JPH06233929A - Photodecomposition method and apparatus therefor - Google Patents
Photodecomposition method and apparatus thereforInfo
- Publication number
- JPH06233929A JPH06233929A JP4284866A JP28486692A JPH06233929A JP H06233929 A JPH06233929 A JP H06233929A JP 4284866 A JP4284866 A JP 4284866A JP 28486692 A JP28486692 A JP 28486692A JP H06233929 A JPH06233929 A JP H06233929A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength band
- solution
- sunlight
- short wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006303 photolysis reaction Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 18
- 239000011941 photocatalyst Substances 0.000 claims abstract description 13
- 230000015843 photosynthesis, light reaction Effects 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 18
- 239000000243 solution Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 5
- 229910002367 SrTiO Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- -1 rare earth ion Chemical class 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000005383 fluoride glass Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は太陽光を使って溶液を光
分解して生成物を得るための光分解方法及び装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photolysis method and apparatus for photolysis of a solution using sunlight to obtain a product.
【0002】[0002]
【従来の技術】化石エネルギ−の枯渇や炭酸ガスの蓄積
による地球温暖化問題から、太陽エネルギ−の積極的利
用が進められている。この中、液体を太陽光により光分
解して生成物を得る方法として、従来図4に示す如く、
例えばSrTiO3/NiO等の光触媒12を水13に
分散して反応容器14−2に入れ、窓16からの太陽光
を直接入射して光化学反応によって水からH2とO2の生
成物15を得ていた。2. Description of the Related Art Active use of solar energy has been promoted due to the problem of global warming caused by depletion of fossil energy and accumulation of carbon dioxide. Among them, as a method for obtaining a product by photolyzing a liquid with sunlight, as shown in FIG.
For example, a photocatalyst 12 such as SrTiO 3 / NiO is dispersed in water 13 and put in a reaction vessel 14-2, and sunlight from the window 16 is directly incident to produce a product 15 of H 2 and O 2 from water by a photochemical reaction. I was getting.
【0003】[0003]
【発明が解決しようとする課題】上述のような光反応を
利用する場合は反応に寄与する波長が決まっており、例
えば水分解に酸化チタンを触媒に使用するときは電子の
基底状態と励起状態のギャップが3eVであり、410
nmの波長に相当する。ところで太陽光のスペクトラム
分布は410nmより長い波長が大部分を占めており
(以下、ここでは410nm以下の波長領域を短波長帯
域、それ以上の波長領域を長波長帯域とよぶ)、すべて
の波長の太陽光を照射しても反応効率はよくない。When the photoreaction as described above is used, the wavelength contributing to the reaction is fixed. For example, when titanium oxide is used as a catalyst for water decomposition, the ground state and excited state of electrons are used. Has a gap of 3 eV and 410
This corresponds to a wavelength of nm. By the way, in the spectrum distribution of sunlight, wavelengths longer than 410 nm occupy most (hereinafter, the wavelength region of 410 nm or less is referred to as a short wavelength band, and the wavelength region of longer wavelengths is referred to as a long wavelength band). The reaction efficiency is not good even when irradiated with sunlight.
【0004】また、従来の装置では光の入射は窓16の
大きさによって制限されるばかりでなく、光が窓の近傍
の触媒に吸収散乱され、窓から離れたところや窓に対し
ていわゆる死角となっているところは光がとどかず、効
率よく光分解をすることができなっかった。そこで本発
明は、かかる問題点を解決した光分解方法及びその装置
を提供することを目的とする。In addition, in the conventional apparatus, not only the incidence of light is limited by the size of the window 16, but also the light is absorbed and scattered by the catalyst in the vicinity of the window, and a so-called blind spot is formed at a place away from the window or the window. The light did not reach the place where was, and it was not possible to efficiently photolyze it. Therefore, it is an object of the present invention to provide a photolytic method and an apparatus for the same, which solve the above problems.
