JPH0623347A - Treatment of desulfurization waste water - Google Patents

Treatment of desulfurization waste water

Info

Publication number
JPH0623347A
JPH0623347A JP4182397A JP18239792A JPH0623347A JP H0623347 A JPH0623347 A JP H0623347A JP 4182397 A JP4182397 A JP 4182397A JP 18239792 A JP18239792 A JP 18239792A JP H0623347 A JPH0623347 A JP H0623347A
Authority
JP
Japan
Prior art keywords
waste water
flue
fly ash
desulfurization
conc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4182397A
Other languages
Japanese (ja)
Inventor
Chisato Takano
千里 高野
Takayoshi Yamazaki
敬義 山崎
Kimio Nishio
公男 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP4182397A priority Critical patent/JPH0623347A/en
Publication of JPH0623347A publication Critical patent/JPH0623347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To convert desulfurization waste water to a directly disposable substance by a method wherein discharged desulfurization waste water is conc. and the residual conc. solution is dried using high temp. exhaust gas and the obtained dried powdery matter is blown into a flue to be mixed with and diluted with fly ash. CONSTITUTION:The pH of the desulfurization waste water 18 from wet desulfurization equipment is preliminarily adjusted to 5-6 by slaked lime and a gypsum seed is added to the waste water 18 and this waste water is introduced into a falling film type concentrator 5 and heated by steam to be circulated and conc. The obtained conc. slurry is sent to a rotary spray type dryer 10 by a pump 9. High temp. exhaust gas 15 is taken out of the flue between an economizer and an air heater 3 through a taking-out port 2 and introduced into the dryer 10 to perform the spray drying of the slurry. The dried powdery matter thus produced is continuously diffused into the flue through a rotary valve 12 and diluted with fly ash 17 to be taken out of the system along with the fly ash 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は湿式排煙脱硫装置および
関連設備から排出される排水の処理方法に関する。詳し
くは本発明は脱硫排水の無排水化を行うと共に水分の回
収をも行うものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating waste water discharged from a wet flue gas desulfurization apparatus and related equipment. More specifically, the present invention not only desulfurizes wastewater, but also recovers water.

【0002】[0002]

【従来の技術】燃料を燃焼させる際生成する排煙は種々
の有害物質特に硫黄化合物を含有し、そのまま煙突より
大気中に放出することは許されない。従って排煙は脱硫
処理その他を施したのち大気中に放出され、その際生成
する脱硫排水は必要あればさらに有害物質を低減もしく
は除去して国および地方協定による規制値に合致させた
のち公共水域に放水されていた。
2. Description of the Related Art Exhaust smoke produced when burning a fuel contains various harmful substances, especially sulfur compounds, and it is not allowed to release it as it is from a chimney to the atmosphere. Therefore, the flue gas is discharged into the atmosphere after being subjected to desulfurization treatment, etc., and the desulfurization wastewater generated at that time further reduces or removes harmful substances if necessary to meet the regulated values by national and local agreements and then public water bodies. Had been discharged to.

【0003】また近年前記規制値に対する要求が厳しく
なるに伴い、公共水域への放出をできるだけ回避して水
質汚染を防止することがより強く要求されてきている。
従って湿式脱硫排水をある程度濃縮したのち濃縮物を乾
燥して粉状物となし、この粉状物を埋立てなどによる投
棄処理する方法も模索されている。
In addition, as the requirement for the regulation value becomes stricter in recent years, it is more strongly demanded to prevent the water pollution by avoiding the release to the public water area as much as possible.
Therefore, a method of concentrating the wet desulfurization effluent to some extent and then drying the concentrate to form a powdery material, and disposing of the powdery material by landfill or the like is also being sought.

