JPH06234985A - Electroviscous fluid - Google Patents

Electroviscous fluid

Info

Publication number
JPH06234985A
JPH06234985A JP5021159A JP2115993A JPH06234985A JP H06234985 A JPH06234985 A JP H06234985A JP 5021159 A JP5021159 A JP 5021159A JP 2115993 A JP2115993 A JP 2115993A JP H06234985 A JPH06234985 A JP H06234985A
Authority
JP
Japan
Prior art keywords
carbonaceous powder
electrorheological fluid
fluid
electrorheological
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5021159A
Other languages
Japanese (ja)
Inventor
Takuji Haraoka
岡 卓 司 原
Hitomi Hatano
仁 美 羽多野
Noriyoshi Fukuda
田 典 良 福
Tasuku Saito
藤 翼 斎
Takao Ogino
野 隆 夫 荻
Takayuki Maruyama
山 隆 之 丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Bridgestone Corp
Original Assignee
Bridgestone Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp, Kawasaki Steel Corp filed Critical Bridgestone Corp
Priority to JP5021159A priority Critical patent/JPH06234985A/en
Publication of JPH06234985A publication Critical patent/JPH06234985A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electroviscous fluid which, upon application of a given voltage, undergoes a viscosity change at a lower value of electric current flowing through the fluid and which has a low initial viscosity. CONSTITUTION:The electroviscous fluid is a dispersion of either a particulate carbonaceous substance produced through melting at 300-500 deg.C or a particulate carbonaceous substance produced from a material scarcely containing any nitrogen, oxygen, and sulfur.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】電気粘性流体とは流体に電界を印
加することにより流体の見掛け粘度が迅速かつ可逆的に
変化する現象を呈する流体であり、一般的には電気絶縁
性の優れた油状媒体に誘電体である微粒子を分散させる
ことにより構成されている。
[Industrial application] An electrorheological fluid is a fluid that exhibits a phenomenon in which the apparent viscosity of the fluid changes rapidly and reversibly when an electric field is applied to the fluid, and is generally an oil with excellent electrical insulation properties. It is configured by dispersing fine particles as a dielectric in a medium.

【0002】この電気粘性流体の特徴は古くから知ら
れ、クラッチ、バルブ、エンジンマウント、アクチュエ
ーター、ロボットアーム等の装置や部品を電気的に制御
するための構成要素としての応用が検討されてきた。本
発明はかかる電気粘性流体に関するものである。
The characteristics of this electrorheological fluid have been known for a long time, and its application as a component for electrically controlling devices and parts such as clutches, valves, engine mounts, actuators, robot arms, etc. has been studied. The present invention relates to such an electrorheological fluid.

【0003】[0003]

【従来の技術】従来、電気粘性流体の分散相構成成分と
して用いられる固体微粒子としては、微細化して表面に
水を吸着させたセルロール、デンプン、シリカゲル、イ
オン交換樹脂等が知られている。また他の成分である液
相構成成分としては、PCB、セバシン酸ブチル、スピ
ンドル油、トランス油、塩化パラフィン、シリコン油等
の電気絶縁性の高い油状媒体が知られている。こうした
電気粘性流体は、例えば米国特許第2886151号、
第3047507号或いは特開昭53−17585号、
特開昭53−93186号、特開昭57−47234
号、特開昭61−44998号、特開昭61−2597
52号、特開昭62−95397号、特開平1−207
395号等に開示されている。しかし、これまで主とし
て開発されてきた電気粘性流体は固体微粒子に水分を吸
着させたものであるため使用温度範囲が−20℃〜+7
0℃と狭く、また長期的には水分の揮発によりその性能
が低下しやすいとの欠点を持っており、実用性に乏し
い。実用価値のある極めて高性能かつ安定性の高い電気
粘性流体は開発されていない。
2. Description of the Related Art Heretofore, as solid fine particles used as a constituent component of a dispersed phase of an electrorheological fluid, cellulose, starch, silica gel, ion exchange resins, etc., which are miniaturized to adsorb water on the surface, are known. As other liquid phase constituents, oily media with high electrical insulation such as PCB, butyl sebacate, spindle oil, transformer oil, chlorinated paraffin, and silicone oil are known. Such electrorheological fluids are disclosed, for example, in US Pat. No. 2,886,151,
No. 3047507 or JP-A No. 53-17585.
JP-A-53-93186, JP-A-57-47234
JP-A-61-44998, JP-A-61-2597
52, JP-A-62-95397, JP-A-1-207.
No. 395 and the like. However, since the electrorheological fluid that has been mainly developed so far is one in which moisture is adsorbed on solid fine particles, the operating temperature range is -20 ° C to +7.
It is as narrow as 0 ° C, and has the drawback that its performance is likely to deteriorate due to the evaporation of water in the long term, and it is not practical. Very high performance and highly stable electrorheological fluids of practical value have not been developed.

【0004】このため、こうした従来の電気粘性流体が
持つ欠点を解消すべく、種々の改善が各方面で行われて
いる。その主流は高誘電性液体として水を使用しない、
非水系固体微粒子の開発である。その代表例として、例
えば特開平1−284594号、特開平1−16482
3号、特開平2−235994号等を挙げることができ
る。
Therefore, various improvements have been made in various fields in order to eliminate the drawbacks of the conventional electrorheological fluid. Its mainstream does not use water as a high dielectric liquid,
This is the development of non-aqueous solid particles. As typical examples thereof, for example, JP-A-1-284594 and JP-A-1-16482.
No. 3, JP-A-2-235994, and the like.

【0005】[0005]

【発明が解決しようとする課題】電気粘性流体における
電気粘性効果の発現機構は未だ充分には解明されていな
い。しかし、一般には、外部電界により固体微粒子に分
極が生じ、この分極した粒子が静電引力により相互に結
合し、架橋を生ずる結果、粘度が増大すると言われてい
る。
The mechanism of manifestation of the electrorheological effect in electrorheological fluids has not yet been fully clarified. However, it is generally said that the solid particles are polarized by an external electric field, and the polarized particles are bonded to each other by electrostatic attraction to cause cross-linking, resulting in an increase in viscosity.

