードのポリカーボネート
1gをそれぞれクロロホルム20mLに完全に溶かし、
両溶液を混合し、よく撹拌した。この溶液を用いてスピ
ンコート法により薄膜を作製した。この薄膜を図1のポ
ーリング処理用キットに装着し、まず3MV/mの電場
を印加した。その後、ヒーターの温度を上昇させ、14
0℃で30分保った。その後温度を下げ、室温に戻った
ところで印加電圧を0Vにした。この薄膜の内、厚さが
約1μmのものを、Nd:YAGレーザーを用いて、メ
ーカーフリンジ法によりSHG効率を測定した。結果を
表1に示した。また、実施例1と同様に、SHG効率を
測定した薄膜を恒温槽中にセットし、150℃の雰囲気
にして1ケ月間放置する熱処理を行った。この薄膜を1
ケ月後に取り出して、メーカーフリンジ法によりSHG
効率の測定を行った。結果を表1に示した。
Comparative Example 1 0.02 g of MNA and 1 g of optical grade polycarbonate were completely dissolved in 20 mL of chloroform,
Both solutions were mixed and stirred well. A thin film was formed by a spin coating method using this solution. This thin film was mounted on the poling treatment kit of FIG. 1, and an electric field of 3 MV / m was first applied. Then, raise the temperature of the heater to 14
Hold at 0 ° C. for 30 minutes. Thereafter, the temperature was lowered, and when the temperature returned to room temperature, the applied voltage was set to 0V. The SHG efficiency of this thin film having a thickness of about 1 μm was measured by the maker fringe method using an Nd: YAG laser. The results are shown in Table 1. Further, as in Example 1, the thin film for which the SHG efficiency was measured was set in a constant temperature bath, and heat-treated by leaving it in an atmosphere of 150 ° C. for one month. This thin film 1
Removed after a month, SHG by the maker fringe method
The efficiency was measured. The results are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】以上の通り、本発明によれば、熱的に安
定、かつ配向緩和が起き難く、2次の非線形光学効果の
大きな、有機非線形光学材料を提供することができる。
また、2種類のモノマーを1:1で混合するだけの作業
で作製でき、また、溶液法、気相法どちらでも行えるの
で、光信号処理用素子を作製するに当たって工業的に重
要な意義を有する。
As described above, according to the present invention, it is possible to provide an organic nonlinear optical material which is thermally stable, hardly causes orientation relaxation, and has a large second-order nonlinear optical effect.
In addition, since it can be prepared by simply mixing two kinds of monomers at a ratio of 1: 1 and can be carried out by both a solution method and a gas phase method, it has an industrially important meaning in manufacturing an optical signal processing element. .

【図面の簡単な説明】[Brief description of drawings]

【図1】ポーリング処理用キットの説明図である。FIG. 1 is an explanatory diagram of a polling processing kit.

【符号の説明】[Explanation of symbols]

1 平板電極 2 アルミ板 3 ヒーター 4 表面に薄膜を作製したスライドガラス 1 Flat plate electrode 2 Aluminum plate 3 Heater 4 Slide glass with thin film formed on the surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で表わされる繰り返し
単位を有する2次の非線形光学材料。 【化1】
1. A quadratic nonlinear optical material having a repeating unit represented by the following general formula (1). [Chemical 1]
JP4445893A 1993-02-09 1993-02-09 Organic nonlinear optical material Pending JPH06235947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4445893A JPH06235947A (en) 1993-02-09 1993-02-09 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4445893A JPH06235947A (en) 1993-02-09 1993-02-09 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH06235947A true JPH06235947A (en) 1994-08-23

Family

ID=12692051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4445893A Pending JPH06235947A (en) 1993-02-09 1993-02-09 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH06235947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109337065A (en) * 2018-09-28 2019-02-15 浙江大学 A kind of soluble Amino Rigid-rod polymer and preparation method thereof and composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109337065A (en) * 2018-09-28 2019-02-15 浙江大学 A kind of soluble Amino Rigid-rod polymer and preparation method thereof and composition

Similar Documents

Publication Publication Date Title
KR101748928B1 (en) Composition for liquid crystal alignment and liquid crystal alignment layer
US6900271B2 (en) Hybrid polymer materials for liquid crystal alignment layers
US20030232930A1 (en) Hybrid polymer materials for liquid crystal alignment layers
Mori et al. Large electro‐optic activity and enhanced temporal stability of methacrylate‐based crosslinking hyperbranched nonlinear optical polymer
JPH06100755B2 (en) Alignment treatment agent for liquid crystal cells
US7105211B2 (en) Liquid crystal aligning agent, liquid crystal aligning films, and liquid crystal display devices
TW201343788A (en) Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
KR100573650B1 (en) Fluorinated Amine Products
áM Wang et al. Highly stable, functionalized polyimides for second order nonlinear optics
WO2014178407A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4639471B2 (en) Polyimide material
JPH06235947A (en) Organic nonlinear optical material
CN109970975B (en) High-voltage-holding-ratio polyimide and preparation method and application thereof
JP3780534B2 (en) Polyimide varnish
JPH03194521A (en) Nonlinear optical material
JPH03177421A (en) Nonlinear optical material
JPH06337451A (en) Organic non-linear optical material
JPH06337449A (en) Organic non-linear optical material
Kim et al. Nonlinear optical properties of a processable polyimide having azo-dye functionalized with cyanosulfonyl group
KR20010025050A (en) Process and materials for inducing alignment of liquid crystals and liquid crystal optical elements
JP3023486B2 (en) Functional composite and method for producing the same
JPH05117587A (en) Polyimide varnish composition and its use
Sui et al. A facile approach to prepare soluble side‐chain polyimides for second‐order nonlinear optics
JP2688698B2 (en) Polyimide varnish for optical material and method for producing the same
JP2002322278A (en) Solvent-soluble polyimide composition