【0004】[0004]

【発明が解決しようとする課題】ところで近年の電力需
要の伸びに伴い、発電単基容量も従来の200MWのものか
ら500MW、700MW、そして1000MWのものへと順次巨大化
してきており、それに伴って単基当りの用水量、排水
量、固形廃棄物量等すべての面にわたって量的に拡大し
ており、その対策も小規模における場合と質的に変化し
てきている。
[Problems to be Solved by the Invention] With the recent increase in demand for electric power, the unit capacity of power generation has been gradually increased from the conventional 200 MW to 500 MW, 700 MW, and 1000 MW. The amount of water used per unit, the amount of wastewater, the amount of solid waste, etc. are expanding quantitatively, and the countermeasures are qualitatively different from those of small scale.

【0005】例えば用水に関して言えば、ボイラー湿式
排煙脱硫装置は非常に多量の補給水を必要とする装置で
あって、その蒸発水補給用水分が 4/4 ECR 200MW発
電プラント排煙の場合で毎時約21トンであったものが10
00MWでは毎時約105トンとなる。その他に排水が200MW
時の毎時約5トンから1000MWでは毎時約25トンに増大す
る。従って脱硫装置の補給水のみで毎時約130トンに達
し、また1発電所の規模が通常2000MW〜3000MWとなって
きているのでこれだけの量の用水の安定的供給を図るに
は発電所の建設立地をよく選択しても自治体からの供給
のみには依存しきれなくなってきている。必然的に発電
所内における用水の使用合理化、節減等の必要に迫られ
ている。
For example, in terms of water, the boiler wet flue gas desulfurization equipment is an equipment that requires a very large amount of make-up water, and the moisture for making up the evaporated water is 4/4 ECR 200MW power plant flue gas. What was about 21 tons per hour was 10
At 00 MW, it is about 105 tons per hour. Besides, the drainage is 200MW
It increases from about 5 tons per hour to about 25 tons per hour at 1000 MW. Therefore, the amount of make-up water for the desulfurizer reaches about 130 tons per hour, and the scale of one power plant is usually 2000 to 3000 MW. Even if they choose well, they can no longer rely solely on the supply from local governments. Inevitably, there is an urgent need to rationalize and reduce the amount of water used in power plants.

【0006】発電規模の拡大に伴うさらに大きな問題
は、ボイラー排煙を湿式脱硫装置に導入し、カルシウム
ベースの吸収剤と接触させて脱硫後に生成する脱硫排水
量が発電規模の拡大に伴って増大し続けていることで、
脱硫排水の処理方法の再検討が迫られている。また脱硫
排水中に含有される有害物質は多種類にわたっており、
例えばカドミウム、ヒ素などの重金属類、弗素化合物、
ジチオン酸、含窒硫黄化合物、さらには可溶性窒素 (NO
3 -、NH4 -) も存在する。また湿式脱硫工程に由来する可
溶性塩類例えばMgSO4 、CaSO4・2H2O 、CaCl2 等も3.0
〜8.0重量%に達する濃度で含有される。従ってこれら
の複雑な組成の脱硫排水を処理して規制物質を効率的に
除去し規制値を満足させるには複雑な工程および装置を
必要とし、発電規模の拡大に伴ってその運用経費、添加
薬剤費、さらには装置の保守費用などが増大し続けてい
る。また地域協定による窒素、燐等の規制値がある場合
は更に工程追加を要する。またこれら排水処理のための
各工程設備はかなり広い面積を占有するため、土地の有
効利用の観点からも不経済であった。
[0006] A further problem with the expansion of the scale of power generation is that the amount of desulfurization wastewater generated after desulfurization by introducing boiler flue gas into a wet desulfurization unit and contacting it with a calcium-based absorbent increases with the scale of power generation. By continuing,
There is an urgent need to reexamine the treatment method for desulfurization wastewater. In addition, there are many kinds of harmful substances contained in desulfurization wastewater,
For example, heavy metals such as cadmium and arsenic, fluorine compounds,
Dithionic acid, nitrogen-containing sulfur compounds, and soluble nitrogen (NO
3 -, NH 4 -) are also present. Soluble salts derived from the wet desulfurization process, such as MgSO 4 , CaSO 4 .2H 2 O and CaCl 2, are 3.0
It is contained at a concentration of up to 8.0% by weight. Therefore, complicated processes and equipment are required to treat desulfurized effluent of these complicated compositions to efficiently remove regulated substances and satisfy the regulated values. Costs and even equipment maintenance costs continue to increase. In addition, if there are regulated values for nitrogen, phosphorus, etc. according to regional agreements, additional processes will be required. In addition, since each process facility for wastewater treatment occupies a fairly large area, it was uneconomical from the viewpoint of effective use of land.