【0006】この想定されるメカニズムから考えて、適
度に炭化度(C/H・炭素原子と水素原子の比)を制御
した炭素質粉末を固体微粒子として分散させた電気粘性
流体が優れた性能を発揮し、従来の吸水性の固体微粒子
を使用することから来る電気粘性流体の問題点であった
使用温度範囲が狭いこと、および長期的使用による性能
の不安定性等の問題点を解決し、その実用性に大いに寄
与すると考えられる。こうした観点から本発明者等を中
心として、炭化度(C/H)等の品質を厳密に制御した
炭素質粉末が非水系の固体微粒子として、極めて高性能
を有することが開示されている(特開平3−27920
6号)。特開平3−279206号公報記載の発明によ
れば、石炭、石炭系タール・ピッチ、石炭液化物、コー
クス類、石油系タール・ピッチおよび樹脂類よりなる群
より選ばれる有機化合物を原料として、かかる有機物を
300〜800℃での熱処理を実施したのち、粒度調整
することにより得られる炭素質粉末が電気粘性流体用固
体微粒子として優れた性能を発揮することが示されてい
る。本発明は優れた性能を発揮すると期待される炭素質
粉末を固体微粒子として分散させた電気粘性流体の中で
も、より高性能を示す電気粘性流体を提供しようとする
ものである。
Considering this supposed mechanism, an electrorheological fluid in which carbonaceous powder having a moderately controlled carbonization degree (ratio of C / H and carbon atoms to hydrogen atoms) is dispersed as solid fine particles has excellent performance. Solved problems such as narrow operating temperature range, which was a problem of electro-rheological fluid that came from using conventional water-absorbing solid fine particles, and instability of performance due to long-term use. It is considered to contribute greatly to practicality. From this point of view, the present inventors have mainly disclosed that carbonaceous powders having strictly controlled qualities such as carbonization degree (C / H) have extremely high performance as non-aqueous solid fine particles (special feature). Kaihei 3-27920
No. 6). According to the invention described in JP-A-3-279206, an organic compound selected from the group consisting of coal, coal-based tar / pitch, coal liquefaction, cokes, petroleum-based tar / pitch and resins is used as a raw material. It has been shown that the carbonaceous powder obtained by heat-treating an organic substance at 300 to 800 ° C. and then adjusting the particle size exhibits excellent performance as solid fine particles for electrorheological fluid. The present invention is intended to provide an electrorheological fluid having higher performance among electrorheological fluids in which carbonaceous powders expected to exhibit excellent performance are dispersed as solid fine particles.

【0007】[0007]

【課題を解決するための手段】本発明は、従来の電気粘
性流体が持っていた使用温度範囲が狭いこと、および長
期的な使用における性能の不安定性等の問題点がなく、
優れた電気粘性効果を示す炭素質誘電体微粒子を使用す
る電気粘性流体の一層の改善を目的としたもので、炭化
度を調整した炭素質粉末であって、その炭化反応の際に
300〜500℃の温度領域で軟化溶融状態を経る有機
化合物および/または窒素、酸素、硫黄成分を実質的に
含有しない有機化合物を原料とした炭素質粉末を分散さ
せてなる電気粘性流体を基本要件とする。また、炭素質
粉末の原料が、縮合芳香環化合物を重合して得られるピ
ッチであることがより好ましい。ここで、軟化溶融と
は、炭化反応生成物の粉末、粒子もしくは塊が反応槽内
で溶融して均一な液相を形成している状態をいう。
According to the present invention, there are no problems such as a narrow operating temperature range which a conventional electrorheological fluid has, and instability of performance in long-term use.
The purpose is to further improve an electrorheological fluid using carbonaceous dielectric fine particles exhibiting an excellent electrorheological effect. It is a carbonaceous powder whose carbonization degree is adjusted, and is 300 to 500 during the carbonization reaction. The basic requirement is an electrorheological fluid in which a carbonaceous powder made of an organic compound that undergoes a softening and melting state in a temperature range of ° C and / or an organic compound that does not substantially contain nitrogen, oxygen and sulfur components is dispersed. Further, it is more preferable that the raw material of the carbonaceous powder is a pitch obtained by polymerizing a condensed aromatic ring compound. Here, the softening and melting means a state in which powder, particles or lumps of the carbonization reaction product are melted in the reaction tank to form a uniform liquid phase.

【0008】電気粘性流体に要求される特性としては、
外部電界下で低電流により大きな粘性変化(見掛け粘度
の増加)をもたらすことに加え、固体微粒子が油状媒体
中で沈降しないこと、更に長期的な使用や温度変化に対
して安定であること、電界の印加に対する応答性に優れ
ていること、および電界を印加しないときの流体の粘度
(以下初期粘度と称す。)ができるだけ低いこと等が挙
げられる。
The characteristics required of the electrorheological fluid are:
In addition to causing a large viscosity change (increase in apparent viscosity) due to low current under an external electric field, solid fine particles do not settle in an oily medium, and are stable against long-term use and temperature change. And the like, and the viscosity of the fluid when an electric field is not applied (hereinafter referred to as initial viscosity) is as low as possible.

【0009】すなわち、外部電界下で低電流であれば、
電気粘性流体を用いる各種装置のエネルギー効率を向上
することが可能となる。また、初期粘度が低い流体を達
成する炭素質粉末は、所定の初期粘度が要求される流体
において、初期粘度が高い流体の炭素質粉末に比し、炭
素質粉末の配合量を高めることができ、その結果高い電
気粘性変化が実現できる。
That is, if the current is low under an external electric field,
It is possible to improve the energy efficiency of various devices using an electrorheological fluid. Further, the carbonaceous powder that achieves a fluid having a low initial viscosity can increase the amount of carbonaceous powder compounded in a fluid that requires a predetermined initial viscosity, as compared to the carbonaceous powder of a fluid that has a high initial viscosity. As a result, a high electrorheological change can be realized.