【0005】[0005]
【課題を解決するための手段】本発明は、光触媒を分散
した溶液を太陽光で照射し、この溶液を分解して反応生
成物を得る光分解方法であって、前記太陽光を長波長帯
域と短波長帯域とに分光し、その中の短波長帯域の光で
前記溶液を照射する光分解方法である。The present invention is a photolysis method of irradiating a solution in which a photocatalyst is dispersed with sunlight and decomposing the solution to obtain a reaction product. And a short wavelength band, and the solution is irradiated with light in the short wavelength band.
【0006】また、本発明は、光触媒を分散した溶液を
太陽光で照射し、この溶液を分解して反応生成物を得る
光分解方法であって、前記太陽光を長波長帯域と短波長
帯域とに分光し、その中の長波長帯域の光を短波長帯域
の光に変換し、前記短波長帯域の光と共に前記溶液を照
射する。Further, the present invention is a photolysis method of irradiating a solution in which a photocatalyst is dispersed with sunlight to decompose the solution to obtain a reaction product, wherein the sunlight is irradiated in a long wavelength band and a short wavelength band. The light in the long wavelength band therein is converted into light in the short wavelength band, and the solution is irradiated with the light in the short wavelength band.
【0007】さらに本発明は、側面から太陽光を漏光す
る光伝導体を内部に張りめぐらした光反応容器内に光触
媒を分散した溶液を注入した光分解装置であって、前記
光伝導体の外径が長さ方向に変化する石英ガラス、多成
分ガラスあるいはプラスチックで形成された光分解装置
であり、前記光伝導体はテーパ状の石英ガラス、多成分
ガラスあるいはプラスチックで形成されることが好まし
い。Further, the present invention is a photolytic device in which a solution in which a photocatalyst is dispersed is injected into a photoreaction container having a photoconductor that leaks sunlight from the side, and the photoconductor is outside the photoconductor. It is a photolytic device formed of quartz glass, a multi-component glass or a plastic whose diameter changes in the length direction, and the photoconductor is preferably formed of tapered quartz glass, a multi-component glass or a plastic.
【0008】[0008]
【作用】本発明は太陽光を光反応に寄与する短波長帯域
と寄与しない長波長帯域とに分光し、長波長帯域の光は
これを短波長帯域に変換して適用するかあるいはその他
の目的に利用するので太陽光を効果的に利用することが
できる。また、本発明は側面から太陽光を漏光する光伝
導体を光反応装置内に張りめぐらすので、触媒を分散し
た溶液全体に亘って光分解をおこすことができる。装置
の内部やいわゆる死角となって光反応の生じ難いところ
をなくすことができる。The present invention splits sunlight into a short wavelength band that contributes to the photoreaction and a long wavelength band that does not contribute to the light reaction, and converts the light of the long wavelength band into the short wavelength band for application or other purposes. Since it is used for, the sunlight can be effectively used. Further, according to the present invention, a photoconductor that leaks sunlight from the side is stretched in the photoreaction device, so that photolysis can be performed over the entire solution in which the catalyst is dispersed. It is possible to eliminate the inside of the device or a so-called blind spot where the photoreaction is unlikely to occur.
【0009】ここで被分解溶液が水の場合、水の屈折率
は1.33であり、石英ガラスは1.458であるので
外径が長さ方向に変化する石英ガラスをこの溶液中に導
入することによって、石英ガラス中の光は長さ方向に伝
送しながら周囲の溶液中に漏光する。テーパ状に形成す
ると漏光が均一となり、また製造しやすく現実的であ
る。光伝導体として石英ガラスその他の材料を用いた場
合、適宜ドーパントを添加することによって被分解液体
との屈折率差を選択し、漏光の割合を調整することがで
きる。Here, when the solution to be decomposed is water, the refractive index of water is 1.33 and that of quartz glass is 1.458. Therefore, quartz glass whose outer diameter changes in the longitudinal direction is introduced into this solution. By doing so, the light in the quartz glass leaks into the surrounding solution while transmitting in the length direction. The tapered shape makes the light leakage uniform, and is easy to manufacture and realistic. When quartz glass or another material is used as the photoconductor, the difference in refractive index from the liquid to be decomposed can be selected by appropriately adding a dopant, and the ratio of light leakage can be adjusted.
