JPH06235065A - Production of iridium oxide film - Google Patents

Production of iridium oxide film

Info

Publication number
JPH06235065A
JPH06235065A JP4440593A JP4440593A JPH06235065A JP H06235065 A JPH06235065 A JP H06235065A JP 4440593 A JP4440593 A JP 4440593A JP 4440593 A JP4440593 A JP 4440593A JP H06235065 A JPH06235065 A JP H06235065A
Authority
JP
Japan
Prior art keywords
iridium oxide
film
ion
torr
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4440593A
Other languages
Japanese (ja)
Inventor
Motonori Tamura
元紀 田村
Takashi Nakamori
孝 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4440593A priority Critical patent/JPH06235065A/en
Publication of JPH06235065A publication Critical patent/JPH06235065A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the iridium oxide film having good adhesiveness in stoichiometric compsn. at a high film forming speed by specifying conditions such as pressure, and forming films by an ion beam sputtering method. CONSTITUTION:An iridium oxide target 4 is arranged in a position opposite to a substrate 3 mounted on a substrate holder 2 in a vacuum chamber 1 and an ion source 6 having an acceleration power source 5 is provided. Sputtering is executed by connecting this ion source 6 to a cylinder 7 of an inert gas, forming inert gaseous ions, drawing out the ions as an ion beam by an acceleration power source 5 into the vacuum chamber 1 and irradiating the iridium oxide target 4 with this ion beam. The total pressure is specified to 1X10<-4> to 1X10<-3>Torr at this time. A discharge does not arise in the discharge chamber of the ion source at the vacuum higher than 1X10<-4>Torr total pressure. Sputtered particles scatter and the maintenance of high energy is not possible under the pressure higher than 1X10<-3>Torr. The resulted film is baked at >=500 deg.C in the atm., by which the crystallinity and adhesion of the iridium oxide are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、密着性の良い酸化イ
リジウム膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an iridium oxide film having good adhesion.

【0002】[0002]

【従来の技術】酸化イリジウム膜は、電気めっきにおけ
る不溶性陽極として電極表面を被覆して使用される。
2. Description of the Related Art Iridium oxide film is used by coating the electrode surface as an insoluble anode in electroplating.

【0003】従来の塗布焼き付け法による被覆方法で
は、皮膜中に空孔が多数あり、空孔に電解液が浸透して
基板を腐食するため、使用寿命が短くなってしまう等の
問題があった。
In the conventional coating method by coating and baking, there are many pores in the film, and the electrolyte penetrates into the pores to corrode the substrate, resulting in a problem that the service life is shortened. .

【0004】そこで、緻密な酸化イリジウム膜の作製方
法として、反応性スパッタあるいは反応性蒸着法で、イ
リジウム金属をスパッタリングするとともに基板近傍で
酸化させる方法が試みられている(日本写真学会誌(1
988)、Vol.51,No.1,p.3)。
Therefore, as a method of forming a dense iridium oxide film, a method of sputtering iridium metal by a reactive sputtering method or a reactive vapor deposition method and oxidizing it near the substrate has been attempted (Journal of the Photographic Society of Japan (1
988), Vol. 51, No. 1, p. 3).

【0005】しかし、この方法では、0.1μm以上の
実用的な密着性を有する厚膜は得られにくく、酸化イリ
ジウムの化学組成制御も困難であった。
However, with this method, it was difficult to obtain a thick film having a practical adhesion of 0.1 μm or more, and it was difficult to control the chemical composition of iridium oxide.

【0006】反応性スパッタあるいは反応性蒸着法で
は、イリジウムを反応ガスで酸化させるときに、反応速
度が遅いため化学組成の制御が難しく、化学量論組成の
化合物膜が得られにくい。また、0.1μm/時以下と
成膜速度も非常に遅い。
In the reactive sputtering or reactive vapor deposition method, when oxidizing iridium with a reaction gas, the reaction rate is slow, so that it is difficult to control the chemical composition and it is difficult to obtain a compound film having a stoichiometric composition. In addition, the film forming rate is very slow, at 0.1 μm / hour or less.