【0010】こうした電気粘性流体に要求される特性を
満足する炭素質粉末の必要要件については例えば特開平
3−279206号に炭素原子と水素原子の比(C/
H)が1.70〜3.50の範囲であること、平均粒径
が0.5〜40μmであること、軽質分が少ないこと、
微粒子含有量が少ないこと、更にはフリーカーボンを含
有しないこと等が挙げられている。また、こうした炭素
質粉末の製造方法としては、各種の有機化合物を300
〜800℃の温度範囲で必要に応じて、溶剤抽出あるい
は数段階の熱処理をへて製造する方法が開示される。
Regarding the requirements for the carbonaceous powder satisfying the characteristics required for such an electrorheological fluid, for example, JP-A-3-279206 discloses a ratio of carbon atoms to hydrogen atoms (C /
H) is in the range of 1.70 to 3.50, the average particle size is 0.5 to 40 μm, and the light content is small.
It is mentioned that the content of fine particles is small, and further that it does not contain free carbon. In addition, as a method for producing such a carbonaceous powder, various organic compounds are used.
Disclosed is a method for producing by solvent extraction or heat treatment in several steps, if necessary, within a temperature range of up to 800 ° C.

【0011】本発明者等は電気粘性流体における炭素質
粉末の電気粘性効果発現機構について詳細に検討した。
その結果、電気粘性流体における炭素質粉末の電気粘性
効果は、炭素質粉末の出発原料である有機化合物を熱処
理する時に起こる重縮合反応と官能基の脱離反応により
形成される多環芳香族化合物と残存する側鎖化合物に起
因する電子分極と配向分極によりもたらされると考え
た。通常、熱処理温度の上昇に伴って多環芳香族化合物
が成長し、誘電率が増加するが、このとき同時に電導度
も上昇し、流体としたときの電界印加時の粘度増加量お
よび電流値は共に上昇していく。
The present inventors have studied in detail the mechanism of the electrorheological effect of the carbonaceous powder in the electrorheological fluid.
As a result, the electrorheological effect of the carbonaceous powder in the electrorheological fluid is due to the polycondensation reaction and the elimination of the functional group that occur when the organic compound that is the starting material for the carbonaceous powder is heat-treated. And the electronic polarization and the orientation polarization caused by the remaining side chain compound. Normally, the polycyclic aromatic compound grows as the heat treatment temperature rises, and the dielectric constant increases, but at the same time, the electrical conductivity also rises, and the increase in viscosity and the current value when an electric field is applied in a fluid Together they will rise.

【0012】ところが、有機化合物原料の熱処理、炭化
時において、熱処理温度300〜500℃において内容
物が軟化溶融状態を示した場合には、得られた炭素質粉
末を分散させた電気粘性流体の性能が、軟化溶融状態を
示さずに炭化した場合と比較してより優れた性能が得ら
れることを見いだした。さらに、上記出発原料中に窒
素、酸素、硫黄成分を実質的に含有しない有機化合物を
使用した場合に電気粘性流体の性能の向上が一段と促進
することも合わせて見いだした。
However, during heat treatment and carbonization of the organic compound raw material, when the content shows a softening and melting state at a heat treatment temperature of 300 to 500 ° C., the performance of the electrorheological fluid in which the obtained carbonaceous powder is dispersed is obtained. However, it has been found that superior performance can be obtained as compared with the case where carbonization is performed without showing a softened and molten state. Furthermore, it was also found that the improvement of the performance of the electrorheological fluid is further promoted when an organic compound containing substantially no nitrogen, oxygen and sulfur components is used in the starting material.

【0013】ここで言う性能とは、一定の電圧を印加し
た時に起こる流体の粘度変化が流体中を流れるより小さ
な電流値で実現できることおよび初期粘度のより小さい
流体が製造可能なことを言う。これらの特性と関係する
因子は必ずしも明確にはなっていないが、大きな粘度変
化を実現する点に関して言えば、有機化合物の熱処理時
に、π電子に富んだ平面性に優れる多環芳香族化合物が
多く生成することが重要であると考えている。これに
は、より小さな縮合芳香族化合物の分子が並行に再配列
することが必要であり、そのためには300〜500℃
において軟化溶融状態を示すことが必要であると予想さ
れる。
The term "performance" as used herein means that a change in the viscosity of a fluid that occurs when a constant voltage is applied can be realized with a smaller current value flowing in the fluid and that a fluid having a lower initial viscosity can be manufactured. Although the factors related to these properties have not been clarified, many polycyclic aromatic compounds that are rich in π-electrons and have excellent planarity during heat treatment of organic compounds are considered in terms of achieving large viscosity changes. I think it is important to generate. This requires the molecules of the smaller fused aromatic compound to rearrange in parallel, which requires 300-500 ° C.
It is expected that it is necessary to exhibit a softened and melted state in.

【0014】このように300〜500℃の温度範囲で
軟化溶融状態を経た後に炭化して得られる炭素質粉末
は、より平面的な多環芳香族成分が多くなり、結果とし
てこのような炭素質粉末を分散した流体は優れた誘電分
極に起因する大きな粘度変化を示す。また、窒素、酸
素、硫黄原子を分子内に含む有機化合物を出発原料とし
た場合には、炭素質粉末内の多環芳香族分子の環内ある
いは官能基として残存するこれらの原子が分子の分極の
極性を高め、電導性増加の要因になるものと推測され
る。さらに初期粘度が低くなる要因としては、300〜
500℃の温度範囲で軟化溶融状態となることにより炭
素質粉末に細孔が生成しにくくなり、比表面積の小さな
粉末を製造できる点にあると考えている。比表面積のよ
り低い粉末ほどシリコーンオイル等の電気絶縁性油との
接触面積が低下し、分散性が向上すると推測される。
Thus, the carbonaceous powder obtained by carbonizing after passing through the softening and melting state in the temperature range of 300 to 500 ° C. has more planar polycyclic aromatic components, resulting in such carbonaceous material. Fluids with dispersed powders show large viscosity changes due to excellent dielectric polarization. When an organic compound containing nitrogen, oxygen, or sulfur atoms in the molecule is used as a starting material, those atoms remaining in the ring of the polycyclic aromatic molecule in the carbonaceous powder or as a functional group are polarized in the molecule. It is presumed that this will increase the polarity of and increase the conductivity. As a factor for further lowering the initial viscosity, 300-
It is considered that the softening and melting state in the temperature range of 500 ° C. makes it difficult for pores to be generated in the carbonaceous powder, and the powder having a small specific surface area can be produced. It is presumed that the lower the specific surface area of the powder, the smaller the contact area with the electrically insulating oil such as silicone oil and the better the dispersibility.