【0010】[0010]
【実施例】以下、添付図面を参照して本発明の実施例を
説明する。なお、図面の説明において同一要素には同一
符号を付し、重複する説明を省略する。図1は本発明の
方法に係る実施例の説明図である。太陽光1はパラボラ
反射鏡2あるいはレンズ等によって集光され、反射用ミ
ラー3を介して分岐フィルタ4によって長波長帯域と短
波長帯域とに分岐される。長波長帯域の光は太陽電池8
に送られて電気エネルギ−に変換されたり、直接熱源と
して利用される。短波長帯域の光は反応容器6に送ら
れ、光反応のために使用される。パラボラ反射鏡2は表
面にアルミニウムコートを施して形成され、分岐フィル
タ4はAl/NaF系の誘電体多層膜により形成した。Embodiments of the present invention will be described below with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description. FIG. 1 is an explanatory diagram of an embodiment according to the method of the present invention. The sunlight 1 is condensed by a parabolic reflector 2 or a lens, and is branched into a long wavelength band and a short wavelength band by a branching filter 4 via a reflecting mirror 3. Light in the long wavelength band is solar cell 8
To be converted into electric energy and used directly as a heat source. Light in the short wavelength band is sent to the reaction container 6 and used for photoreaction. The parabolic reflector 2 is formed by coating the surface with aluminum, and the branch filter 4 is formed by an Al / NaF-based dielectric multilayer film.
【0011】図2は本発明の他の方法に係る実施例の説
明図である。分岐された短波長帯域の光は直接反応容器
6へ、また長波長帯域の光は波長変換装置7によって短
波長帯域に変換されて反応容器6へ送られる。波長変換
装置7はコアに希土類イオンを有するドーパントを添加
した光ファイバによって形成される。希土類イオンは多
段階励起により、長波長帯域の入射光により短波長の光
を放出する。例えば、アルカリ金属又はアルカリ土類金
属を含むEr3+含有フッ化物ガラスは800nmの入射
光により410nmの光が得られる。この他Tm3+イオ
ン,Ho3+イオン,Pr3+イオン等希土類を含むフッ化
物系ガラスは赤外光から可視光への変換が可能であり、
使用される触媒により適切な材料を選択できる。FIG. 2 is an explanatory view of an embodiment according to another method of the present invention. The branched light of the short wavelength band is directly sent to the reaction container 6, and the light of the long wavelength band is converted to the short wavelength band by the wavelength conversion device 7 and sent to the reaction container 6. The wavelength conversion device 7 is formed by an optical fiber having a core doped with a dopant having a rare earth ion. Rare earth ions emit short-wavelength light by incident light in the long-wavelength band by multi-stage excitation. For example, Er 3+ -containing fluoride glass containing an alkali metal or an alkaline earth metal can obtain a light of 410 nm by an incident light of 800 nm. In addition, fluoride glass containing rare earth such as Tm 3+ ion, Ho 3+ ion, Pr 3+ ion is capable of converting infrared light into visible light.
Appropriate materials can be selected depending on the catalyst used.
【0012】図3は本発明の光分解装置に係わる一実施
例の斜視図であり、11は光伝導体、12は光触媒、1
3は被分解溶液:水、14−1は反応容器、15は生成
物:H2とO2である。直径100mm、高さ150mm
の円筒状ガラスからなる反応容器14−1の中に、直径
1mmの石英ガラス棒をテーパ状に引伸ばした長さ10
0mmの光伝導体11を7000本挿入し、上面から前
記光伝導体11を介して太陽光1を入射した。反応容器
内には光触媒として粒径約1μmのSrTiO3/Ni
O2とNaOHを混合した水を入れH2とO2に分解し
た。上記の分解を5日間行ったところH2とO2の発生量
は1.2mmolと0.6mmolであった。これと並
行して図1に示す方法によって上記太陽光1を分光し、
短波長帯域の光のみを上記の光分解装置に適用したとこ
ろ、H2とO2の発生量は1.2mmolと0.6mmo
lであった。さらに、図2に示す方法によって長波長帯
域の光を短波長に変換し、これも反応容器に適用して上
記と同じ条件で光分解したところ、H2とO2の発生量は
1.4mmolと0.7mmolであった。FIG. 3 is a perspective view of an embodiment relating to the photolysis device of the present invention, 11 is a photoconductor, 12 is a photocatalyst, and 1 is a photocatalyst.