【0007】反応速度を増すために反応ガスを多く導入
すると、スパッタされた粒子が散乱されるために、高エ
ネルギー粒子の基板への入射は減り、皮膜密着性が得ら
れないという問題があった。
When a large amount of reaction gas is introduced to increase the reaction rate, sputtered particles are scattered, so that the incidence of high-energy particles on the substrate is reduced and there is a problem that the film adhesion cannot be obtained. .

【0008】例えば、反応性スパッタで作製した0.1
μm程度の酸化イリジウム膜の密着性は、スクラッチテ
スターによる測定で、臨界剥離荷重値5N以下であり、
実用レベル(10N以上)には達していない。
For example, 0.1 produced by reactive sputtering.
The adhesion of the iridium oxide film of about μm is a critical peeling load value of 5 N or less as measured by a scratch tester,
It has not reached the practical level (10N or higher).

【0009】[0009]

【発明が解決しようとする課題】従来の方法では多孔質
になったり、密着性のある厚膜が得られにくい等、電極
材料として特性を満足する酸化イリジウム膜は得られて
いなかった。
According to the conventional method, an iridium oxide film satisfying the characteristics as an electrode material has not been obtained, such as a porous film and a thick film having adhesiveness being difficult to obtain.

【0010】そこで、本発明では、化学量論組成で皮膜
密着性があり、成膜速度が速い酸化イリジウム膜の形成
方法を提供しようとするものである。
Therefore, the present invention is intended to provide a method for forming an iridium oxide film having a stoichiometric composition, film adhesion, and a high film formation rate.

【0011】[0011]

【課題を解決するための手段】本発明は、イオンビーム
スパッタ法により皮膜を形成するにあたり、1×10-4
〜1×10-3Torrの圧力下で、真空容器内に設けた
酸化イリジウムのターゲットをイオン銃から照射される
不活性ガスイオンでスパッタして皮膜を形成することを
特徴とする酸化イリジウム膜の製造方法である。
According to the present invention, in forming a film by the ion beam sputtering method, 1 × 10 −4
A iridium oxide film characterized by forming a film by sputtering an iridium oxide target provided in a vacuum container with an inert gas ion irradiated from an ion gun under a pressure of ˜1 × 10 −3 Torr. It is a manufacturing method.

【0012】イオンビームスパッタ法は、真空容器内に
おいてイオン銃から放出される不活性ガスイオンによっ
てターゲット原子を叩きだし、試料表面に、ターゲット
原子を付着させ薄膜を形成する方法である。
The ion beam sputtering method is a method in which a target atom is tapped by an inert gas ion emitted from an ion gun in a vacuum container, and the target atom is attached to the sample surface to form a thin film.

【0013】したがって、イオンプレーティング法など
の他のPVD法やCVD法に比べ、ターゲットの化学組
成に近い化合物皮膜の形成に有効である。
Therefore, it is effective in forming a compound film having a chemical composition close to that of the target, as compared with other PVD methods such as the ion plating method and the CVD method.

【0014】イオンビームスパッタ法は、コーティング
物質の運動エネルギーを利用して付着させるため、試料
を高温に加熱させずに低温で被覆が可能であり、真空蒸
着に比べても、付着の際のエネルギーが100倍程度大
きいため密着性の良い膜が得られる利点があり、密着性
の得られにくい酸化イリジウムの成膜に適していること
がわかった。
In the ion beam sputtering method, the kinetic energy of the coating substance is used for the deposition, so that the sample can be coated at a low temperature without being heated to a high temperature. It has been found that since it is about 100 times larger, there is an advantage that a film having good adhesion can be obtained, and it is suitable for film formation of iridium oxide which is difficult to obtain adhesion.