【0015】本特許で言う300〜500℃の温度領域
で軟化溶融状態を示す有機化合物としては、ポリ塩化ビ
ニル、ポリビニルアルコール等の熱可塑性樹脂類、石炭
系または石油系のタール、ピッチ類あるいはアセナフチ
レン、ナフタレン、メチルナフタレン、アントラセン等
の縮合芳香族化合物の重合物またはナフタセン等のモノ
マーまたは重合物をあげることができる。また、アセナ
フチレン、水素化ピレン等の熱処理によって重合反応す
る化合物も熱処理時に300〜500℃の温度範囲で軟
化溶融状態を示すものであれば使用可能である。これら
の重合物としては、例えばHF−BF3 等の酸触媒を用
いて製造された重合物が挙げられる。
Examples of the organic compound which exhibits a softened and melted state in the temperature range of 300 to 500 ° C. in this patent include thermoplastic resins such as polyvinyl chloride and polyvinyl alcohol, coal-based or petroleum-based tars, pitches and acenaphthylene. Examples thereof include polymers of condensed aromatic compounds such as naphthalene, methylnaphthalene, and anthracene, and monomers or polymers such as naphthacene. In addition, compounds such as acenaphthylene and hydrogenated pyrene that undergo a polymerization reaction by heat treatment can also be used as long as they exhibit a softening and melting state in the temperature range of 300 to 500 ° C. during heat treatment. Examples of these polymers include polymers produced using an acid catalyst such as HF-BF 3 .

【0016】これらの有機化合物は、炭素質粉末の出発
原料として単独で用いてもよく、2種以上の混合物とし
て用いてもよい。また、アセナフチレン、ナフタレン、
アントラセン、ナフタセン等の多環芳香族化合物の重合
物は窒素、酸素、硫黄成分を実質的に含有しない有機化
合物の例でもある。
These organic compounds may be used alone as a starting material for the carbonaceous powder, or may be used as a mixture of two or more kinds. Also, acenaphthylene, naphthalene,
Polymers of polycyclic aromatic compounds such as anthracene and naphthacene are also examples of organic compounds containing substantially no nitrogen, oxygen or sulfur components.

【0017】ここで、実質的に含有しないとは、窒素、
酸素、硫黄成分がそれぞれ単独でも混合物としても総量
で1重量%以下、好ましくは0.1重量%以下である場
合をいう。
Here, "not substantially containing" means nitrogen,
It means that the total amount of oxygen and sulfur components is 1% by weight or less, preferably 0.1% by weight or less, singly or as a mixture.

【0018】本発明の電気粘性流体は、上述の有機化合
物を熱処理および粉砕分級によって得られた炭素質粉末
と電気絶縁性の油状媒体とからなり、必要に応じて粉末
の油状媒体中での分散状態を安定化するための分散剤お
よび電圧印加時の粘性変化量をさらに増大させるための
添加剤を加えて使用する。
The electrorheological fluid of the present invention comprises a carbonaceous powder obtained by heat treating and pulverizing and classifying the above-mentioned organic compound and an electrically insulating oily medium, and if necessary, the powder is dispersed in the oily medium. A dispersant for stabilizing the state and an additive for further increasing the amount of change in viscosity when a voltage is applied are added and used.

【0019】上記、有機化合物の熱処理条件は、最終的
に得られる炭素質粉末の炭素原子と水素原子の数の比で
ある炭化度(C/H)が1.70〜3.50の範囲、好
ましくは2.00〜3.50、特に好ましくは2.20
〜3.00の範囲となるように調整する。炭化度が1.
70より低い場合には流体とした場合に電圧印加時の粘
性変化が発現しない。3.50を越える場合には粉末の
電導度が高くなりすぎて実用上エネルギーロスが大きく
なる。
The above-mentioned heat treatment conditions for the organic compound are such that the carbonization degree (C / H), which is the ratio of the number of carbon atoms and hydrogen atoms of the carbonaceous powder finally obtained, is in the range of 1.70 to 3.50, Preferably 2.00 to 3.50, particularly preferably 2.20.
It adjusts so that it may become a range of -3.00. Carbonization degree is 1.
When it is lower than 70, no change in viscosity occurs when a voltage is applied when a fluid is used. If it exceeds 3.50, the electric conductivity of the powder becomes too high and the energy loss becomes large in practical use.

【0020】また、このような熱処理は、最終的に得ら
れる炭素質粉末の熱天秤(TGA)で窒素流通下で室温
から連続的に一分間に10℃の温度で昇温した時の室温
〜200℃の温度範囲における重量減少率が0.5重量
%以下、好ましくは0.3重量%以下になるまで行うの
が良い。こうした低沸点成分は高温使用時もしくは長期
使用時において粉末から揮発し特性を変動させる。
Further, such heat treatment is carried out in a thermobalance (TGA) of the finally obtained carbonaceous powder under a nitrogen flow from room temperature to room temperature at a temperature of 10 ° C. continuously for 1 minute. It is preferable to carry out until the weight loss rate in the temperature range of 200 ° C. is 0.5% by weight or less, preferably 0.3% by weight or less. Such low-boiling components volatilize from the powder during use at high temperatures or during long-term use, and their characteristics fluctuate.

【0021】上記の特性を満足するための熱処理条件
は、原料となる有機化合物によって異なり、例えばコー
ルタールピッチでは400〜600℃で5時間以上、ナ
フタレンピッチでは軟化点(粘度が100ポイズを示す
温度)が245℃のピッチを用いる場合には400〜5
50℃で3時間以上である。
The heat treatment conditions for satisfying the above characteristics differ depending on the organic compound as a raw material. For example, a coal tar pitch is 400 to 600 ° C. for 5 hours or more, and a naphthalene pitch is a softening point (temperature at which the viscosity is 100 poise). ) Uses a pitch of 245 ° C., 400-5
It is 3 hours or more at 50 ° C.

