JPH06234875A - Finely porous polyolefin film and its production - Google Patents

Finely porous polyolefin film and its production

Info

Publication number
JPH06234875A
JPH06234875A JP4727791A JP4727791A JPH06234875A JP H06234875 A JPH06234875 A JP H06234875A JP 4727791 A JP4727791 A JP 4727791A JP 4727791 A JP4727791 A JP 4727791A JP H06234875 A JPH06234875 A JP H06234875A
Authority
JP
Japan
Prior art keywords
molecular weight
polyolefin
weight
average molecular
pore size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4727791A
Other languages
Japanese (ja)
Other versions
JP3009495B2 (en
Inventor
Kotaro Takita
耕太郎 滝田
Koichi Kono
公一 河野
Tatsuya Takashima
達也 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP4727791A priority Critical patent/JP3009495B2/en
Publication of JPH06234875A publication Critical patent/JPH06234875A/en
Application granted granted Critical
Publication of JP3009495B2 publication Critical patent/JP3009495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To provide a finely porous polyolefin film excellent in drawability, pore size distribution sharpness, etc., useful for battery separators, electrolytic capacitors, etc., consisting of a polyolefin having each specific pore characteristics, breaking strength and molecular weight characteristics. CONSTITUTION:The porous film consisting of a polyolefin having the following characteristics: (1) porosity: 35-95%; (2) mean penetrated pore diameter: 0.001-0.02mum; (3) breaking strength (15mm width): >=0.2kg; (4) pore size distribution (max. pore diameter/means penetrated pore diameter): <=1.5; (5) content of the components >=7X10<5> in molecular weight: >=1wt.%; and (6) weight-average molecular-weight/number-average molecular weight: 10-300. This porous film can preferably be obtained by the following process: a solution composed of 10-50wt.% of a polyolefin having the above-mentioned molecular weight characteristics and 50-90wt.% of a solvent is first prepared and then extruded through a die and cooled into a gel-like composition, which is then heat set at a temperature between the crystal dispersion temperature and the melting point of the polyolefin followed by drawing at a temperature not higher than the melting point plus 10 deg.C and then desolvation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超高分子量成分を含有
するポリオレフィンからなる微多孔膜及びその製造方法
に関し、特に微細な孔径を有し、孔径分布がシャープな
ポリオレフィン微多孔膜及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microporous membrane composed of a polyolefin containing an ultrahigh molecular weight component and a method for producing the same, and particularly to a polyolefin microporous membrane having a fine pore size and a sharp pore size distribution and its production. Regarding the method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】微多孔
膜は、電池用セパレーター、電解コンデンサー用隔膜、
各種フィルター、透湿防水衣料、逆浸透濾過膜、限外濾
過膜、精密濾過膜等の各種用途に用いられている。
2. Description of the Related Art Microporous membranes are used for battery separators, electrolytic capacitor diaphragms,
It is used in various applications such as various filters, moisture-permeable waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes and microfiltration membranes.

【0003】従来、ポリオレフィン微多孔膜の製造方法
としては、例えば異種ポリマー等の微粉体からなる孔形
成剤をポリオレフィンに混合してミクロ分散させた後、
孔形成剤を抽出する混合抽出法、ポリオレフィン相を溶
媒でミクロ相分離することにより多孔構造とする相分離
法、異種固体がミクロ分散しているポリオレフィン成形
体に延伸などの歪を与えることにより、異種固体間を界
面破壊して空孔を生じさせて多孔化する延伸法などが用
いられている。しかし、これらの方法では通常分子量が
50万未満程度のポリオレフィンが用いられるため、延伸
による薄膜化及び高強度化には限界があった。
Conventionally, as a method for producing a microporous polyolefin membrane, for example, a pore-forming agent composed of a fine powder of a different polymer or the like is mixed with polyolefin and microdispersed,
A mixed extraction method for extracting a pore-forming agent, a phase separation method for forming a porous structure by microphase-separating a polyolefin phase with a solvent, and imparting strain such as stretching to a polyolefin molded body in which a heterogeneous solid is microdispersed, A stretching method or the like is used in which interfaces between different kinds of solids are destroyed to generate pores to make them porous. However, in these methods, the molecular weight is usually
Since polyolefin of less than 500,000 is used, there is a limit to thinning and high strength by stretching.

【0004】最近、高強度及び高弾性のフィルムに成形
し得る超高分子量ポリオレフィンが開発され、これによ
る高強度の微多孔膜の製造が種々提案された。例えば特
開昭58-5228 号は、超高分子量ポリオレフィンを不揮発
性溶媒に溶解し、この溶液から繊維またはフィルムなど
のゲルを成形し、この溶媒を含むゲルを揮発性溶剤で抽
出処理した後、加熱延伸する方法を開示している。しか
しながら、不揮発性溶媒で高度に膨潤した多孔性組織を
有するゲルは、2方向に延伸しようとしても、高配向の
延伸ができず、網状組織の拡大により破断し易く、得ら
れるフィルムは強度が小さく、また形成される孔径分布
が大きくなるという欠点があった。一方不揮発性溶媒を
揮発性溶剤で抽出した後に乾燥したゲルは、網状組織が
収縮緻密化するが、揮発性溶剤の不均一な蒸発によりフ
ィルム原反にそりが発生し易く、また収縮緻密化によ
り、高倍率の延伸ができないという欠点があった。
Recently, an ultra-high molecular weight polyolefin which can be formed into a high-strength and high-elasticity film has been developed, and various methods for producing a high-strength microporous membrane have been proposed. For example, JP-A-58-5228 discloses that ultra-high molecular weight polyolefin is dissolved in a non-volatile solvent, a gel such as a fiber or a film is molded from this solution, and the gel containing this solvent is subjected to extraction treatment with a volatile solvent. A method of heating and stretching is disclosed. However, a gel having a porous structure swollen highly in a non-volatile solvent cannot be stretched in a high orientation even when it is stretched in two directions, and is easily broken due to expansion of a network structure, and the resulting film has low strength. Also, there is a drawback that the distribution of pore diameters formed is large. On the other hand, in the gel dried after extracting the non-volatile solvent with the volatile solvent, the network shrinks and densifies, but uneven evaporation of the volatile solvent tends to cause warpage in the original film, and shrinkage and densification However, there is a drawback that stretching at a high magnification cannot be performed.

【0005】これに対し、重量平均分子量が、7×105
以上の超高分子量ポリオレフィンを溶媒中で加熱溶解し
た溶液からゲル状シートを成形し、前記ゲル状シート中
の溶媒量を脱溶媒処理により調製し、次いで加熱延伸し
た後、残留溶媒を除去することにより、超高分子量ポリ
オレフィン( ポリエチレン)の微多孔膜を製造する方法
が種々提案されている(特開昭60-242035 号、特開昭61
-495132 号、特開昭61-195133 号、特開昭63-39602号、
特開昭63-273651 号)。しかしながら、上記超高分子量
ポリオレフィン(ポリエチレン)微多孔膜の製造方法
は、いずれも超高分子量ポリオレフィンを2軸延伸する
ために、ポリオレフィンの希薄溶液を調製する必要があ
り、このため得られた溶液は、シート成形するダイス出
口でスウェルやネックインが大きく、シート成形が困難
であり、さらにシート中には、溶媒が過剰に含まれてい
るため、そのまま延伸しても目的の微多孔膜は得られな
いので脱溶媒処理してシート中の溶媒量を調製する必要
がある等、生産性において問題があった。
On the other hand, the weight average molecular weight is 7 × 10 5.
Molding a gel-like sheet from a solution obtained by heating and dissolving the above ultra-high molecular weight polyolefin in a solvent, adjusting the amount of the solvent in the gel-like sheet by a desolventizing treatment, and then drawing by heating and removing the residual solvent. Have proposed various methods for producing a microporous membrane of ultra-high molecular weight polyolefin (polyethylene) (JP-A-60-242035 and JP-A-61).
-495132, JP-A-61-195133, JP-A-63-39602,
JP-A-63-273651). However, in any of the above methods for producing an ultrahigh molecular weight polyolefin (polyethylene) microporous membrane, it is necessary to prepare a dilute solution of the polyolefin in order to biaxially stretch the ultrahigh molecular weight polyolefin, and thus the obtained solution is The swell and neck-in are large at the die exit for forming the sheet, making it difficult to form the sheet. Further, since the sheet contains an excessive amount of solvent, the target microporous membrane can be obtained even by stretching as it is. Since there is no solvent, it is necessary to remove the solvent to adjust the amount of solvent in the sheet.