【0007】[0007]

【課題を解決するための手段】本発明は前記したような
排水処理に関わる諸問題点を解決するため、前記排水を
まず、処理排煙の再加熱にとって熱バランス上支障のな
い約25〜40重量%程度まで濃縮して水分を回収再利用
し、残る濃縮液をボイラー煙道からの高温排煙を用いて
乾燥させて粉状物となし、この粉状物を同じボイラー排
煙中に混合希釈すれば有害物質濃度が環境基準以下に低
下し、しかもフライアッシュと一緒に埋立てその他の方
法で投棄できることに着目した。
In order to solve various problems relating to wastewater treatment as described above, the present invention first treats the wastewater by about 25 to 40 which does not hinder the reheating of the treated flue gas in terms of heat balance. Concentrate to about wt% to recover water for reuse, dry the remaining concentrated liquid using high temperature flue gas from the boiler flue to form a powder, and mix this powder in the same boiler flue gas. We paid attention to the fact that if diluted, the concentration of harmful substances falls below the environmental standard and that they can be dumped together with fly ash by landfilling or other methods.

【0008】すなわち本発明は湿式排煙脱硫装置および
関連設備から排出される脱硫排水を場合によりpH調整後
濃縮する第一工程、残留する濃縮液をボイラー煙道から
の高温排煙を用いて乾燥する第二工程、および得られる
粉状物を前記煙道に吹き込みフライアッシュ中に混入希
釈する第三工程からなる、脱硫排水を直接投棄可能な物
質となす方法を提供するものである。
That is, the present invention is the first step of concentrating desulfurization wastewater discharged from a wet flue gas desulfurization apparatus and related equipment after adjusting the pH, if necessary, and drying the remaining concentrated liquid using high temperature flue gas from a boiler flue. The present invention provides a method for converting desulfurization wastewater into a substance that can be directly discarded, which comprises a second step and a third step of blowing the obtained powder into the flue and mixing and diluting it into fly ash.

【0009】本発明方法においては、濃縮工程で回収さ
れた水分は多量の補給水を必要とする脱硫工程その他で
再利用できるので効率的であり、ボイラー排煙を有効利
用でき、生成した粉状物は容易にフライアッシュと均一
に混合し希釈して有害物質の濃度を基準値以下に低下で
きるのでそのまま投棄できるという点で有利である。本
発明方法のもう一つの利点は、排煙脱硫装置を含む現在
のボイラー関連設備に簡単な追加設備を付加すればこと
足りるのでスペース的にも運用面でも従来の処理法より
はるかに簡便で経済的である。
In the method of the present invention, the water recovered in the concentration step is efficient because it can be reused in the desulfurization step or the like which requires a large amount of make-up water, the boiler flue gas can be effectively used, and the produced powdery form can be obtained. The product can be easily mixed with fly ash and diluted to reduce the concentration of harmful substances below the standard value, which is advantageous in that it can be discarded as it is. Another advantage of the method of the present invention is that it is sufficient to add simple additional equipment to the current boiler-related equipment including flue gas desulfurization equipment, so that it is much simpler and more economical than the conventional treatment method in terms of space and operation. Is.