【0022】上記の反応は一回の熱処理であっても良い
が、より好ましくは、300〜500℃の軟化溶融する
温度で一度熱処理した後に、ヘキサン等の溶媒で洗浄
し、さらに熱処理するほうがよい。
The above reaction may be a single heat treatment, but it is more preferable that the heat treatment is performed once at a temperature of 300 to 500 ° C. for softening and melting, followed by washing with a solvent such as hexane and further heat treatment. .

【0023】上記の特性を満たした熱処理生成物を、粉
砕、分級して平均粒径を0.5〜40μmの範囲、好ま
しくは、2〜40μm、特に2〜10μmの範囲である
ことが望ましい。40μmを超える場合には、油状媒体
中で粒子が沈降を起こしやすくなる。0.5μmより小
さな粒子では流体としたときの初期粘度が著しく大きく
なって電気粘性効果が小さくなる。ここで記述される粒
径とはコールターカウンターを用いて測定されるもので
ある。
The heat-treated product satisfying the above characteristics is pulverized and classified to have an average particle size of 0.5 to 40 μm, preferably 2 to 40 μm, and particularly 2 to 10 μm. If it exceeds 40 μm, the particles tend to settle in the oily medium. With particles smaller than 0.5 μm, the initial viscosity when made into a fluid is significantly increased and the electrorheological effect is reduced. The particle size described here is measured using a Coulter counter.

【0024】この炭素質粉末を、スピンドル油、トラン
ス油、塩化パラフィン、シリコーン油等の電気絶縁性油
状媒体に1〜60重量%、好ましくは20〜50重量%
均一に分散させ電気粘性流体を得る。炭素質粉末の量が
1重量%未満では電気粘性効果は小さく、60重量%を
超えると初期粘度が著しく大きくなって電気粘性効果が
小さくなる。
This carbonaceous powder is contained in an electrically insulating oily medium such as spindle oil, transformer oil, chlorinated paraffin or silicone oil in an amount of 1 to 60% by weight, preferably 20 to 50% by weight.
Disperse evenly to obtain an electrorheological fluid. If the amount of carbonaceous powder is less than 1% by weight, the electrorheological effect is small, and if it exceeds 60% by weight, the initial viscosity is remarkably increased and the electrorheological effect is reduced.

【0025】[0025]

【実施例】以下に本発明を実施例を用いて具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0026】(実施例1)ナフタレンをHF−BF3
媒を使用して重合反応することにより得られた実質的に
窒素、酸素、硫黄成分を含有しないナフタレンピッチ
(三菱ガス化学(株)製ARR 軟化点245℃)を不活
性雰囲気下、450℃、3時間熱処理した。この時ナフ
タレンピッチは300〜450℃の温度範囲で液相状態
を示した。かかる熱処理物を粉砕、分級して平均粒径を
3.5〜4.0μmの範囲に調整した。この時、粒径1
0μm以上の粒子および1.6μm未満の粒子の割合は
1.0重量%以下であった。こうして得られた炭素質粉
末をさらに乾燥窒素雰囲気で450℃、470℃、48
0℃、500℃の4水準の温度で3時間再熱処理し、目
的とする炭素質粉末を得た。炭素質粉末の炭化度(C/
H)は、それぞれ2.12,2.24,2.30,2.
45であった。なお、炭素質粉末の炭化度(C/H)と
は、元素分析による炭素原子と水素原子の数の比で定義
される(実施例2以下も同様)。
(Example 1) Naphthalene pitch obtained by polymerizing naphthalene using an HF-BF 3 catalyst and containing substantially no nitrogen, oxygen, or sulfur components (AR manufactured by Mitsubishi Gas Chemical Co., Inc.) R softening point of 245 ° C.) was heat-treated at 450 ° C. for 3 hours in an inert atmosphere. At this time, the naphthalene pitch showed a liquid phase state in the temperature range of 300 to 450 ° C. The heat-treated product was pulverized and classified to adjust the average particle size to the range of 3.5 to 4.0 μm. At this time, particle size 1
The proportion of particles of 0 μm or more and particles of less than 1.6 μm was 1.0% by weight or less. The carbonaceous powder thus obtained was further subjected to dry nitrogen atmosphere at 450 ° C., 470 ° C., 48 ° C.
Reheat treatment was carried out for 3 hours at four levels of temperatures of 0 ° C and 500 ° C to obtain the target carbonaceous powder. Carbonization degree of carbonaceous powder (C /
H) are 2.12, 2.24, 2.30, 2.
It was 45. The carbonization degree (C / H) of the carbonaceous powder is defined by the ratio of the number of carbon atoms and hydrogen atoms by elemental analysis (the same applies to Example 2 and the following).

【0027】この炭素質粉末をそれぞれ電気絶縁性油状
媒体である室温での粘度が0.1ポイズのシリコーンオ
イル油に36重量%均一に分散させ4種類の電気粘性流
体を得た。これら流体の初期粘度はいずれも0.65ポ
イズであった。かかる電気粘性流体に室温で2kv/mm の
電圧を印加し、この時の流体の粘度変化と流体中に流れ
る電流値を測定し、その電気粘性流体としての性能を評
価した。粘度の測定は二重円筒型回転粘度計(内円筒半
径25mm、外円筒半径26mm、内円筒高さ20m
m)を使用し、内外円筒間に直流電圧を印加した時の剪
断速度366/秒における見掛け粘度を測定した。得ら
れた結果を比較例とともに表1に示した。
The carbonaceous powder was uniformly dispersed in 36% by weight of silicone oil oil having a viscosity of 0.1 poise at room temperature, which is an electrically insulating oily medium, to obtain four kinds of electrorheological fluids. The initial viscosity of each of these fluids was 0.65 poise. A voltage of 2 kv / mm 2 was applied to the electrorheological fluid at room temperature, the change in viscosity of the fluid and the value of the current flowing in the fluid at this time were measured, and the performance as the electrorheological fluid was evaluated. Double-cylinder type rotational viscometer (inner cylinder radius 25 mm, outer cylinder radius 26 mm, inner cylinder height 20 m)
m) was used to measure the apparent viscosity at a shear rate of 366 / sec when a DC voltage was applied between the inner and outer cylinders. The obtained results are shown in Table 1 together with Comparative Examples.