【0015】図1は、本発明で用いたスパッタ装置の一
例を示すもので、真空チャンバー1内には、基板ホルダ
ー2が設置されており、この基板ホルダー2には基板3
が取付けられている。
FIG. 1 shows an example of a sputtering apparatus used in the present invention. A substrate holder 2 is installed in a vacuum chamber 1, and a substrate 3 is placed in the substrate holder 2.
Is installed.

【0016】また、基板3に対向する位置には酸化イリ
ジウムターゲット4が配置されている。一方、真空チャ
ンバー1の側壁には、加速電極5を備えたイオン源6が
設けられている。
An iridium oxide target 4 is arranged at a position facing the substrate 3. On the other hand, on the side wall of the vacuum chamber 1, an ion source 6 having an acceleration electrode 5 is provided.

【0017】イオン源6は、不活性ガスのボンベ7に接
続され、イオンを生成し、加速電極5でイオンビームと
して真空チャンバー1内に引き出して酸化イリジウムタ
ーゲット4に照射し、スパッタを行うものである。
The ion source 6 is connected to a cylinder 7 of an inert gas to generate ions, which are extracted by an accelerating electrode 5 as an ion beam into the vacuum chamber 1 to irradiate the iridium oxide target 4 for sputtering. is there.

【0018】本発明において、全圧を1×10-4〜1×
10-3Torrとしたのは、1×10-4Torrより高
真空であると、イオン源の放電室内で放電が起きないた
めにイオンビームを引き出すことができなくなってしま
うからであり、一方、1×10-3Torrより高圧力で
あると、スパッタ粒子が散乱してしまうため、高エネル
ギーを保つことができないからである。
In the present invention, the total pressure is 1 × 10 −4 to 1 ×.
The reason for setting 10 −3 Torr is that if the vacuum is higher than 1 × 10 −4 Torr, the ion beam cannot be extracted because the discharge does not occur in the discharge chamber of the ion source. This is because if the pressure is higher than 1 × 10 −3 Torr, sputtered particles will be scattered and high energy cannot be maintained.

【0019】真空中のスパッタ粒子の平均自由行程は、
圧力が1×10-3Torrより高真空では約5cm以上
あり、通常、基板とターゲットとの距離はその程度ある
ので、スパッタ粒子はほとんど散乱されずに、高エネル
ギーで入射できる。
The mean free path of sputtered particles in a vacuum is
The pressure is about 5 cm or more in a vacuum higher than 1 × 10 −3 Torr, and the distance between the substrate and the target is usually such that the sputtered particles are hardly scattered and can be incident with high energy.

【0020】また、この際、酸素等の反応ガスが基板近
傍にあるとスパッタ粒子が散乱し、密着性が得られない
あるいは、成膜速度が遅くなる等の原因となるので、本
発明では反応ガスは使わず、ターゲットに酸化イリジウ
ムを使用し、これを不活性ガスイオンでスパッタし成膜
することとした。
Further, at this time, if a reaction gas such as oxygen is present in the vicinity of the substrate, the sputtered particles will scatter, resulting in poor adhesion or a slow film formation rate. Instead of using gas, iridium oxide was used as the target, and this was sputtered with inert gas ions to form a film.

【0021】化学量論組成の皮膜を得るには、ターゲッ
トの化学組成を化学量論組成の酸化イリジウムにしてお
くことが重要である。
In order to obtain a film having a stoichiometric composition, it is important that the target has a stoichiometric composition of iridium oxide.

【0022】上記の、イオン源から、不活性ガスのイオ
ンを生成し、加速電極でイオンビームとして真空チャン
バーに引き出して酸化イリジウムターゲットに照射し、
スパッタを行う方法は、皮膜の化学組成がターゲットの
組成からほとんどずれず、反応性スパッタのように、皮
膜中のイリジウムと酸素の比の制御が困難あるいは複雑
であることもない。
From the above-mentioned ion source, ions of an inert gas are generated, and they are extracted as an ion beam by an accelerating electrode into a vacuum chamber to irradiate an iridium oxide target,
In the method of performing sputtering, the chemical composition of the film does not substantially deviate from the composition of the target, and unlike reactive sputtering, it is not difficult or complicated to control the ratio of iridium to oxygen in the film.