【0006】このような問題を解決することを目的とし
て本発明者らは、超高分子量ポリオレフィンを含有し、
(重量平均分子量/数平均分子量)の値が特定の範囲内
にある組成物を用いたポリオレフィン微多孔膜の製造方
法を提案した(特願平1-201785号) 。この方法により、
延伸性が良好で、高濃度溶液とすることが可能なポリオ
レフィン組成物からポリオレフィン微多孔膜を製造する
ことが可能となる。
In order to solve such a problem, the inventors of the present invention contain an ultra high molecular weight polyolefin,
We proposed a method for producing a microporous polyolefin membrane using a composition having a (weight average molecular weight / number average molecular weight) value within a specific range (Japanese Patent Application No. 1-201785). By this method,
It is possible to produce a polyolefin microporous film from a polyolefin composition that has good stretchability and can be made into a high-concentration solution.

【0007】しかしながら、ポリオレフィン微多孔膜の
孔径を調べたところ、上記いずれの方法によるポリオレ
フィン微多孔膜も0.001 〜0.2 μmの範囲で平均貫通孔
径とすることが可能であるが、微細な成分 (例えば外径
0.02μm以下程度) を精度よく分離するのには適さな
い。そこで微細な成分に対して精密な濾過機能を発揮す
るために、孔径が0.001 〜0.02μmの範囲内にあり、そ
の孔径分布がある程度シャープである微多孔膜が望まれ
るようになった。
However, when the pore size of the polyolefin microporous membrane was examined, it was possible to make the average pore size in the range of 0.001 to 0.2 μm for the polyolefin microporous membranes by any of the above-mentioned methods, but it was possible to obtain fine components (for example, Outer diameter
(Not more than 0.02 μm) is not suitable for accurate separation. Therefore, in order to exert a precise filtration function for fine components, a microporous membrane having a pore diameter in the range of 0.001 to 0.02 μm and having a somewhat sharp pore diameter distribution has been desired.

【0008】したがって本発明の目的は、微細な孔径を
有し、孔径分布がシャープなポリオレフィン微多孔膜を
提供することである。
Therefore, an object of the present invention is to provide a polyolefin microporous membrane having a fine pore size and a sharp pore size distribution.

【0009】また本発明のもうひとつの目的は、微細な
孔径を有し、孔径分布がシャープなポリオレフィン微多
孔膜の製造方法を提供することである。
Another object of the present invention is to provide a method for producing a polyolefin microporous membrane having a fine pore size and a sharp pore size distribution.

【0010】[0010]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者らは、超高分子量成分を含有し、分子
量分布が広い(重量平均分子量/数平均分子量が大き
い)ポリオレフィンの溶液をシート状に成形し、急冷し
て得られるゲル状シートに結晶分散温度〜融点の間の温
度で熱セットを施すことにより結晶化度を上昇させ、次
いで延伸することにより得られる微多孔膜は、微細な孔
径を有し、孔径分布がシャープであることを見出し、本
発明に想到した。
As a result of earnest research in view of the above object, the present inventors have found that a solution of a polyolefin containing an ultrahigh molecular weight component and having a wide molecular weight distribution (weight average molecular weight / large number average molecular weight). Is formed into a sheet, and the gel sheet obtained by rapid cooling is subjected to heat setting at a temperature between the crystal dispersion temperature and the melting point to increase the crystallinity, and then the microporous film obtained by stretching is It was found that the present invention has a fine pore size and a sharp pore size distribution, and has conceived the present invention.

【0011】すなわち、本発明のポリオレフィン微多孔
膜は、分子量7×105 以上の成分を1重量%以上含有
し、(重量平均分子量/数平均分子量)が10〜300 のポ
リオレフィンからなり、空孔率が35〜95%で、平均貫通
孔径が0.001 〜0.02μmで、15mm幅の破断強度が0.2 kg
以上であり、かつ孔径分布 (最大孔径/平均貫通孔径)
の値が1.5 以下であることを特徴とする。
That is, the polyolefin microporous membrane of the present invention comprises 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, (weight average molecular weight / number average molecular weight) of 10 to 300, and has pores. The ratio is 35-95%, the average through-hole diameter is 0.001-0.02μm, and the breaking strength of 15mm width is 0.2 kg.
Above, and pore size distribution (maximum pore size / average through pore size)
The value of is less than 1.5.

【0012】また本発明のポリオレフィン微多孔膜の製
造方法は、分子量7×105 以上の成分を1重量%以上含
有し、(重量平均分子量/数平均分子量)が10〜300 の
ポリオレフィン10〜50重量%と、溶媒50〜90重量%とか
らなる溶液を調製し、前記溶液をダイより押出し、冷却
してゲル状組成物を形成し、前記ゲル状組成物を前記ポ
リオレフィンの結晶分散温度〜融点の温度で10秒以上熱
セットし、その後融点+10℃以下の温度で延伸し、しか
る後残存溶媒を除去することを特徴とする。
The method for producing a polyolefin microporous membrane of the present invention contains 1 to 10% by weight of a component having a molecular weight of 7 × 10 5 or more, and (weight average molecular weight / number average molecular weight) 10 to 300 polyolefin 10 to 50 % By weight, a solution consisting of 50 to 90% by weight of a solvent is prepared, the solution is extruded from a die, and cooled to form a gel composition, and the gel composition is formed from the crystal dispersion temperature of the polyolefin to the melting point. It is characterized in that it is heat-set at the temperature of 10 seconds or more for 10 seconds or more, and then stretched at a temperature of melting point + 10 ° C. or less, and then the residual solvent is removed.

【0013】本発明を以下詳細に説明する。本発明のポ
リオレフィン微多孔膜は、分子量7×105 以上の成分を
1重量%以上含有し、分子量分布(重量平均分子量/数
平均分子量)が10〜300 のポリオレフィンからなる。
The present invention is described in detail below. The polyolefin microporous membrane of the present invention comprises 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, and has a molecular weight distribution (weight average molecular weight / number average molecular weight) of 10 to 300.

【0014】上記ポリオレフィンの重量平均分子量/数
平均分子量は、10〜300 、好ましくは12〜 250である。
重量平均分子量/数平均分子量が10未満では、平均分子
鎖長が大きく、溶解時の分子鎖同志の絡み合い密度が高
くなるため、高濃度溶液の調製が困難である。また300
を超えると、延伸時に低分子量成分の破断が起こり膜全
体の強度が低下する。
The above polyolefin has a weight average molecular weight / number average molecular weight of 10 to 300, preferably 12 to 250.
If the weight average molecular weight / number average molecular weight is less than 10, the average molecular chain length is large and the entanglement density of the molecular chains becomes high during dissolution, making it difficult to prepare a high-concentration solution. Again 300
When it exceeds, the breakage of the low molecular weight component occurs during stretching, and the strength of the entire film decreases.