【0010】フライアッシュは現在70%程度が臨海埋立
投棄が行われており30%程度がフライアッシュセメン
ト、セメント混和材その他産業用用途に使用されてい
る。前者の埋立ては海洋汚染防止法により規制されてい
るが現在水遮断構造で表層水が流出時pH調整以外処理な
しの投棄で規制値は満足されている。粉状物を含有する
最終的に得られるフライアッシュは海防法および産廃法
の埋立て基準値をクリアしているので埋立て等にそのま
ま投棄処理できる。
At present, about 70% of fly ash is dumped at seaside, and about 30% is used for fly ash cement, cement admixture and other industrial applications. The former landfill is regulated by the Marine Pollution Control Law, but at present, the regulation value is satisfied by discarding the surface water with no treatment other than pH adjustment when the surface water flows out. The finally obtained fly ash containing the powdered material has passed the landfill standard values of the sea defense method and the industrial waste method, and therefore can be directly disposed of in landfills.

【0011】また近時地域協定で要求される項目につい
ても灰分離型からの排水について後述のごとくF-除去
処理を行うことにより水防法も満足させることができ
る。以下に本発明をさらに詳しく説明する。本発明の第
一工程で処理される排水は脱硫装置および関連設備から
の排水であり、脱硫装置は灰混合方式のものでも灰分離
方式のものでもよい。但し灰分離方式の場合は脱硫排水
中の弗素イオン濃度が高くなる傾向があり、500 ppmwを
こえる場合は予め排水を消石灰等で中和して弗素イオン
の大部分を CaF2 として析出させ、同時に生成する石こ
うスラッジと一緒に沈降物として脱硫装置の石こうスラ
リーと混合除去したのちpH4〜7に調整し濃縮工程にか
ける。
Further, regarding the items required by the recent regional agreements, the effluent control method can also be satisfied by subjecting the effluent from the ash separation type to F - removal treatment as described later. The present invention will be described in more detail below. The wastewater treated in the first step of the present invention is wastewater from the desulfurization apparatus and related equipment, and the desulfurization apparatus may be of ash mixing type or ash separation type. However, in the case of the ash separation method, the concentration of fluorine ions in the desulfurization effluent tends to be high.If the concentration exceeds 500 ppmw, the effluent is neutralized in advance with slaked lime, etc., and most of the fluorine ions are precipitated as CaF 2. The gypsum sludge produced is mixed with the gypsum slurry in the desulfurizer as a precipitate together with the resulting gypsum sludge, and then adjusted to pH 4 to 7 and subjected to a concentration step.

【0012】排水は種々の方法で濃縮できる。例えば自
己蒸気圧縮加熱式のフォーリングフィルム型二重効用缶
は液深圧による沸点上昇が小さく、自己蒸気の省圧縮エ
ネルギー様式で濃縮できるので好都合である。処理され
る脱硫排水は当初より固形微粒子を含有しており、かつ
液の濃縮に伴い可溶性塩類が過飽和となり析出してスケ
ーリングを起し、総括伝熱係数を低下させる傾向がある
ので、予め少量、好ましくは2〜3重量%程度の種晶を
スラリーに添加して種晶の表面上に結晶が析出するよう
にしむけ、伝熱機器へのスケーリングを回避することが
好ましい。
Wastewater can be concentrated in various ways. For example, a self-vapor compression heating type falling film double-effect can is advantageous because it has a small boiling point increase due to the liquid depth pressure and can be concentrated in a self-vapor compression energy saving mode. The desulfurization effluent to be treated contains solid fine particles from the beginning, and the soluble salts are supersaturated with the concentration of the liquid to cause precipitation and scaling, which tends to lower the overall heat transfer coefficient. It is preferable to add about 2 to 3% by weight of seed crystals to the slurry so that the crystals are deposited on the surface of the seed crystals and avoid scaling to heat transfer equipment.