【0023】また、成膜速度は、0.5μm/時程度可
能であり、0.1μm以上の密着性のある皮膜も短時間
に生成できる。
The film forming rate can be about 0.5 μm / hour, and a film having an adhesiveness of 0.1 μm or more can be formed in a short time.

【0024】上記の方法で得られた皮膜は、結晶化して
ない非晶質相を含むことがある。非晶質相を含むと皮膜
の硬度が落ち、耐摩耗性が著しく劣化する。
The film obtained by the above method may contain an amorphous phase which is not crystallized. If the film contains an amorphous phase, the hardness of the film is reduced and the wear resistance is significantly deteriorated.

【0025】使用中に他の部材に接触し、きずが入ると
そこから腐食が進行することがあるので、皮膜の硬度が
下がるのは好ましくない。
It is not preferable that the hardness of the coating is lowered, because if a flaw comes into contact with another member during use, corrosion may proceed from there.

【0026】そこで、非晶質相の結晶化を検討した結
果、500℃以上での大気中焼成が効果的であることを
見いだした。
Then, as a result of studying crystallization of the amorphous phase, it was found that firing in air at 500 ° C. or higher is effective.

【0027】500℃より低温では、結晶化が非常に起
こりにくいが、これは結晶化に要する反応エネルギーが
十分得られないためと思われる。
At temperatures lower than 500 ° C., crystallization is very unlikely to occur, but this is probably because the reaction energy required for crystallization cannot be obtained sufficiently.

【0028】この焼成は、皮膜と基板界面の元素の拡
散、皮膜内に形成された残留応力の開放等による密着性
向上効果もあり、イオンビームスパッタ法のみによる皮
膜の密着性をさらに向上させる場合にも適用するとよ
い。
This firing also has the effect of improving the adhesiveness by diffusing the elements at the interface between the film and the substrate, releasing the residual stress formed in the film, etc., and further improving the adhesiveness of the film by only the ion beam sputtering method. It is good to apply to.

【0029】なお、結晶化の程度は、例えばX線回折に
よるピーク強度や、ピーク強度の半分の強度を与える角
度巾であるピーク半値巾によって確認できる。結晶化し
ている酸化イリジウムでは通常ピーク半値巾が3度以下
である。
The degree of crystallization can be confirmed by, for example, the peak intensity by X-ray diffraction or the peak half value width which is the angular width that gives half the peak intensity. Crystallized iridium oxide usually has a peak half-width of 3 degrees or less.

【0030】[0030]

【実施例】【Example】

【0031】[0031]

【実施例1】金属チタンを基板に、酸化イリジウムをタ
ーゲットとし、不活性ガスとしてアルゴンを用いた。
Example 1 Metallic titanium was used as a substrate, iridium oxide was used as a target, and argon was used as an inert gas.

【0032】イオン源にはアルゴンを8cm3/分導入
し、加速電圧700Vでイオンビームを取り出した。真
空チャンバー内の全圧は5.0×10-4Torrとなる
ようにした。
Argon was introduced into the ion source at 8 cm 3 / min, and an ion beam was taken out at an acceleration voltage of 700V. The total pressure in the vacuum chamber was set to 5.0 × 10 −4 Torr.

【0033】イオンビームが酸化イリジウムターゲット
を照射し、スパッタされた粒子で基板上に皮膜を形成さ
せた。
The iridium oxide target was irradiated by the ion beam to form a film on the substrate with the sputtered particles.

【0034】80分の成膜で、1μmの膜厚が得られ
た。X線回折の結果、酸化イリジウムの回折ピークが確
認され、スクラッチテスターによる臨界剥離荷重値の測
定でも、14Nという高い密着性を示した。
A film thickness of 1 μm was obtained by film formation for 80 minutes. As a result of the X-ray diffraction, a diffraction peak of iridium oxide was confirmed, and the measurement of the critical peeling load value with a scratch tester showed high adhesion of 14N.