【0028】(実施例2)窒素、酸素、硫黄成分を実質
的に含まないポリ塩化ビニルを不活性雰囲気下450℃
で3時間熱処理した。この時450℃において熱処理物
は液相状態であった。かかる熱処理物をさらにヘキサン
で洗浄後、さらに乾燥窒素雰囲気下で450,480,
500,520℃の4水準の温度で3時間再熱処理し、
4種類の炭素質粉末を得た。この時、炭素質粉末の炭化
度(C/H)は、それぞれ2.30,2.35,2.4
5,2.52であった。また、いずれの炭素質粉末もT
GAでの室温〜200℃の温度範囲における重量減少率
は0.1重量%以下に調整した。かかる炭素質粉末を粉
砕、分級によって平均粒径を3.5〜4.0μmの範囲
に調整した。この時10μm以上の粒子および1.6μ
m未満の粒子の割合はいずれも1.0重量%以下であ
り、目的とする炭素質粉末を得た。かかる炭素質粉末
を、実施例1と同様に電気粘性流体を作成し、その性能
を実施例1と同様に評価した。この流体の初期粘度はい
ずれも0.65ポイズであった。得られた結果を比較例
とともに表1に示した。
(Example 2) Polyvinyl chloride containing substantially no nitrogen, oxygen and sulfur components in an inert atmosphere at 450 ° C.
And heat treated for 3 hours. At this time, the heat-treated product was in a liquid phase at 450 ° C. The heat-treated product is further washed with hexane, and then 450, 480,
Reheat at 4 levels of 500,520 ℃ for 3 hours,
Four types of carbonaceous powder were obtained. At this time, the carbonization degree (C / H) of the carbonaceous powder is 2.30, 2.35 and 2.4, respectively.
It was 5,2.52. Also, any carbonaceous powder is T
The weight loss rate of GA in the temperature range of room temperature to 200 ° C. was adjusted to 0.1% by weight or less. The carbonaceous powder was pulverized and classified to adjust the average particle size to a range of 3.5 to 4.0 μm. At this time, particles of 10 μm or more and 1.6 μm
The proportion of particles less than m was 1.0% by weight or less, and the target carbonaceous powder was obtained. An electrorheological fluid was prepared from this carbonaceous powder in the same manner as in Example 1, and its performance was evaluated in the same manner as in Example 1. The initial viscosity of this fluid was 0.65 poise in each case. The obtained results are shown in Table 1 together with Comparative Examples.

【0029】(実施例3)フリーカーボンを含まないコ
ールタールピッチ(窒素含有量、酸素含有量:各1.1
重量%、1.0重量%)を不活性雰囲気下で510℃で
3時間熱処理した。この時コールタールピッチは400
〜500℃の熱処理時には液相状態を示した。かかる熱
処理物をタール中油(沸点範囲120〜250℃)で抽
出、洗浄後、さらに乾燥窒素雰囲気で350,400,
450,500℃の4水準の温度で3時間再熱処理し、
4種類の炭素質粉末を得た。この時、炭素質粉末の炭化
度(C/H)はそれぞれ2.20,2.34,2.4
2,2.48であった。また、いずれの炭素質粉末も窒
素雰囲気下での室温〜200℃の温度範囲における重量
減少率は0.1重量%以下に調整した。かかる炭素質粉
末をさらに粉砕・分級して平均粒径を3.5〜4.0μ
mの範囲に調整した。この時10μm以上の粒子および
1.6μm未満の粒子の割合はいずれも1.0重量%以
下であり、目的とする炭素質粉末を得た。かかる炭素質
粉末を用いて実施例1と同様に電気粘性流体を作成し、
その性能を実施例1と同様に評価した。この流体の初期
粘度はいずれも0.66ポイズであった。得られた結果
を比較例とともに表1に示した。
(Example 3) Coal tar pitch containing no free carbon (nitrogen content, oxygen content: 1.1 each)
%, 1.0% by weight) was heat treated at 510 ° C. for 3 hours in an inert atmosphere. At this time, coal tar pitch is 400
A liquid phase was exhibited during the heat treatment at ˜500 ° C. The heat-treated product is extracted with tar oil (boiling range 120 to 250 ° C.) and washed, and then 350,400 in a dry nitrogen atmosphere,
Reheat for 3 hours at 4 levels of 450,500 ℃,
Four types of carbonaceous powder were obtained. At this time, the carbonization degree (C / H) of the carbonaceous powder is 2.20, 2.34, 2.4, respectively.
It was 2,2.48. Further, the weight reduction rate of any carbonaceous powder in the temperature range of room temperature to 200 ° C. under a nitrogen atmosphere was adjusted to 0.1% by weight or less. The carbonaceous powder is further crushed and classified to have an average particle diameter of 3.5 to 4.0 μm.
The range was adjusted to m. At this time, the proportion of particles having a particle size of 10 μm or more and particles having a particle size of less than 1.6 μm was 1.0% by weight or less, and the target carbonaceous powder was obtained. An electrorheological fluid was prepared in the same manner as in Example 1 using the carbonaceous powder,
The performance was evaluated as in Example 1. The initial viscosity of each fluid was 0.66 poise. The obtained results are shown in Table 1 together with Comparative Examples.