【0013】濃縮は排水中の全溶解固形分 (以下TDS
と略記する) ベースで約20〜50重量%好ましくは処理排
煙の再加熱のための熱バランスに支障がなく経済的な濃
度の約25〜40重量%となるまで行われるのが好ましい。
かくして得られた濃縮液はスラリー状を呈し、後続の乾
燥工程に送られる。第二工程である乾燥工程は、粉状物
が得られるという利点から通常スプレードライ法により
行われ、被乾燥液の流量変化に対応すべくロータリーデ
ィスク型装置が通常用いられる。 700MWベース発電プラ
ントの脱硫排水の場合で内径約5m、高さ約5〜6mの
乾燥器で機能上充分都合良く乾燥できる。
Concentration is based on the total dissolved solid content in the wastewater (hereinafter TDS).
Abbreviated as "), preferably about 20 to 50% by weight, preferably about 25 to 40% by weight of an economical concentration without disturbing the heat balance for reheating the treated flue gas.
The concentrated liquid thus obtained has a slurry form and is sent to the subsequent drying step. The drying step, which is the second step, is usually performed by a spray drying method because of the advantage that a powdery substance can be obtained, and a rotary disk type device is usually used in order to cope with the change in the flow rate of the liquid to be dried. In the case of desulfurization drainage of a 700MW base power plant, a dryer with an inner diameter of about 5m and a height of about 5 to 6m can be used to perform drying sufficiently conveniently in terms of function.

【0014】乾燥に用いられる高温排煙はボイラー煙
道、好ましくはエコノマイザーとエアヒーター間の煙道
からの約 400〜320℃を有する排煙が用いられる。この
排煙はそのまま使用できるし、またはサイクロンを用い
て簡略的に除塵後のものでもよい。乾燥器出口側には簡
略型サイクロンを設置して乾燥器排煙中のダストを荒取
りし下流の誘引ファンの磨蝕防止を図ることが好まし
い。乾燥装置出口排煙温度を 180〜120℃好ましくは 15
0〜130℃に調節して乾燥した場合に最も効率良く粉状物
が形成される。生成する粉状物の粒度は約30〜80μm で
ある。
The hot flue gas used for drying is flue gas having a temperature of about 400 to 320 ° C. from a boiler flue, preferably the flue between the economizer and the air heater. This flue gas can be used as it is, or can be simply dust-removed using a cyclone. It is preferable to install a simplified cyclone on the outlet side of the dryer to roughly remove dust in the smoke discharged from the dryer to prevent corrosion of the induction fan downstream. The flue gas temperature at the outlet of the dryer is 180 to 120 ° C, preferably 15
The powder is most efficiently formed when adjusted to 0 to 130 ° C and dried. The particle size of the resulting powder is about 30-80 μm.

【0015】こうして生成した乾燥粉状物、サイクロン
で捕集された粉状物および乾燥器排煙は第三工程で煙道
中のどこかの段階、例えばエアヒーターと低温電気集塵
装置との間で煙道中に連続的に導入し放散させる。粉状
物は流動性が高いので煙道中の大量の排煙中に均一に混
合され、次工程の低温電気集塵機でフライアッシュと共
に捕集される。700MW ベース石炭だきボイラーの場合脱
硫排水は毎時約17m3 (約20トン) であり、これを濃縮乾
燥すると粉状物が毎時約1.3〜1.5トン生成する。
The dry powder thus produced, the powder collected by the cyclone and the smoke from the dryer are discharged in the third step at some stage in the flue, for example, between the air heater and the low temperature electrostatic precipitator. And continuously introduce it into the flue and dissipate it. Since the powdery matter has a high fluidity, it is uniformly mixed with a large amount of flue gas in the flue and collected together with fly ash by the low temperature electrostatic precipitator in the next step. In the case of a 700MW base coal-fired boiler, the desulfurization effluent is about 17m 3 (about 20 tons) per hour, and when this is concentrated and dried, about 1.3 to 1.5 tons of powder is produced per hour.