【0035】[0035]

【実施例2】金属チタンを基板に、酸化イリジウムをタ
ーゲットとし、不活性ガスとしてアルゴンを用いた。
Example 2 Titanium metal was used as a substrate, iridium oxide was used as a target, and argon was used as an inert gas.

【0036】イオン源にはアルゴンを6cm3/分導入
し、加速電圧500Vでイオンビームを取り出した。真
空チャンバー内の全圧は4.0x10-4Torrとなる
ようにした。
Argon was introduced into the ion source at 6 cm 3 / min, and an ion beam was taken out at an acceleration voltage of 500V. The total pressure in the vacuum chamber was set to 4.0 × 10 −4 Torr.

【0037】イオンビームが酸化イリジウムターゲット
を照射し、スパッタされた粒子で基板上に皮膜を形成さ
せた。
The iridium oxide target was irradiated by the ion beam to form a film on the substrate with the sputtered particles.

【0038】50分の成膜で、0.3μmの膜厚が得ら
れた。その後、大気中700℃で2時間焼成した。X線
回折の結果、酸化イリジウムの回折ピークが、成膜直後
の皮膜より高く鋭く確認され、結晶性が向上した。
After film formation for 50 minutes, a film thickness of 0.3 μm was obtained. Then, it baked at 700 degreeC in the atmosphere for 2 hours. As a result of X-ray diffraction, the diffraction peak of iridium oxide was confirmed to be higher and sharper than that of the film immediately after film formation, and the crystallinity was improved.

【0039】半値巾は10度から2度に減少した。スク
ラッチテスターによる臨界剥離荷重値の測定でも、17
Nという高い密着性を示し、焼成前の12Nより向上し
た。
The full width at half maximum was reduced from 10 degrees to 2 degrees. Even if the critical peel load value is measured with a scratch tester,
It showed a high adhesion of N and was improved from 12N before firing.

【0040】[0040]

【発明の効果】イオンビームスパッタ装置によって、1
×10-4〜1×10-3Torrの圧力下で、容器内に設
けた酸化イリジウムのターゲットをイオン銃から照射さ
れる不活性ガスイオンでスパッタすることによって、化
学量論組成で密着性の良い酸化イリジウム膜を、速い成
膜速度で形成することができる。
According to the ion beam sputtering apparatus, 1
By sputtering an iridium oxide target provided in the container with an inert gas ion irradiated from an ion gun under a pressure of × 10 -4 to 1 × 10 -3 Torr, a stoichiometric composition and an adhesive property can be obtained. A good iridium oxide film can be formed at a high film formation rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の各実施例で用いたスパッタ装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a sputtering apparatus used in each example of the present invention.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 2 基板ホルダー 3 基板 4 酸化イリジウムターゲット 5 加速電極 6 イオン源 7 不活性ガスのボンベ 1 Vacuum chamber 2 Substrate holder 3 Substrate 4 Iridium oxide target 5 Accelerating electrode 6 Ion source 7 Inert gas cylinder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオンビームスパッタ法により、1×1
-4〜1×10-3Torrの圧力下で、容器内に設けた
酸化イリジウムのターゲットをイオン銃から照射される
不活性ガスイオンでスパッタして皮膜を形成することを
特徴とする酸化イリジウム膜の製造方法。
1. 1 × 1 by an ion beam sputtering method
An iridium oxide characterized by forming a film by sputtering an iridium oxide target provided in a container with an inert gas ion irradiated from an ion gun under a pressure of 0 −4 to 1 × 10 −3 Torr. Membrane manufacturing method.
【請求項2】 1×10-4〜1×10-3Torrの圧力
下で、真空容器内に設けた酸化イリジウムのターゲット
をイオン銃から照射される不活性ガスイオンでスパッタ
するイオンビームスパッタ法で得られた皮膜を、大気中
500℃以上で焼成して形成することを特徴とする結晶
化酸化イリジウム膜の製造方法。
2. An ion beam sputtering method for sputtering an iridium oxide target provided in a vacuum container with an inert gas ion irradiated from an ion gun under a pressure of 1 × 10 −4 to 1 × 10 −3 Torr. A method for producing a crystallized iridium oxide film, which comprises forming the film obtained in 1 above by firing in air at 500 ° C. or higher.
JP4440593A 1993-02-10 1993-02-10 Production of iridium oxide film Withdrawn JPH06235065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4440593A JPH06235065A (en) 1993-02-10 1993-02-10 Production of iridium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4440593A JPH06235065A (en) 1993-02-10 1993-02-10 Production of iridium oxide film