3 is a solution to be decomposed: water, 14-1 is a reaction vessel, and 15 is products: H 2 and O 2 . Diameter 100 mm, height 150 mm
In a reaction vessel 14-1 made of a cylindrical glass, a quartz glass rod with a diameter of 1 mm was stretched in a tapered shape to a length of 10
7,000 0-mm photoconductors 11 were inserted, and sunlight 1 was incident from above through the photoconductors 11. SrTiO 3 / Ni with a particle size of about 1 μm was used as a photocatalyst in the reaction vessel.
Water mixed with O 2 and NaOH was added to decompose into H 2 and O 2 . When the above decomposition was carried out for 5 days, the amounts of H 2 and O 2 generated were 1.2 mmol and 0.6 mmol. In parallel with this, the sunlight 1 is separated by the method shown in FIG.
When only light in the short wavelength band was applied to the above photolysis device, the amounts of H 2 and O 2 generated were 1.2 mmol and 0.6 mmo.
It was l. Furthermore, when the light in the long wavelength band was converted into a short wavelength by the method shown in FIG. 2 and this was also applied to the reaction vessel and photolyzed under the same conditions as above, the amount of H 2 and O 2 generated was 1.4 mmol. And 0.7 mmol.
【0013】この実施例では水をH2とO2に分解する場
合について説明したが、この外にCO2水溶液をCH3O
HとCH4、またN2水溶液をNH3とN2H4に同様の方
法によって分解することができる。光触媒はいずれもR
t/TiO2、SrTiO3、SrTiO3/NiO、K4
Nb6O17/NiOまたはRh/TiO2を適用すること
ができる。In this embodiment, the case of decomposing water into H 2 and O 2 has been described. In addition to this, an aqueous solution of CO 2 is added to CH 3 O.
H and CH 4 , or N 2 aqueous solution can be decomposed into NH 3 and N 2 H 4 by the same method. All photocatalysts are R
t / TiO 2 , SrTiO 3 , SrTiO 3 / NiO, K 4
Nb 6 O 17 / NiO or Rh / TiO 2 can be applied.
【0014】[0014]
【発明の効果】以上詳細に説明したように、本発明の方
法によれば太陽光を短波長帯域と長波長帯域とに分光
し、長波長帯域の光はこれを短波長帯域に変換して全体
を光反応に適用するか、長波長帯域の光は他の目的に利
用するので太陽光を有効に利用することができる。ま
た、本発明の装置は側面から太陽光を漏光する光伝導体
を反応容器内に張りめぐらすので、溶液全体に亘って光
分解をおこすことができ、いわゆる死角となって光反応
の生じ難いところをなくすことができる。ここで光伝導
体はその外径が長さ方向に変化する石英ガラス等によっ
て形成することができ、特にテーパ状に形成すると漏光
が均一となり、また製造がしやすい効果がある。As described in detail above, according to the method of the present invention, sunlight is separated into a short wavelength band and a long wavelength band, and long wavelength light is converted into a short wavelength band. The whole can be applied to the photoreaction or the light in the long wavelength band can be used for other purposes, so that sunlight can be effectively used. Further, since the apparatus of the present invention is provided with a photoconductor that leaks sunlight from the side surface in a reaction vessel, photolysis can occur over the entire solution, and a so-called blind spot where photoreaction hardly occurs. Can be eliminated. Here, the photoconductor can be formed of quartz glass or the like whose outer diameter changes in the length direction, and particularly when it is formed in a tapered shape, the light leakage becomes uniform, and it is easy to manufacture.