【0015】なお、重量平均分子量/数平均分子量は、
分子量分布の尺度として用いられるものであり、この分
子量の比が大きくなるほど分子量分布の幅は拡大する。
すなわち重量平均分子量の異なるポリオレフィンからな
る組成物の場合、組成物の分子量の比が大きいほど、配
合するポリオレフィンの重量平均分子量の差が大きく、
また小さいほど重量平均分子量の差が小さいことを示し
ている。また単独のポリオレフィンの場合、分子量の比
はその分布の広がりを示し、その値が大きいほど分布が
広がっていることを示している。
The weight average molecular weight / number average molecular weight is
It is used as a measure of the molecular weight distribution, and the larger the ratio of the molecular weights, the wider the width of the molecular weight distribution.
That is, in the case of a composition composed of polyolefins having different weight average molecular weights, the larger the ratio of the molecular weights of the compositions, the larger the difference in the weight average molecular weights of the polyolefins to be blended,
Further, the smaller the value, the smaller the difference in the weight average molecular weight. Further, in the case of a single polyolefin, the molecular weight ratio shows the spread of the distribution, and the larger the value is, the wider the distribution is.

【0016】本発明においては、ポリオレフィンの重量
平均分子量/数平均分子量を10〜300 と、通常の超高分
子量ポリオレフィン自身の重量平均分子量/数平均分子
量(通常6程度)よりも大きく設定している。この結
果、分子量分布は低分子量側へと広がりをみせるため、
高濃度のポリオレフィン溶液の調製が可能となる。
In the present invention, the weight average molecular weight / number average molecular weight of the polyolefin is set to 10 to 300, which is larger than the weight average molecular weight / number average molecular weight of ordinary ultrahigh molecular weight polyolefin itself (usually about 6). . As a result, the molecular weight distribution spreads toward the lower molecular weight side,
A highly concentrated polyolefin solution can be prepared.

【0017】また上記ポリオレフィン中に分子量7×10
5 以上の成分が1重量%未満では、延伸性の向上に寄与
する超高分子量ポリオレフィンの分子鎖の絡み合いがほ
とんど形成されず、高強度の微多孔膜を得ることができ
ない。一方、超高分子量成分の含有率の上限は特に限定
的ではないが、90重量%を超えると目的とするポリオレ
フィン溶液の高濃度化の達成が困難となるため好ましく
ない。
The above-mentioned polyolefin has a molecular weight of 7 × 10.
When the content of the component of 5 or more is less than 1% by weight, the entanglement of the molecular chains of the ultra-high molecular weight polyolefin that contributes to the improvement of the stretchability is hardly formed, and a high-strength microporous membrane cannot be obtained. On the other hand, the upper limit of the content of the ultrahigh molecular weight component is not particularly limited, but if it exceeds 90% by weight, it becomes difficult to achieve the desired high concentration of the polyolefin solution, which is not preferable.

【0018】このポリオレフィンは、上記分子量及び分
子量分布を有していれば、単独のポリオレフィン(混合
物でないもの)か、2種以上のポリオレフィンからなる
組成物のどちらでもよい。
The polyolefin may be either a single polyolefin (not a mixture) or a composition composed of two or more polyolefins as long as it has the above-mentioned molecular weight and molecular weight distribution.

【0019】単独のポリオレフィンの場合、例えば分子
量7×105 以上の超高分子量成分を1重量%以上含有
し、分子量分布(重量平均分子量/数平均分子量)が10
〜300となるように多段重合することにより製造するこ
とができる。多段重合としては、二段重合により、高分
子量部分と低分子量部分とを製造するのが好ましい。
In the case of a single polyolefin, it contains, for example, 1% by weight or more of an ultrahigh molecular weight component having a molecular weight of 7 × 10 5 or more, and has a molecular weight distribution (weight average molecular weight / number average molecular weight) of 10
It can be produced by carrying out multi-stage polymerization so as to obtain ~ 300. As the multi-stage polymerization, it is preferable to produce the high molecular weight portion and the low molecular weight portion by the two-stage polymerization.

【0020】またポリオレフィン組成物(混合物)の場
合、重量平均分子量が7×105 以上の超高分子量ポリオ
レフィンと、重量平均分子量が7×105 未満のポリオレ
フィンとを重量平均分子量/数平均分子量が上記範囲と
なるように適量混合することによって得ることができ
る。
Further, in the case of a polyolefin composition (mixture), an ultrahigh molecular weight polyolefin having a weight average molecular weight of 7 × 10 5 or more and a polyolefin having a weight average molecular weight of less than 7 × 10 5 have a weight average molecular weight / number average molecular weight of It can be obtained by mixing an appropriate amount within the above range.

【0021】組成物の場合、超高分子量ポリオレフィン
は、重量平均分子量が7×105 以上、好ましくは1×10
6 〜15×106 のものである。重量平均分子量が7×105
未満では、最大延伸倍率が低く、目的の微多孔膜が得ら
れない。一方、上限は特に限定的ではないが15×106
超えるものは、ゲル状成形物の形成において、成形性に
劣る。
In the case of the composition, the ultrahigh molecular weight polyolefin has a weight average molecular weight of 7 × 10 5 or more, preferably 1 × 10 5.
6 to 15 × 10 6 . Weight average molecular weight is 7 × 10 5
If it is less than the above, the maximum draw ratio is low and the desired microporous membrane cannot be obtained. On the other hand, the upper limit is not particularly limited, but if it exceeds 15 × 10 6 , moldability is poor in forming a gel-like molded product.

【0022】このような超高分子量ポリオレフィンとし
ては、エチレン、プロピレン、1-ブテン、4-メチル-1-
ペンテン、1-ヘキセンなどを重合した結晶性の単独重合
体、2段重合体、又は共重合体及びこれらのブレンド物
等が挙げられる。これらのうち超高分子量ポリエチレ
ン、特に高密度の超高分子量ポリエチレンが好ましい。
Such ultra-high molecular weight polyolefins include ethylene, propylene, 1-butene, 4-methyl-1-
Examples thereof include crystalline homopolymers obtained by polymerizing pentene, 1-hexene and the like, two-stage polymers, copolymers and blends thereof. Of these, ultra high molecular weight polyethylene, particularly high density ultra high molecular weight polyethylene is preferred.

【0023】また上記超高分子量ポリオレフィンのポリ
オレフィン組成物中の含有量は、ポリオレフィン組成物
全体を100 重量%として、1重量%以上である。超高分
子量ポリオレフィンの含有量が1重量%未満では、延伸
性の向上に寄与する超高分子量ポリオレフィンの分子鎖
の絡み合いがほとんど形成されず、高強度の微多孔膜を
得ることができない。一方、上限は特に限定的ではない
が、90重量%を超えると目的とするポリオレフィン溶液
の高濃度化の達成が困難となるため好ましくない。
The content of the ultrahigh molecular weight polyolefin in the polyolefin composition is 1% by weight or more, based on 100% by weight of the entire polyolefin composition. When the content of the ultrahigh molecular weight polyolefin is less than 1% by weight, the entanglement of the molecular chains of the ultrahigh molecular weight polyolefin, which contributes to the improvement of the stretchability, is hardly formed, and a high-strength microporous membrane cannot be obtained. On the other hand, the upper limit is not particularly limited, but if it exceeds 90% by weight, it is difficult to achieve the desired high concentration of the polyolefin solution, which is not preferable.