【0030】(比較例1)熱硬化性のフェノール樹脂
(鐘紡(株)製ベルパールR R−500、窒素含有量、
酸素含有量:各0.6重量%、19重量%)を粉砕分級
して得られた平均粒径3〜5μm、10μm以上の粒子
および1.6μm未満の粒子の割合がいずれも1.0重
量%以下の樹脂粉末を、乾燥窒素雰囲気で530,54
0,550,560℃の4水準の温度で12時間熱処理
した。得られた4種類の炭素質粉末は、いずれも粒子間
に若干の融着が認められたがアトマイザーによる解砕で
熱処理前の粒度に戻った。この時、炭素質粉末の炭化度
(C/H)は、それぞれ2.59,2.77,2.8
2,2.90であった。かかる炭素質粉末を実施例1と
同様に電気粘性流体を作成し、その性能を実施例1と同
様に評価した。この流体の初期粘度はいずれも0.75
〜1.1ポイズの範囲であった。得られた結果を表1に
示した
[0030] (Comparative Example 1) manufactured by thermosetting phenol resin (Kanebo Co. Bellpearl R R-500, nitrogen content,
Oxygen content: 0.6% by weight and 19% by weight, respectively, and the average particle size obtained by pulverizing and classifying 3 to 5 μm, particles of 10 μm or more and particles of less than 1.6 μm are all 1.0% by weight. % Resin powder in a dry nitrogen atmosphere at 530,54
Heat treatment was performed for 12 hours at four levels of temperatures of 0,550,560 ° C. In each of the four types of carbonaceous powders obtained, some fusion was observed between the particles, but the particles returned to the particle size before heat treatment by crushing with an atomizer. At this time, the carbonization degree (C / H) of the carbonaceous powder was 2.59, 2.77, 2.8, respectively.
It was 2,2.90. An electrorheological fluid was prepared from this carbonaceous powder in the same manner as in Example 1, and its performance was evaluated in the same manner as in Example 1. The initial viscosity of this fluid is 0.75
It was in the range of ~ 1.1 poise. The obtained results are shown in Table 1.

【0031】(比較例2)窒素、酸素、硫黄成分を実質
的に含まないポリ塩化ビニリデンを乾燥窒素雰囲気で4
80,500,530,560℃の4水準の温度で3時
間熱処理した。この時、いずれの粉末も固相状態で軟化
溶融しなかった。かかる熱処理物をヘキサンで洗浄後、
さらに乾燥窒素雰囲気下で480,500,530,5
60℃の4水準の温度で3時間再熱処理し、4種類の炭
素化物を得た。この時の炭化度(C/H)は,それぞれ
2.35,2.40,2.45,2.48であった。ま
た、いずれの炭素質粉末もTGAでの室温〜200℃の
温度範囲における重量減少率は0.1重量%以下に調整
した。かかる炭素質粉末を粉砕、分級によって平均粒径
を3.5〜4.0μmの範囲に調整した。この時10μ
m以上の粒子および1.6μm未満の粒子の割合はいず
れも1.0重量%以下であり、目的とする炭素質粉末を
得た。かかる炭素質粉末を実施例1と同様に電気粘性流
体を作成し、その性能を実施例1と同様に評価した。こ
の流体の初期粘度はいずれも0.77〜1.2ポイズの
範囲であった。得られた結果を比較例とともに表1に示
した。
(Comparative Example 2) Polyvinylidene chloride containing substantially no nitrogen, oxygen and sulfur components was dried in a dry nitrogen atmosphere.
It heat-processed at the temperature of 4 levels of 80,500,530,560 degreeC for 3 hours. At this time, none of the powders softened and melted in the solid state. After washing the heat-treated product with hexane,
Furthermore, under a dry nitrogen atmosphere, 480,500,530,5
Reheat treatment was performed for three hours at four levels of temperature of 60 ° C. to obtain four kinds of carbonized products. The carbonization degree (C / H) at this time was 2.35, 2.40, 2.45, and 2.48, respectively. Further, the weight reduction rate of each carbonaceous powder in TGA in the temperature range of room temperature to 200 ° C. was adjusted to 0.1% by weight or less. The carbonaceous powder was pulverized and classified to adjust the average particle size to a range of 3.5 to 4.0 μm. At this time 10μ
The proportion of particles of m or more and particles of less than 1.6 μm was 1.0% by weight or less, and the target carbonaceous powder was obtained. An electrorheological fluid was prepared from this carbonaceous powder in the same manner as in Example 1, and its performance was evaluated in the same manner as in Example 1. The initial viscosity of this fluid was in the range of 0.77 to 1.2 poise. The obtained results are shown in Table 1 together with Comparative Examples.

【0032】 [0032]

【0033】表1の結果から判るように、炭素質粉末を
製造する過程の熱処理において300〜500℃の温度
領域で軟化溶融する有機化合物を出発原料として用いて
軟化溶融温度で熱処理した炭素質粉末を分散させた電気
粘性流体は、300〜500℃で軟化溶融しない有機化
合物を出発原料とし、同様の温度範囲で熱処理した炭素
質粉末を分散させた電気粘性流体に比較して、同一粘度
変化を示す時の電流値が小さく、優れた性能を有してい
ることが示された。
As can be seen from the results in Table 1, the carbonaceous powder heat-treated at the softening and melting temperature using as a starting material an organic compound that softens and melts in the temperature range of 300 to 500 ° C. in the heat treatment in the process of producing the carbonaceous powder. The electrorheological fluid in which is dispersed has the same viscosity change as that of the electrorheological fluid in which the organic compound that does not soften and melt at 300 to 500 ° C. is used as the starting material and the carbonaceous powder that is heat-treated in the same temperature range is dispersed. The current value at the time of showing was small, and it was shown to have excellent performance.

【0034】また、縮合芳香環化合物を重合して得られ
るピッチであるナフタレン重合ピッチを出発原料とした
場合、電流値がより小さく、優れた性能を有しているこ
とが示された。
It was also shown that when a naphthalene polymerized pitch, which is a pitch obtained by polymerizing a condensed aromatic ring compound, was used as a starting material, the current value was smaller and the performance was excellent.

【0035】[0035]