Publications (1)

Publication Number Publication Date
JPH06235065A true JPH06235065A (en) 1994-08-23

Family

ID=12690608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4440593A Withdrawn JPH06235065A (en) 1993-02-10 1993-02-10 Production of iridium oxide film

Country Status (1)

Country Link
JP (1) JPH06235065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781179B2 (en) 2001-05-30 2004-08-24 Matsushita Electric Industrial Co., Ltd. Semiconductor device having a capacitor comprising an electrode with an iridium oxide film as an oxygen barrier film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781179B2 (en) 2001-05-30 2004-08-24 Matsushita Electric Industrial Co., Ltd. Semiconductor device having a capacitor comprising an electrode with an iridium oxide film as an oxygen barrier film

Similar Documents

Publication Publication Date Title
US5055169A (en) Method of making mixed metal oxide coated substrates
Bi et al. Mechanisms of growth, properties and degradation of amorphous carbon films by closed field unbalanced magnetron sputtering on stainless steel bipolar plates for PEMFCs
Yi et al. Microstructure and properties of aC films deposited under different argon flow rate on stainless steel bipolar plates for proton exchange membrane fuel cells
CA2925498C (en) Fuel cell separator and manufacturing method of fuel cell separator
US11588168B2 (en) Separator for fuel cell or current collecting member for fuel cell, and solid polymer electrolyte fuel cell
JP2010248572A (en) Titanium-based material and production method of the same, and fuel cell separator
CN113249683A (en) MAX phase solid solution composite coating with high conductivity, corrosion resistance and long service life, and preparation method and application thereof
Komiya et al. Titanium nitride film as a protective coating for a vacuum deposition chamber
JPWO2003106732A1 (en) Article coated with titanium compound film, method for producing the article, and sputtering target used for coating the film
WO1993010275A1 (en) Method of forming layer of evaporation coating
CN107195909A (en) A kind of preparation method of fuel battery double plates and its surface titanium film
JP4134315B2 (en) Carbon thin film and manufacturing method thereof
JP2004143584A (en) Article coated with zirconium compound film, method for producing the article, and sputtering target used for coating with the film
JPH06235065A (en) Production of iridium oxide film
KR101695590B1 (en) ELECTRODE FOR WATER TREATMENT WITH DIAMOND COATING LAYER ON Ti SUBSTRATE AND MANUFACTURING METHOD THREREOF
US5024721A (en) Method of forming metal surface thin film having high corrosion resistance and high adhesion
CN115133059A (en) Surface coating of fuel cell metal flow field plate and preparation method thereof
Zhao et al. Effect of substrate bias voltage on structure and corrosion resistance of AlCrN coatings prepared by multi-arc ion plating
US4089990A (en) Battery plate and method of making
JP7359124B2 (en) Manufacturing method of fuel cell separator
JPH0211753A (en) Tial-type composite member and its production
Obata et al. TiC coatings deposited onto carbon and molybdenum surfaces by electron beam evaporation
Cuynet et al. High Power Impulse Magnetron Sputtering deposition of Pt inside fuel cell electrodes
JP6229771B2 (en) Fuel cell separator or fuel cell current collector
JP2022066020A (en) Separator and method for manufacturing separator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509