【0024】またポリオレフィン組成物中の超高分子量
ポリオレフィン以外のポリオレフィンは、重量平均分子
量が、7×105 未満のものであるが、分子量の下限とし
ては1×104 以上のものが好ましい。重量平均分子量が
1×104 未満のポリオレフィンを用いると、延伸時に破
断が起こりやすく、目的の微多孔膜が得られないので好
ましくない。特に重量平均分子量が1×105 以上7×10
5 未満のポリオレフィンを超高分子量ポリオレフィンに
配合するのが好ましい。
The polyolefin other than the ultra-high molecular weight polyolefin in the polyolefin composition has a weight average molecular weight of less than 7 × 10 5 , and the lower limit of the molecular weight is preferably 1 × 10 4 or more. Use of a polyolefin having a weight average molecular weight of less than 1 × 10 4 is not preferable because breakage easily occurs during stretching and the desired microporous membrane cannot be obtained. Especially the weight average molecular weight is 1 × 10 5 or more 7 × 10
It is preferred to blend a polyolefin of less than 5 with the ultra high molecular weight polyolefin.

【0025】このようなポリオレフィンとしては、エチ
レン、プロピレン、1-ブテン、4-メチル-1- ペンテン、
1-ヘキセンなどを重合した結晶性の単独重合体、2段重
合体、又は共重合体及びこれらのブレンド物等が挙げら
れる。特にエチレンを主体とする重合体である高密度ポ
リエチレンが好ましい。
Examples of such polyolefin include ethylene, propylene, 1-butene, 4-methyl-1-pentene,
Examples thereof include crystalline homopolymers obtained by polymerizing 1-hexene and the like, two-stage polymers, copolymers and blends thereof. High density polyethylene, which is a polymer mainly composed of ethylene, is particularly preferable.

【0026】なお、上述したようなポリオレフィンに
は、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、
アンチブロッキング剤、顔料、染料、無機充填剤などの
各種添加剤を本発明の目的を損なわない範囲で添加する
ことができる。
If necessary, the above-mentioned polyolefin may be added with an antioxidant, an ultraviolet absorber, a lubricant,
Various additives such as anti-blocking agents, pigments, dyes and inorganic fillers can be added within a range that does not impair the object of the present invention.

【0027】次に、上述したようなポリオレフィンを用
いた本発明のポリオレフィン微多孔膜の製造方法につい
て説明する。
Next, a method for producing the polyolefin microporous membrane of the present invention using the above-mentioned polyolefin will be described.

【0028】本発明において、原料となるポリオレフィ
ンの高濃度溶液は、上述のポリオレフィンを溶媒に加熱
溶解することにより調製する。
In the present invention, a high-concentration solution of polyolefin as a raw material is prepared by heating and dissolving the above-mentioned polyolefin in a solvent.

【0029】この溶媒としては、ポリオレフィンを十分
に溶解できるものであれば特に限定されない。例えば、
ノナン、デカン、ウンデカン、ドデカン、パラフィン油
などの脂肪族または環式の炭化水素、あるいは沸点がこ
れらに対応する鉱油留分などが挙げられるが、溶媒含有
量が安定なゲル状成形物を得るためにはパラフィン油の
ような不揮発性の溶媒が好ましい。
The solvent is not particularly limited as long as it can sufficiently dissolve the polyolefin. For example,
Aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, and paraffin oil, or mineral oil fractions having boiling points corresponding to these are used to obtain a gel-like molded product having a stable solvent content. A non-volatile solvent such as paraffin oil is preferred.

【0030】加熱溶解は、ポリオレフィンが溶媒中で完
全に溶解する温度で攪拌しながら行う。その温度は使用
する重合体及び溶媒により異なるが、例えばポリエチレ
ンの場合には140 〜250 ℃の範囲である。また、ポリオ
レフィン溶液の濃度は、10〜50重量%、好ましくは10〜
40重量%である。濃度が10重量%未満では、使用する溶
媒量が多く経済的でないばかりか、シート状に成形する
際に、ダイス出口で、スウェルやネックインが大きくシ
ートの成形が困難となる。一方、濃度が50重量%を超え
ると、均一な溶液の調製が困難となる。なお、加熱溶解
にあたってはポリオレフィンの酸化を防止するために酸
化防止剤を添加するのが好ましい。
The heating dissolution is carried out with stirring at a temperature at which the polyolefin is completely dissolved in the solvent. The temperature varies depending on the polymer and solvent used, but in the case of polyethylene, for example, it is in the range of 140 to 250 ° C. The concentration of the polyolefin solution is 10 to 50% by weight, preferably 10 to
40% by weight. When the concentration is less than 10% by weight, not only is the amount of solvent used large and it is not economical, but also when forming into a sheet, swell and neck-in are large at the die outlet, making it difficult to form the sheet. On the other hand, if the concentration exceeds 50% by weight, it becomes difficult to prepare a uniform solution. In addition, in heating and melting, it is preferable to add an antioxidant in order to prevent the oxidation of the polyolefin.

【0031】次にこのポリオレフィンの加熱溶液をダイ
スから押し出して成形する。ダイスは、通常長方形の口
金形状をしたシートダイスが用いられるが、2重円筒状
のインフレーションダイス等も用いることができる。シ
ートダイスを用いた場合のダイスギャップは通常0.1 〜
5mmであり、押出し成形時には140 〜250 ℃に加熱され
る。この際押し出し速度は、通常20〜30cm/分乃至2〜
3m/分である。
Next, this heated solution of polyolefin is extruded from a die to be molded. As the die, a sheet die having a rectangular mouthpiece shape is usually used, but a double cylindrical inflation die or the like can also be used. When using sheet dies, the die gap is usually 0.1-
It is 5 mm and is heated to 140 to 250 ° C during extrusion. At this time, the extrusion speed is usually 20 to 30 cm / min to 2 to
It is 3 m / min.

【0032】このようにしてダイスから押し出された溶
液は、冷却することによりゲル状物に成形される。冷却
は少なくともゲル化温度以下までは50℃/ 分以上の速度
で行うのが好ましい。冷却速度が遅いと結晶化度が上昇
し、延伸に適したゲル状物となりにくい。冷却方法とし
ては、冷風、冷却水、その他の冷却媒体に直接接触させ
る方法、冷媒で冷却したロールに接触させる方法等を用
いることができる。なおダイスから押し出された溶液
は、冷却前あるいは冷却中に、1〜10好ましくは1〜5
の引取比で引き取っても良い。引取比が10以上になると
ネックインが大きくなり、また延伸時に破断を起こしや
すくなり好ましくない。
The solution thus extruded from the die is cooled to be formed into a gel. Cooling is preferably performed at a rate of 50 ° C./min or more up to at least the gelation temperature. When the cooling rate is slow, the degree of crystallinity increases and it is difficult to form a gel-like material suitable for stretching. As a cooling method, a method of directly contacting with cold air, cooling water, or other cooling medium, a method of contacting with a roll cooled with a refrigerant, or the like can be used. The solution extruded from the die should be 1-10, preferably 1-5 before or during cooling.
You may collect at the collection ratio of. When the take-up ratio is 10 or more, neck-in becomes large, and breakage easily occurs during stretching, which is not preferable.