【図1】本発明の光分解方法に係る実施例の説明図であ
る。FIG. 1 is an explanatory diagram of an example according to a photolysis method of the present invention.
【図2】本発明の光分解方法に係る実施例の説明図であ
る。FIG. 2 is an explanatory diagram of an example according to the photolysis method of the present invention.
【図3】本発明の光分解装置に係る実施例の構成を示す
斜視図である。FIG. 3 is a perspective view showing the configuration of an embodiment of the photolytic device of the present invention.
【図4】従来の光分解装置の構成を示す断面図である。FIG. 4 is a cross-sectional view showing a configuration of a conventional photolytic device.
1:太陽光 2:パラボラ反射鏡 3:反射用ミラー 4:分岐フィルタ 5:レンズ 6:反応容器 7:波長変換装置 8:太陽電池 11:光伝導体 12:光触媒 13:被分解溶液 14−1,14−2:反応容器 15:生成物 16:窓 1: Sunlight 2: Parabolic reflector 3: Reflection mirror 4: Branch filter 5: Lens 6: Reaction vessel 7: Wavelength conversion device 8: Solar cell 11: Photoconductor 12: Photocatalyst 13: Decomposition solution 14-1 , 14-2: reaction vessel 15: product 16: window
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/02 J 8017−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B01J 35/02 J 8017-4G
Claims (4)
し、この溶液を分解して反応生成物を得る光分解方法で
あって、前記太陽光を長波長帯域と短波長帯域とに分光
し、その中の短波長帯域の光で前記溶液を照射すること
を特徴とする光分解方法。1. A photolysis method for irradiating a solution in which a photocatalyst is dispersed with sunlight to decompose the solution to obtain a reaction product, which is characterized by dividing the sunlight into a long wavelength band and a short wavelength band. A photolysis method, characterized in that the solution is irradiated with light in the short wavelength band.
し、この溶液を分解して反応生成物を得る光分解方法で
あって、前記太陽光を長波長帯域と短波長帯域とに分光
し、その中の長波長帯域の光を短波長帯域の光に変換
し、前記短波長帯域の光と共に前記溶液を照射すること
を特徴とする光分解方法。2. A photolysis method for irradiating a solution in which a photocatalyst is dispersed with sunlight to decompose the solution to obtain a reaction product, wherein the sunlight is separated into a long wavelength band and a short wavelength band. A method of photolysis, comprising converting light in a long wavelength band therein into light in a short wavelength band and irradiating the solution with the light in the short wavelength band.
部に張りめぐらした光反応容器内に光触媒を分散した溶
液を注入した光分解装置であって、前記光伝導体の外径
が長さ方向に変化する石英ガラス、多成分ガラスあるい
はプラスチックで形成されたことを特徴とする光分解装
置。3. A photolysis device in which a solution in which a photocatalyst is dispersed is injected into a photoreaction container having a photoconductor that leaks sunlight from the side, and the outer diameter of the photoconductor is long. A photolytic device characterized by being formed of quartz glass, multi-component glass, or plastic that changes in the vertical direction.