【発明の効果】本発明の電気粘性流体は、特定の温度範
囲で軟化溶融する有機化合物を、軟化溶融する温度で熱
処理して得られる炭素質粉末を、誘電体微粒子として油
状媒体に分散させてなる電気粘性流体であり、一定の電
圧を印加した時に起こる流体の粘性変化が流体中を流れ
るより小さな電流値で実現でき、また、初期粘度が小さ
い。これにより、電気粘性流体を用いる各種装置のエネ
ルギー効率が大巾に向上し、さらに、所定の初期粘度が
要求される電気粘性流体において炭素質粉末の配合量を
高めることができ、より高い電気粘性変化が実現でき
る。
INDUSTRIAL APPLICABILITY The electrorheological fluid of the present invention is obtained by dispersing carbonaceous powder obtained by heat-treating an organic compound that softens and melts in a specific temperature range at a temperature that softens and melts in an oil medium as dielectric fine particles. This is an electrorheological fluid, and the viscosity change of the fluid that occurs when a constant voltage is applied can be realized with a smaller current value flowing in the fluid, and the initial viscosity is small. As a result, the energy efficiency of various devices using the electrorheological fluid is greatly improved, and the amount of carbonaceous powder can be increased in the electrorheological fluid that requires a predetermined initial viscosity. Change can be realized.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽多野 仁 美 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 福 田 典 良 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 斎 藤 翼 東京都小平市小川東町3丁目1番1号 (72)発明者 荻 野 隆 夫 東京都小平市小川東町3丁目1番1号 (72)発明者 丸 山 隆 之 東京都小平市小川東町3丁目1番1号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitomi Hatano, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba, Kawasaki Steel Corporation Technical Research Division (72) Inventor Noriyoshi Fukuda Chuo-ku, Chiba, Chiba Kawasaki-cho No. 1 Kawasaki Steel Corporation Technical Research Headquarters (72) Inventor Tsubasa Saito 3-1-1 Ogawahigashi-cho, Kodaira-shi, Tokyo (72) Inventor Takao Ogino 3-chome, Ogawa-higashi, Kodaira-shi, Tokyo 1-1 (72) Inventor Takayuki Maruyama 3-1-1 Ogawahigashi-cho, Kodaira-shi, Tokyo

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電気絶縁性に優れた油状媒体に誘電体微粒
子を分散させることにより得られる電気粘性流体におい
て、300〜500℃の熱処理時に軟化溶融状態を経て
製造される炭素質粉末を分散質とする電気粘性流体。
1. An electrorheological fluid obtained by dispersing dielectric fine particles in an oily medium having excellent electric insulation, wherein a carbonaceous powder produced through a softening and melting state during heat treatment at 300 to 500 ° C. is a dispersoid. An electrorheological fluid.
【請求項2】電気絶縁性に優れた油状媒体に誘電体微粒
子を分散させることにより得られる電気粘性流体におい
て、炭素質粉末の原料が、窒素、酸素、硫黄成分を実質
的に含有しない有機化合物を用いて製造される炭素質粉
末を分散質とする電気粘性流体。
2. An electrorheological fluid obtained by dispersing dielectric fine particles in an oil medium having excellent electrical insulation, wherein the raw material of carbonaceous powder is an organic compound substantially free of nitrogen, oxygen and sulfur components. An electrorheological fluid containing carbonaceous powder as a dispersoid.
【請求項3】炭素質粉末の原料が、炭化反応時に300
〜500℃で軟化溶融状態にある有機化合物である請求
項1に記載の電気粘性流体。
3. The carbonaceous powder raw material is 300 during the carbonization reaction.
The electrorheological fluid according to claim 1, which is an organic compound that is in a softened and melted state at ˜500 ° C.
【請求項4】炭素質粉末の原料が、窒素、酸素、硫黄成
分を実質的に含有しない有機化合物である請求項3に記
載の電気粘性流体。
4. The electrorheological fluid according to claim 3, wherein the raw material of the carbonaceous powder is an organic compound substantially free of nitrogen, oxygen and sulfur components.
【請求項5】炭素質粉末の原料が、縮合芳香環化合物を
重合して得られるピッチである請求項4に記載の電気粘
性流体。
5. The electrorheological fluid according to claim 4, wherein the raw material of the carbonaceous powder is a pitch obtained by polymerizing a condensed aromatic ring compound.
JP5021159A 1993-02-09 1993-02-09 Electroviscous fluid Pending JPH06234985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5021159A JPH06234985A (en) 1993-02-09 1993-02-09 Electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5021159A JPH06234985A (en) 1993-02-09 1993-02-09 Electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH06234985A true JPH06234985A (en) 1994-08-23

Family

ID=12047139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5021159A Pending JPH06234985A (en) 1993-02-09 1993-02-09 Electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH06234985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6959773B2 (en) 2002-01-23 2005-11-01 Halliburton Energy Services, Inc. Method for drilling and completing boreholes with electro-rheological fluids
US7112557B2 (en) 2001-08-27 2006-09-26 Halliburton Energy Services, Inc. Electrically conductive oil-based mud

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112557B2 (en) 2001-08-27 2006-09-26 Halliburton Energy Services, Inc. Electrically conductive oil-based mud
US6959773B2 (en) 2002-01-23 2005-11-01 Halliburton Energy Services, Inc. Method for drilling and completing boreholes with electro-rheological fluids

Similar Documents

Publication Publication Date Title
EP0361106B1 (en) Electroviscous fluid
JPH1081889A (en) Powder for electroviscous fluid
EP0705899B1 (en) Powder and electrorheological fluid
US5332517A (en) Method for producing carbonaceous powder for electrorheological fluid
CA2020679C (en) Carbonaceous powder for electrorheological fluid and a method of making the same
JP2022501449A (en) Electrorheological fluid
JPH06234985A (en) Electroviscous fluid
JPH06340407A (en) Production of carbonaceous powder for electroviscous fluid
US5779880A (en) Carbonaceous powder to be dispersed in electrorheological fluid and electrorheological fluid using the same
JP2799605B2 (en) Electrorheological fluid
KR100477325B1 (en) A electro-rheological fluid comprising dried water-soluble starch and additives
JP2911947B2 (en) Carbon powder for electrorheological fluid
JPH06234512A (en) Electroviscous fluid
JPH06191811A (en) Carbonaceous powder for electroviscous fluid
JP3458148B2 (en) Carbonaceous powder for electrorheological fluid dispersed phase and electrorheological fluid
JPH05193919A (en) Production of carbonaceous powder for electroviscous fluid
JP3163356B2 (en) Carbonaceous powder for electrorheological fluid dispersed phase and electrorheological fluid
JPH0570116A (en) Production of carbonaceous powder for electroviscous fluid
JPH06330078A (en) Preparation of electroviscous fluid
JPH06299181A (en) Production of carbonaceous powder for electroviscous fluid, method for handling and preserving and preparation of electroviscous fluid
JP2867343B2 (en) Electrorheological fluid
CA2000322C (en) Electroviscous fluid
JPH06122885A (en) Electroviscous fluid
JPH05179270A (en) Electro-visc0us fluid
JPH0718264A (en) Production of carbon powder for electroviscous fluid

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020806