【0033】次にこのゲル状物に対して熱セットを行
う。熱セットの温度は、結晶分散温度乃至融点である。
具体的にはポリエチレン組成物の場合には90〜140 ℃、
好ましくは100 〜130 ℃の範囲である。熱セットの温度
が結晶分散温度未満ではゲル状物の結晶化度を上昇させ
ることが困難であり、一方融点を超えるとポリオレフィ
ンが溶融してしまい成形が困難となる。熱セットの時間
については10秒以上が好ましく、より好ましくは1分以
上である。熱セットの時間が10秒未満ではゲル状物の結
晶化度を上昇させることが困難となる。なお、上限につ
いては酸化劣化が起こらない程度であれば特に限定され
ない。また熱セットの方法としては、熱風を吹きつける
方法、加熱ロールに接触させる方法、加熱媒体に浸漬す
る方法等を用いることができる。
Next, heat setting is performed on this gel-like material. The temperature of heat setting is a crystal dispersion temperature to a melting point.
Specifically, in the case of a polyethylene composition, 90 to 140 ° C,
It is preferably in the range of 100 to 130 ° C. When the temperature of heat setting is lower than the crystal dispersion temperature, it is difficult to increase the crystallinity of the gelled material, while when it exceeds the melting point, the polyolefin is melted and molding becomes difficult. The heat setting time is preferably 10 seconds or more, more preferably 1 minute or more. If the heat setting time is less than 10 seconds, it becomes difficult to increase the crystallinity of the gelled material. The upper limit is not particularly limited as long as oxidative deterioration does not occur. As a method of heat setting, a method of blowing hot air, a method of contacting with a heating roll, a method of immersing in a heating medium, or the like can be used.

【0034】このようにして熱セットを施した後、延伸
を行う。延伸は、ゲル状成形物を加熱し、通常のテンタ
ー法、ロール法、インフレーション法、圧延法もしくは
これらの方法の組合せによって所定の倍率で行う。2軸
延伸が好ましく、縦横同時延伸または逐次延伸のいずれ
でもよいが、特に同時2軸延伸が好ましい。
After the heat setting is performed in this way, stretching is performed. The stretching is carried out by heating the gel-like molded product and using a usual tenter method, roll method, inflation method, rolling method or a combination of these methods at a predetermined magnification. Biaxial stretching is preferred, and either longitudinal / transverse simultaneous stretching or sequential stretching may be used, but simultaneous biaxial stretching is particularly preferred.

【0035】延伸温度は、ポリオレフィンの融点+10℃
以下、好ましくは結晶分散温度から結晶融点未満の範囲
である。例えば、ポリエチレンの場合は90〜140 ℃で、
より好ましくは、100 〜130 ℃の範囲である。延伸温度
が融点+10℃を超える場合は、樹脂の溶融により延伸に
よる分子鎖の配向ができない。また、延伸温度が結晶分
散温度未満では、樹脂の軟化が不十分で、延伸において
破膜し易く、高倍率の延伸ができない。
The stretching temperature is the melting point of polyolefin + 10 ° C.
Below, it is preferably within the range from the crystal dispersion temperature to below the crystal melting point. For example, in the case of polyethylene at 90-140 ℃,
More preferably, it is in the range of 100 to 130 ° C. If the stretching temperature is higher than the melting point + 10 ° C, the resin cannot be oriented due to the melting of the resin. On the other hand, if the stretching temperature is lower than the crystal dispersion temperature, the softening of the resin is insufficient, the film is easily broken during stretching, and high-stretching cannot be performed.

【0036】また、延伸倍率は原反の厚さによって異な
るが、1軸方向で少なくとも2倍以上、好ましくは3〜
30倍、面倍率で10倍以上、好ましくは15〜400 倍であ
る。面倍率が10倍未満では延伸が不十分で高弾性、高強
度の微多孔膜が得られない。一方、面倍率が400 倍を超
えると、延伸装置、延伸操作などの点で制約が生じる。
The stretching ratio varies depending on the thickness of the raw fabric, but is at least 2 times or more in the uniaxial direction, preferably 3 to.
The surface magnification is 30 times, 10 times or more, preferably 15 to 400 times. If the surface magnification is less than 10 times, the stretching is insufficient and a highly elastic and high-strength microporous membrane cannot be obtained. On the other hand, if the areal magnification exceeds 400 times, there are restrictions on the stretching apparatus and the stretching operation.

【0037】得られた延伸形成物は、溶剤で洗浄し残留
する溶媒を除去する。洗浄溶剤としては、ペンタン、ヘ
キサン、ヘプタンなどの炭化水素、塩化メチレン、四塩
化炭素などの塩素化炭化水素、三フッ化エタンなどのフ
ッ化炭化水素、ジエチルエーテル、ジオキサンなどのエ
ーテル類などの易揮発性のものを用いることができる。
これらの溶剤はポリオレフィンの溶解に用いた溶媒に応
じて適宜選択し、単独もしくは混合して用いる。洗浄方
法は、溶剤に浸漬し抽出する方法、溶剤をシャワーする
方法、またはこれらの組合せによる方法などにより行う
ことができる。
The stretched product thus obtained is washed with a solvent to remove the residual solvent. Examples of cleaning solvents include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorohydrocarbons such as ethane trifluoride, and ethers such as diethyl ether and dioxane. A volatile one can be used.
These solvents are appropriately selected according to the solvent used for dissolving the polyolefin, and used alone or as a mixture. The cleaning method can be carried out by a method of immersing in a solvent for extraction, a method of showering the solvent, or a combination thereof.

【0038】上述のような洗浄は、延伸成形物中の残留
溶媒が1重量%未満になるまで行う。その後洗浄溶剤を
乾燥するが、洗浄溶剤の乾燥方法は上述した熱セットの
方法と同様の方法で行うことができる。乾燥した延伸成
形物は、結晶分散温度〜融点の温度範囲で熱固定するこ
とが望ましい。
The above-mentioned washing is carried out until the residual solvent in the stretch-molded product is less than 1% by weight. After that, the washing solvent is dried. The washing solvent can be dried by the same method as the heat setting method described above. It is desirable that the dried stretched molded product be heat-set in the temperature range of the crystal dispersion temperature to the melting point.

【0039】得られたポリオレフィン微多孔膜は、必要
に応じてさらに、プラズマ照射、界面活性剤含浸、表面
グラフト等で親水化処理することができる。
The obtained microporous polyolefin membrane can be further hydrophilized by plasma irradiation, surfactant impregnation, surface grafting, etc., if necessary.

【0040】以上のようにして製造したポリオレフィン
微多孔膜は、空孔率が35〜95%で、平均貫通孔径が0.00
1 〜0.02μmで、かつ15mm幅の破断強度が0.2 kg以上で
ある。さらに孔径分布 (最大孔径/平均貫通孔径)の値
が1.5 未満と従来法によるポリオレフィン微多孔膜の孔
径分布 (2.0 程度) と比較して驚くほどシャープであ
る。なお、孔径分布において最大孔径及び平均貫通孔径
とは、プルラン溶液の透過率の値をもとにしてフローリ
の理論を利用して、算出した値である。また本発明のポ
リオレフィン微多孔膜の厚さは、用途に応じて適宜選択
しうるが、一般に0.1 〜50μm程度であり、好ましくは
2〜40μmである。
The polyolefin microporous membrane produced as described above has a porosity of 35 to 95% and an average through pore diameter of 0.005%.
It has a breaking strength of 1 to 0.02 μm and a width of 15 mm of 0.2 kg or more. Furthermore, the value of the pore size distribution (maximum pore size / average through-pore size) is less than 1.5, which is surprisingly sharp compared to the pore size distribution (about 2.0) of the conventional polyolefin microporous membrane. In the pore size distribution, the maximum pore size and the average through-pore size are values calculated by using the theory of Flory based on the value of the transmittance of the pullulan solution. The thickness of the polyolefin microporous film of the present invention may be appropriately selected depending on the application, but is generally about 0.1 to 50 μm, preferably 2 to 40 μm.