多成分ガラスあるいはプラスチックで形成されたことを
特徴とする請求項3記載の光分解装置。4. The quartz glass in which the photoconductor has a tapered shape,
The photolytic device according to claim 3, wherein the photolytic device is formed of multi-component glass or plastic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4284866A JPH06233929A (en) | 1992-03-02 | 1992-10-23 | Photodecomposition method and apparatus therefor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-44541 | 1992-03-02 | ||
JP4454192 | 1992-03-02 | ||
JP4284866A JPH06233929A (en) | 1992-03-02 | 1992-10-23 | Photodecomposition method and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06233929A true JPH06233929A (en) | 1994-08-23 |
Family
ID=26384479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4284866A Pending JPH06233929A (en) | 1992-03-02 | 1992-10-23 | Photodecomposition method and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06233929A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140022A (en) * | 2010-01-08 | 2011-07-21 | Hamilton Sundstrand Corp | System and method for releasing and capturing gases from regolith material, and method for providing structural material for use in remote location |
JP2015063425A (en) * | 2013-09-24 | 2015-04-09 | スタンレー電気株式会社 | Hydrogen production system using sunlight |
CN109289727A (en) * | 2018-08-20 | 2019-02-01 | 昆明理工大学 | A kind of separate type spectrum solar energy photocatalytic reaction system |
CN109433127A (en) * | 2018-12-31 | 2019-03-08 | 北京大学深圳研究生院 | A kind of composite photocatalytic reaction system |
WO2024142475A1 (en) * | 2022-12-27 | 2024-07-04 | 愛三工業株式会社 | Photocatalytic device |
-
1992
- 1992-10-23 JP JP4284866A patent/JPH06233929A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140022A (en) * | 2010-01-08 | 2011-07-21 | Hamilton Sundstrand Corp | System and method for releasing and capturing gases from regolith material, and method for providing structural material for use in remote location |
JP2015063425A (en) * | 2013-09-24 | 2015-04-09 | スタンレー電気株式会社 | Hydrogen production system using sunlight |
CN109289727A (en) * | 2018-08-20 | 2019-02-01 | 昆明理工大学 | A kind of separate type spectrum solar energy photocatalytic reaction system |
CN109433127A (en) * | 2018-12-31 | 2019-03-08 | 北京大学深圳研究生院 | A kind of composite photocatalytic reaction system |
WO2024142475A1 (en) * | 2022-12-27 | 2024-07-04 | 愛三工業株式会社 | Photocatalytic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6908881B1 (en) | Visible radiation type photocatalyst and production method thereof | |
Ola et al. | Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction | |
US4945290A (en) | High-power radiator | |
Gole et al. | Highly efficient formation of visible light tunable TiO2-x N x photocatalysts and their transformation at the nanoscale | |
Shimura et al. | Photocatalytic steam reforming of methane over sodium tantalate | |
Liu et al. | Synthesis and characterization of titania prepared by using a photoassisted sol− gel method | |
Domınguez et al. | Photocatalytic oxidation of organic pollutants in water | |
JPH09262482A (en) | Photocatalyst, its production and photocatalytic reaction method | |
Reisfeld et al. | Planar solar energy converter and concentrator based on uranyl-doped glass. | |
JP3252136B2 (en) | Visible light type photocatalyst and method for producing the same | |
GB1595216A (en) | Isotope separation | |
Gondal et al. | Photocatalytic conversion of CO2 into methanol using graphitic carbon nitride under solar, UV laser and broadband radiations | |
Ichikawa | Photoelectrocatalytic production of hydrogen from natural seawater under sunlight | |
Acosta-Mora et al. | “A bridge over troubled gaps”: up-conversion driven photocatalysis for hydrogen generation and pollutant degradation by near-infrared excitation | |
JPH06233929A (en) | Photodecomposition method and apparatus therefor | |
Solís-Casados et al. | Photocatalytic Activity under Simulated Sunlight of Bi‐Modified TiO2 Thin Films Obtained by Sol Gel | |
Acosta-Mora et al. | Shifting the NIR into the UV-blue: Up-conversion boosted photocatalysis | |
US5650051A (en) | Hydrogen generating method using gamma rays | |
IL140560A0 (en) | Ultraviolet irradiation apparatus for photochemical reaction and preparation process of vitamin d derivatiive making use of the same | |
JP2002255501A (en) | Hydrogen and electric energy generation system | |
JPH0235782Y2 (en) | ||
Lee et al. | O (1 S) yield from O 3 photodissociation at 1700-2400 Å | |
Fukuda et al. | Wavelength effect on the photo-degradation of polycarbonate and poly (methyl methacrylate)—Confirmation of the photo-degradation mechanism of PC/PMMA blends | |
JP3426563B2 (en) | Photochemical reaction cell | |
JP2023050965A (en) | Hydrogen production device |