【0016】フライアッシュ量は使用される石炭中の灰
分量により変動し、石炭中の灰分量とフライアッシュ発
生量との関係を示せばおよそ次のとおりである。 石炭中の灰分(重量%) フライアッシュ量 フライアッシュ中の乾燥粉(%) 10 約24.0トン/時 約6.0 12.5 約30.0 〃 約4.8 15 約37.0 〃 約3.9 18 約44.0 〃 約3.3 20 約50.0 〃 約2.9 燃料炭中の灰分含量が少ない例である10%の場合でフラ
イアッシュに対する乾燥粉状物の比率は約6重量%であ
る。実際上は燃料石炭中の灰分は10%以上の場合が多い
ので、フライアッシュ量もより多くなり、従ってフライ
アッシュ中への粉状物混入量は6重量%をずっと下まわ
る場合が多い。
The amount of fly ash varies depending on the amount of ash in the coal used, and the relation between the amount of ash in the coal and the amount of fly ash generated is approximately as follows. Ash content in coal (% by weight) Amount of fly ash Dry powder in fly ash (%) 10 About 24.0 tons / hour About 6.0 12.5 About 30.0 〃 About 4.8 15 About 37.0 〃 About 3.9 18 About 44.0 〃 About 3.3 20 About 50.0 〃 2.9 About 10%, which is an example of low ash content in fuel coal, the ratio of dry powder to fly ash is about 6% by weight. In practice, the ash content in the fuel coal is often 10% or more, so that the fly ash amount is also large, and therefore, the amount of the particulate matter mixed in the fly ash is often lower than 6% by weight.

【0017】以上は乾燥装置を排煙煙道とは別個に設置
して含湿分を分離し、煙道での腐蝕防止、固着物の発
生、団子状物の生成を避けた例であるが、煙道の寸法が
高さ4mを越えるような大きい場合は濃縮液を煙道内で
直接排煙中に噴霧して乾燥させる方法も実施可能であろ
う。本発明を以下実施例および添付図面により、さらに
詳細に説明する。
The above is an example in which the drying device is installed separately from the flue gas flue to separate the moisture content, thereby preventing corrosion in the flue, generation of adhered matter, and formation of dumplings. If the size of the flue is larger than 4 m in height, it may be possible to spray the concentrated liquid directly into the flue gas to dry it. The present invention will be described in more detail with reference to the following examples and the accompanying drawings.

【0018】[0018]

【実施例】図1は本発明方法の概略を示すフローダイヤ
グラムであり、図2はスリット付きの特殊な分配器を備
えたフォーリングフィルム型濃縮器の例を示す図であ
る。図2に示す濃縮器は現在特許出願中 (特願平4 ─17
3227号) のもので、自己蒸気圧縮加熱型のフォーリング
フィルム型濃縮器で2重効用缶である。この濃縮器はス
タート時のみ外部よりスチームをジャケット側に導き加
熱するが運転正常化後はベーパーコンプレッサーで圧縮
するスチームだけの熱供給だけで足りるので外部よりス
チームを供給する必要はない。
1 is a flow diagram showing the outline of the method of the present invention, and FIG. 2 is a view showing an example of a falling film type concentrator equipped with a special distributor having slits. The concentrator shown in Fig. 2 is currently patent pending (Japanese Patent Application No. 4-17
No. 3227), which is a self-vapor compression heating type falling film type concentrator and is a double effect can. This concentrator introduces steam from the outside to the jacket side only at the start, and heats it, but after normalizing the operation, it is sufficient to supply heat only by the steam compressed by the vapor compressor, so there is no need to supply steam from the outside.

【0019】湿式脱硫装置からの排水18 (固体濃度500p
pmw 以下) を予め消石灰でpH5〜6に調整し、石こう種
晶 (平均粒径40μm ) を約2重量%添加し、これを図1
および図2中のフォーリングフィルム型濃縮器5 (熱交
換パイプ内管50mm、長さ1.5m、内管材質チタン) に内
管周辺長1m当り1000L〜2000L/時の流量で導入し
た。ジャケット側34をスチームにより加熱し、内管33と
ジャケットの圧力差 0.15〜0.2kg/cm2 にコントロー
ルして循環濃縮した。
Wastewater from wet desulfurization equipment 18 (solids concentration 500 p
pmw or less) was adjusted to pH 5 to 6 with slaked lime in advance, and about 2% by weight of gypsum seed crystal (average particle size 40 μm) was added.
Then, it was introduced into a falling film type concentrator 5 (inner tube of heat exchange pipe 50 mm, length 1.5 m, inner tube material titanium) in FIG. 2 at a flow rate of 1000 L to 2000 L / hour per 1 m of the inner tube peripheral length. The jacket side 34 was heated with steam, and the pressure difference between the inner tube 33 and the jacket was controlled to 0.15 to 0.2 kg / cm 2 for circulation and concentration.