【0041】[0041]

【作用】本発明においては、超高分子量成分を含有し、
分子量分布が広い(重量平均分子量/数平均分子量が大
きい)ポリオレフィンの溶液をシート状に成形し、急冷
して得られるゲル状シートに結晶分散温度〜融点の間の
温度で熱セットを施してから延伸することによりポリオ
レフィン微多孔膜を製造しているので、得られる微多孔
膜は、微細な孔径を有し、孔径分布がシャープである。
In the present invention, an ultra high molecular weight component is contained,
After forming a solution of polyolefin with a wide molecular weight distribution (weight average molecular weight / large number average molecular weight) into a sheet and quenching it, the gel-like sheet is heat-set at a temperature between the crystal dispersion temperature and the melting point. Since the polyolefin microporous membrane is produced by stretching, the obtained microporous membrane has a fine pore size and a sharp pore size distribution.

【0042】このような効果が得られる理由については
必ずしも明らかではないが、ゲル状シートには、通常ラ
メラ間に非晶部分が存在し、膜の微細構造に不均一を生
じやすく、これが孔径分布が大きくなる原因となってい
るが、本発明においては、ポリオレフィンとして超高分
子量成分を所定量以上含有し、分子量分布が所定の範囲
にあるものを使用し、ゲル状のポリオレフィンに結晶分
散温度〜融点の間の温度で熱セットを行うことにより、
ポリオレフィン中の結晶化度を上昇させ、これに伴いラ
メラ間の非晶部分を減少させている。このポリオレフィ
ンを延伸すると、主にラメラ間の開裂により貫通孔が形
成されるので、微細かつ分布の幅の小さい孔を有する微
多孔膜とすることが可能となるためであると考えられ
る。
Although the reason why such an effect is obtained is not necessarily clear, the gel-like sheet usually has amorphous portions between the lamellae, which tends to cause nonuniformity in the microstructure of the membrane, which is the reason for the pore size distribution. However, in the present invention, a polyolefin containing a predetermined amount or more of an ultra-high molecular weight component and having a molecular weight distribution in a predetermined range is used, and the gel-like polyolefin has a crystal dispersion temperature of By heat setting at a temperature between the melting points,
The crystallinity in the polyolefin is increased, and the amorphous portion between the lamellas is reduced accordingly. It is considered that when this polyolefin is stretched, the through holes are formed mainly by the cleavage between the lamellas, so that it becomes possible to obtain a microporous film having fine holes with a narrow distribution width.

【0043】[0043]

【実施例】以下に本発明の実施例を示す。なお、実施例
における試験方法はつぎの通りである。 (1) 分子量及び分子量分布:ウォーターズ(株)製のGP
C 装置を用い、カラムに東ソー(株)製GMH-6 、溶媒に
O-ジクロルベンゼンを使用し、温度135 ℃、流量1.0 ml
/ 分にて、ゲルパーミエーションクロマトグラフィー
(GPC)法により測定。 (2) フィルムの厚さ:断面を走査型電子顕微鏡により測
定。 (3) 透気度:JIS P8117 に準拠。 (4) 平均孔径:平膜モジュールを用いて、380 mmHgの差
圧下で0.05重量%のプルラン(昭和電工(株)製) の水
溶液を循環させたときに、濾液中に含まれるプルランの
濃度を示差屈折率測定から求めた。そして、次式により
計算した阻止率が50%になるプルランの分子量の値か
ら、後述するようなFlory の理論を利用して、孔径を換
算した。 プルランの阻止率={1−(濾液中のプルラン濃度 /原
液中のプルラン濃度)}×100 溶液状態にある鎖状高分子は球状の糸まり状で、その直
径d は、分子鎖の両末端の2乗平均距離 〈γ2 〉に対して、近似的に 〔d/2 〕2 =〈γ2 〉・・・(1) の関係にあると考えて良い。高分子溶液における粘性と
分子鎖の広がりに関するFlory の理論によると、高分子
の種類に無関係に 〔η〕M=2.1 ×1021〈γ2 3/2 ・・・(2) が成立するので、式(1) 及び(2) により、固有粘度
〔η〕の測定値と、阻止率が50%になる分子量Mとから
鎖状高分子の直径d を算出することができる。このdを
ポリエチレン微多孔膜の平均孔径とした。 (5) 孔径分布:上記(4) による測定において、阻止率が
90%となるプルランの分子量の値から同様に孔径を換算
し、最大孔径とし、この最大孔径の値を用いて、最大孔
径÷平均孔径の値により算出。 (6) 空孔率:水銀ポロシメータで測定。 (7) 破断強度:幅15mmの短冊状試験片を用いてASTM D88
2 に準拠して測定。
EXAMPLES Examples of the present invention will be shown below. The test method in the examples is as follows. (1) Molecular weight and molecular weight distribution: GP manufactured by Waters Co., Ltd.
Using C instrument, GOH-6 manufactured by Tosoh Corporation as a column and as a solvent
Using O-dichlorobenzene, temperature 135 ℃, flow rate 1.0 ml
/ Min, measured by gel permeation chromatography (GPC) method. (2) Film thickness: The cross section was measured with a scanning electron microscope. (3) Air permeability: Conforms to JIS P8117. (4) Average pore size: When a flat membrane module was used to circulate an aqueous solution of 0.05 wt% pullulan (manufactured by Showa Denko KK) under a differential pressure of 380 mmHg, the concentration of pullulan contained in the filtrate was determined. It was determined from the measurement of the differential refractive index. Then, the pore diameter was converted from the value of the molecular weight of pullulan at which the rejection rate calculated by the following equation was 50%, using the Flory's theory described later. Retention rate of pullulan = {1- (pullulan concentration in filtrate / pullulan concentration in undiluted solution)} x 100 The chain-like polymer in solution has a spherical thread shape and its diameter d is at both ends of the molecular chain. It can be considered that there is an approximate relationship of [d / 2] 2 = <γ 2 > ... (1) with respect to the root-mean-square distance <γ 2 > of. According to Flory's theory of viscosity and molecular chain spread in polymer solution, [η] M = 2.1 × 10 212 > 3/2 (2) holds regardless of the type of polymer. From equations (1) and (2), the diameter d of the chain polymer can be calculated from the measured value of the intrinsic viscosity [η] and the molecular weight M at which the rejection is 50%. This d was defined as the average pore diameter of the polyethylene microporous membrane. (5) Pore size distribution: In the measurement according to (4) above, the rejection rate is
Similarly, the pore diameter was converted from the value of the molecular weight of pullulan to be 90% to obtain the maximum pore diameter, and the value of the maximum pore diameter was used to calculate the value of maximum pore diameter / average pore diameter. (6) Porosity: Measured with a mercury porosimeter. (7) Breaking strength: ASTM D88 using a strip test piece with a width of 15 mm
Measured according to 2.

【0044】実施例1 重量平均分子量(Mw)が2.5 ×106 の超高分子量ポリ
エチレン2重量部と、重量平均分子量(Mw)3.7 ×10
5 のポリエチレン13重量部とを混合したMw/Mn=11
の原料樹脂と、流動パラフィン (64cst/40℃)85 重量部
とを混合し、ポリエチレン組成物の溶液を調製した。次
にこのポリエチレン組成物の溶液100 重量部に、2,6-ジ
-t- ブチル-p- クレゾール (「BHT 」、住友化学工業
(株)製)0.125重量部とテトラキス〔メチレン-3-(3,5-
ジ-t- ブチル-4- ヒドロキシルフェニル)-プロピオネー
ト〕メタン (「イルガノックス1010」、チバガイギー
製)0.25 重量部とを酸化防止剤として加えて混合した。
この混合液を攪拌機付のオートクレーブに充填して200
℃で90分間攪拌して均一な溶液を得た。
Example 1 2 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight (Mw) of 2.5 × 10 6 and a weight average molecular weight (Mw) of 3.7 × 10
Mw / Mn = 11 mixed with 13 parts by weight of polyethylene of 5
The raw material resin was mixed with 85 parts by weight of liquid paraffin (64 cst / 40 ° C.) to prepare a polyethylene composition solution. Next, to 100 parts by weight of the solution of this polyethylene composition,
0.125 parts by weight of -t-butyl-p-cresol ("BHT", Sumitomo Chemical Co., Ltd.) and tetrakis [methylene-3- (3,5-
0.25 part by weight of di-t-butyl-4-hydroxylphenyl) -propionate] methane (“Irganox 1010”, manufactured by Ciba Geigy) was added as an antioxidant and mixed.
Fill this mixture into an autoclave with a stirrer and
Stir at 90 ° C for 90 minutes to obtain a uniform solution.

【0045】この溶液を直径45mmの押出機により、Tダ
イから押出し、冷却ロールで引取りながらゲル状シート
を成形した。続いてこのゲル状シートを、速度0.5 m/
分の送り速度で、120 ℃の熱風下に15分間さらすことに
より熱セットを行った。
This solution was extruded from a T-die by an extruder having a diameter of 45 mm, and a gel-like sheet was formed by taking it out with a cooling roll. Then, this gel-like sheet is moved at a speed of 0.5 m /
Heat setting was performed by exposing to 120 ° C. hot air for 15 minutes at a feed rate of minutes.

【0046】得られたシートを二軸延伸機にセットし
て、温度115 ℃、延伸速度0.5 m/ 分で5×5倍に同時
二軸延伸を行った。得られた延伸膜を塩化メチレンで洗
浄して残留する流動パラフィンを抽出除去した後、乾燥
して厚さ25μmのポリエチレン微多孔膜を得た。このポ
リエチレン微多孔膜の製造条件を第1表に示す。またポ
リエチレン微多孔膜の透気度、膜厚、空孔率、破断強
度、平均孔径及び孔径分布の測定を行った。結果を第2
表に示す。
The obtained sheet was set in a biaxial stretching machine and simultaneously biaxially stretched 5 × 5 times at a temperature of 115 ° C. and a stretching speed of 0.5 m / min. The obtained stretched membrane was washed with methylene chloride to remove the residual liquid paraffin by extraction, and then dried to obtain a polyethylene microporous membrane having a thickness of 25 μm. The production conditions of this polyethylene microporous membrane are shown in Table 1. Further, the air permeability, film thickness, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. Second result
Shown in the table.

【0047】実施例2 実施例1において、原料樹脂を2段重合のポリエチレン
(重量平均分子量8.2×105 、重量平均分子量/数平均
分子量=28.8、分子量7×105 以上の成分の割合40重量
%) を用いた以外は同様にして、ポリエチレン微多孔膜
を製造した。得られたポリエチレン微多孔膜の製造条件
を第1表に示す。またポリエチレン微多孔膜の透気度、
膜厚、空孔率、破断強度、平均孔径及び孔径分布の測定
を行った。結果を第2表に示す。
Example 2 In Example 1, the raw material resin was two-stage polyethylene (weight average molecular weight 8.2 × 10 5 , weight average molecular weight / number average molecular weight = 28.8, ratio of components having a molecular weight of 7 × 10 5 or more 40 weight %) Was used to produce a polyethylene microporous membrane in the same manner. The production conditions of the obtained polyethylene microporous membrane are shown in Table 1. Also, the air permeability of the polyethylene microporous membrane,
The film thickness, porosity, breaking strength, average pore size and pore size distribution were measured. The results are shown in Table 2.

【0048】比較例1 ゲル状シートを熱セットしない以外は、実施例1と同様
の条件でポリエチレン微多孔膜を製造した。得られたポ
リエチレン微多孔膜の製造条件を第1表に示す。またポ
リエチレン微多孔膜の透気度、膜厚、空孔率、破断強
度、平均孔径及び孔径分布の測定を行った。結果を第2
表に示す。
Comparative Example 1 A polyethylene microporous membrane was produced under the same conditions as in Example 1 except that the gel sheet was not heat set. The production conditions of the obtained polyethylene microporous membrane are shown in Table 1. Further, the air permeability, film thickness, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. Second result
Shown in the table.

【0049】 第 1 表 例 No. 熱セット温度 熱セット時間 延伸倍率 延伸温度 実施例1 120℃ 15分 5倍×5倍 115 ℃ 実施例2 120℃ 15分 5倍×5倍 115 ℃ 比較例1 − − 5倍×5倍 115 ℃ Table 1 Example No. Heat setting temperature Heat setting time Stretching ratio Stretching temperature Stretching temperature Example 1 120 ° C. 15 minutes 5 times × 5 times 115 ° C. Example 2 120 ° C. 15 minutes 5 times × 5 times 115 ° C. Comparative Example 1 --5 times x 5 times 115 ° C

【0050】 第 2 表 透気度 膜厚 平均孔径 孔径分布 空孔率 破断強度 例 No. (秒/100cc) (μm) (μm) (%) (kg/15mm幅) 実施例1 450 25 0.01 1.2 60 2.2 実施例2 400 25 0.01 1.2 60 2.4 比較例1 450 25 0.01 2.4 55 2.2 Table 2 Air Permeability Film Thickness Average Pore Size Pore Size Distribution Porosity Breaking Strength Example No. (sec / 100cc ) (μm) (μm) (%) (Kg / 15mm width ) Example 1 450 25 0.01 1.2 60 2.2 Example 2 400 25 0.01 1.2 60 2.4 Comparative Example 1 450 25 0.01 2.4 55 2.2

【0051】第2表から明らかなように、実施例1及び
2のポリエチレン微多孔膜は、従来法により製膜した比
較例1のポリエチレン微多孔膜と比べて透気度及び膜厚
及び平均孔径は同じだが、孔径の分布の幅が狭いもので
あった。
As is clear from Table 2, the polyethylene microporous membranes of Examples 1 and 2 have air permeability, film thickness, and average pore diameter that are larger than those of Comparative Example 1 produced by the conventional method. , But the width of the pore size distribution was narrow.

【0052】[0052]

【発明の効果】以上詳述したように、本発明によれば、
超高分子量成分を含有し、分子量分布が広い(重量平均
分子量/数平均分子量が大きい)ポリオレフィンの溶液
をシート状に成形し、急冷して得られるゲル状シートに
結晶分散温度〜融点の間の温度で熱セットを施してから
延伸することによりポリオレフィン微多孔膜を製造して
いるので、得られる微多孔膜は、微細な孔径を有し、孔
径分布がシャープである。
As described in detail above, according to the present invention,
A gelled sheet obtained by molding a solution of polyolefin containing an ultra-high molecular weight component and having a wide molecular weight distribution (weight average molecular weight / large number average molecular weight) into a sheet, and then rapidly cooling the solution between the crystal dispersion temperature and the melting point. Since the polyolefin microporous membrane is manufactured by heat-setting at a temperature and then stretching, the obtained microporous membrane has a fine pore size and a sharp pore size distribution.