【0020】濃縮中給液と蒸発水蒸気は併流下降し、下
部サンプにて気液分離された。水蒸気はミスト除去後ベ
ーパーコンプレッサー6にて圧縮 (伝熱パイプ内外温度
差約5℃前後) 濃縮器ジャケットへ送入された。流下し
た液は循環ポンプ7で新給液と共に濃縮器の頂部液分配
部へ送られ循環濃縮された。濃縮液中の種晶の表面積
(析出塩の析出面) が伝熱管内を通過する間の液の被加
熱濃縮に対応し伝熱管内壁にスケールが発生しない様供
給液の液深を調節して濃縮操作を行った。濃縮は連続操
作で行われ濃縮液の一部は循環ポンプ7吐出側から濃縮
液貯槽8に送るが一部の液はハイドロクローンにて種晶
を分離し循環液内の種晶濃度を一定に保った。濃縮液の
沸点上昇は3〜5℃、総括伝熱係数は約2400kcal/m2hr
℃であった。
During the concentration, the feed liquid and the vaporized water vapor flowed down in parallel, and were separated into gas and liquid in the lower sump. After removing the mist, the water vapor was compressed by the vapor compressor 6 (the temperature difference between the inside and outside of the heat transfer pipe was about 5 ° C.) and sent to the condenser jacket. The liquid that flowed down was sent to the liquid distribution part at the top of the concentrator by the circulation pump 7 together with the new liquid supply, and was circulated and concentrated. Surface area of seed crystals in concentrate
Concentration operation was performed by adjusting the liquid depth of the feed liquid so that no scale is generated on the inner wall of the heat transfer tube in response to the heated concentration of the liquid while the (precipitated salt deposition surface) is passing through the heat transfer tube. Concentration is carried out in a continuous operation, and a part of the concentrated liquid is sent from the discharge side of the circulation pump 7 to the concentrated liquid storage tank 8, but a part of the liquid is separated into seed crystals by a hydroclone to make the seed crystal concentration in the circulating liquid constant. I kept it. The boiling point of the concentrate is 3-5 ° C, and the overall heat transfer coefficient is about 2400 kcal / m 2 hr.
It was ℃.

【0021】約35重量%まで濃縮され、回収された水分
は毎時約5Lであった。得られた濃縮スラリーはポンプ
9により乾燥器10に送られた。次にエコノマイザーとエ
アヒーター3の間の煙道から取出口2を介して高温排煙
15を取り出し、ロータリーディスクスプレー型乾燥器10
の上部側およびロータリーディスクの円周辺より導入
し、旋回流により前工程で得られたスラリーを噴霧乾燥
した。乾燥条件は次のとおりであった。
The water content concentrated to about 35% by weight and recovered was about 5 L / h. The obtained concentrated slurry was sent to the dryer 10 by the pump 9. Next, from the flue between the economizer and the air heater 3, high temperature flue gas is exhausted through the outlet 2.
Take out 15 and use rotary disc spray dryer 10
The slurry obtained in the previous step was spray-dried by swirling flow. The drying conditions were as follows.

【0022】 濃縮液温度 100℃ 濃縮液濃度 35重量% ディスクアトマイザー径 5.08cm (2インチ) 高温排煙入口温度 350℃ 排煙出口温度 150℃ 乾燥滞留時間 2秒 乾燥生成物は完全に乾燥した粉状物であり、粒径30〜80
μm であった。
Concentrate temperature 100 ° C. Concentrate concentration 35 wt% Disk atomizer diameter 5.08 cm (2 inches) High temperature flue gas inlet temperature 350 ° C. Flue gas outlet temperature 150 ° C. Dry residence time 2 seconds Dry product is a completely dry powder It is a substance, particle size 30 to 80
It was μm.