【0053】このような本発明の方法によるポリオレフ
ィン微多孔膜は、電池用セパレーター、電解コンデンサ
ー用隔膜、超精密濾過膜、限外濾過膜、各種フィルタ
ー、透湿防水衣料用多孔質膜等の各種用途に好適であ
る。
The polyolefin microporous membrane produced by the method of the present invention can be used in various kinds of separators for batteries, diaphragms for electrolytic capacitors, ultraprecision filtration membranes, ultrafiltration membranes, various filters, porous membranes for moisture-permeable waterproof clothing, etc. Suitable for use.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 分子量7×105 以上の成分を1重量%以
上含有し、(重量平均分子量/数平均分子量)が10〜30
0 のポリオレフィンからなり、空孔率が35〜95%で、平
均貫通孔径が0.001 〜0.02μmで、15mm幅の破断強度が
0.2 kg以上であり、かつ孔径分布 (最大孔径/平均貫通
孔径)の値が1.5 以下であることを特徴とするポリオレ
フィン微多孔膜。
1. Containing 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, and (weight average molecular weight / number average molecular weight) is 10 to 30.
It consists of 0 polyolefin and has a porosity of 35 to 95%, an average through hole diameter of 0.001 to 0.02 μm, and a breaking strength of 15 mm width.
A microporous polyolefin membrane having a weight distribution of 0.2 kg or more and a pore size distribution (maximum pore size / average through pore size) of 1.5 or less.
【請求項2】 分子量7×105 以上の成分を1重量%以
上含有し、(重量平均分子量/数平均分子量)が10〜30
0 のポリオレフィン10〜50重量%と、溶媒50〜90重量%
とからなる溶液を調製し、前記溶液をダイより押出し、
冷却してゲル状組成物を形成し、前記ゲル状組成物を前
記ポリオレフィンの結晶分散温度〜融点の温度で熱セッ
トし、その後融点+10℃以下の温度で延伸し、しかる後
残存溶媒を除去することを特徴とするポリオレフィン微
多孔膜の製造方法。
2. Containing 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, and (weight average molecular weight / number average molecular weight) is 10 to 30.
0-50% by weight polyolefin and 50-90% by weight solvent
To prepare a solution consisting of, and extruding the solution from a die,
The gel composition is cooled to form a gel composition, the gel composition is heat-set at a temperature from the crystal dispersion temperature to the melting point of the polyolefin, and then stretched at a temperature not higher than the melting point + 10 ° C., and then the residual solvent is removed. A method for producing a microporous polyolefin membrane, comprising:
JP4727791A 1991-01-30 1991-01-30 Polyolefin microporous membrane and method for producing the same Expired - Lifetime JP3009495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4727791A JP3009495B2 (en) 1991-01-30 1991-01-30 Polyolefin microporous membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4727791A JP3009495B2 (en) 1991-01-30 1991-01-30 Polyolefin microporous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06234875A true JPH06234875A (en) 1994-08-23
JP3009495B2 JP3009495B2 (en) 2000-02-14

Family

ID=12770798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4727791A Expired - Lifetime JP3009495B2 (en) 1991-01-30 1991-01-30 Polyolefin microporous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3009495B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020493A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
WO2000020492A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
WO2007032450A1 (en) * 2005-09-16 2007-03-22 Tonen Chemical Corporation Polyethylene microporous membrane, process for production thereof, and battery separator
US8104625B2 (en) 2004-05-20 2012-01-31 Asahi Kasei Chemicals Corporation Microporous membrane made of polyolefins
CN102341160A (en) * 2009-03-30 2012-02-01 东丽东燃机能膜合同会社 Microporous membranes, methods for making such membranes, and use of such membranes as battery separator film
CN115176052A (en) * 2020-02-25 2022-10-11 富士胶片株式会社 Nonwoven fabric and method for producing nonwoven fabric

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102024234B1 (en) * 2017-06-14 2019-09-23 이소영 multi fordable binder
KR102256444B1 (en) * 2018-11-27 2021-05-26 롯데케미칼 주식회사 Polyethylene porous separator and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020493A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
WO2000020492A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
US6666969B1 (en) * 1998-10-01 2003-12-23 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
US7479243B2 (en) 1998-10-01 2009-01-20 Tonen Chemical Corporation Microporous polyolefin membrane, and method of producing the same
JP4494638B2 (en) * 1998-10-01 2010-06-30 東燃化学株式会社 Polyolefin microporous membrane and method for producing the same
JP4494637B2 (en) * 1998-10-01 2010-06-30 東燃化学株式会社 Polyolefin microporous membrane and method for producing the same
US7815825B2 (en) 1998-10-01 2010-10-19 Tonen Chemical Corporation Microporous polyolefin membrane, and method of producing the same
US8104625B2 (en) 2004-05-20 2012-01-31 Asahi Kasei Chemicals Corporation Microporous membrane made of polyolefins
WO2007032450A1 (en) * 2005-09-16 2007-03-22 Tonen Chemical Corporation Polyethylene microporous membrane, process for production thereof, and battery separator
US8802273B2 (en) 2005-09-16 2014-08-12 Toray Battery Separator Film Co., Ltd Microporous polyethylene membrane, its production method, and battery separator
CN102341160A (en) * 2009-03-30 2012-02-01 东丽东燃机能膜合同会社 Microporous membranes, methods for making such membranes, and use of such membranes as battery separator film
CN115176052A (en) * 2020-02-25 2022-10-11 富士胶片株式会社 Nonwoven fabric and method for producing nonwoven fabric

Also Published As

Publication number Publication date
JP3009495B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
JP2657434B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator using the same
JP2657430B2 (en) Polyolefin microporous membrane and method for producing the same
JP3347854B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and filter using the same
JP4997278B2 (en) Polyethylene microporous membrane and method for producing the same
JP3347835B2 (en) Method for producing microporous polyolefin membrane
JPH06104736B2 (en) Polyolefin microporous membrane
US20090098341A1 (en) Microporous polyolefin membrane and method for producing the same
JPH0987413A (en) Production of finely porous membrane of polyolefin
JPS63273651A (en) Production of fine porous membrane of polyolefin having ultra-high molecular weight
CA2602824A1 (en) Method for producing microporous polyolefin membrane and microporous membrane
US20090146334A1 (en) Method for producing microporous polyolefin membrane and microporous membrane
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JPH07228718A (en) Microporous polyolefin film
JPH0812799A (en) Polyolefin finely porous film and its manufacture
JPH05222236A (en) Production of polyolefinic microporous film
JP3072163B2 (en) Polyolefin microporous membrane, method for producing the same, and battery separator using the same
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JPH05222237A (en) Production of polyolefinic microporous film
JP2657431B2 (en) Polyolefin microporous membrane and method for producing the same
JPH093228A (en) Production of polyolefin finely porous membrane
JP3250894B2 (en) Method for producing microporous polyolefin membrane
JP3967421B2 (en) Method for producing polyolefin microporous membrane
JPH1192587A (en) Preparation of polyolefin microporous film
JP2657441B2 (en) Method for producing microporous polyolefin membrane
JPH09104775A (en) Production of microporous polyolefin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081203

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081203

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111203