【0023】乾燥器底板は底部板とエアスライド板14が
セットで傾斜状底板となっており、高温排煙の一部がエ
アスライド板下部から吹き込まれるので、生成した乾燥
粉状物は片側隅に移動され、ロータリーバルブ12に移動
し、このロータリーバルブ12を介してエアヒーター3と
低温電気集塵器4との間の煙道中に連続的に放散希釈さ
せ、フライアッシュ17と一緒に系外にとり出した。乾燥
器排気はサイクロン13を経由して誘引ファン11により煙
道中に排気され、サイクロン13で捕集された粉状物は同
じくロータリーバルブ12から煙道中に放出された。
The bottom plate of the dryer and the air slide plate 14 are set as an inclined bottom plate, and a part of the high-temperature smoke is blown from the lower part of the air slide plate. Is moved to the rotary valve 12, through which the flue between the air heater 3 and the low-temperature electrostatic precipitator 4 is continuously diffused and diluted, and the fly ash 17 and the outside of the system are used. I took it out. The dryer exhaust was exhausted into the flue by the attracting fan 11 via the cyclone 13, and the powdery matter collected by the cyclone 13 was also released into the flue from the rotary valve 12.

【0024】本実施例で得られた粉状物を発電所から入
手したフライアッシュにそれぞれ6、8および10重量%
の濃度で添加したサンプルを作り、投棄時の溶出試験を
行った。結果を下記表1に示す。同時に石炭灰の溶出試
験に関する排出基準 (水防法) 、埋立 (産廃法) および
海洋投棄 (海防法) 規制値も表1に示す。
The powder obtained in this example was added to fly ash obtained from a power plant at 6, 8 and 10% by weight, respectively.
A sample added at the concentration of was prepared and an elution test at the time of disposal was performed. The results are shown in Table 1 below. At the same time, Table 1 shows the emission standards (Water Control Law), landfill (Industrial Waste Law) and marine dumping (Marine Protection Law) regulation values related to the elution test of coal ash.

【0025】 表1から判るとおり、いずれの場合も産廃法および海防
法の国の埋立基準値を満足し、pH調整後は地域協定値で
要求される水防法における生活環境項目も満足すること
が判明した。実際上は燃料石炭中の灰分は10%以上の場
合が多いので、フライアッシュ量もより多くなり、従っ
てフライアッシュ中への粉状物混入量は6重量%をずっ
と下まわる場合が多く、粉状物含有フライアッシュは充
分に埋立て等により投棄できる。
[0025] As can be seen from Table 1, it was found that in all cases, the national landfill standard values of the Industrial Waste Law and the Marine Defense Law were satisfied, and after adjusting the pH, the living environment items under the flood control law required by the regional agreement values were also satisfied. In practice, the ash content in fuel coal is often 10% or more, so the fly ash amount is also larger, and therefore the amount of powdered substances mixed in fly ash is often below 6% by weight. The fly ash containing particulate matter can be sufficiently discarded by landfilling.

【0026】[0026]

【発明の効果】本発明によれば、脱硫排水を効率的に処
理してフライアッシュと一緒に投棄でき、水分も回収で
き、従って処理設備、運用面、占有面積等の点で効率
的、経済的、かつ環境保護的に有利な方法が提供され
る。
EFFECTS OF THE INVENTION According to the present invention, desulfurization effluent can be efficiently treated and dumped together with fly ash, and moisture can be recovered. Therefore, it is efficient and economical in terms of treatment equipment, operational aspect, occupied area, etc. An environmentally and environmentally advantageous method is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】排水を濃縮し、乾燥し、そしてフライアッシュ
中に希釈する本発明方法の一例を示すフローダイヤグラ
ムである。
FIG. 1 is a flow diagram showing an example of the method of the present invention in which waste water is concentrated, dried, and diluted in fly ash.

【図2】本発明の濃縮工程で用いられるフォーリングフ
ィルム型濃縮器の一例を示す図である。
FIG. 2 is a diagram showing an example of a falling film type concentrator used in the concentration step of the present invention.

【符号の説明】[Explanation of symbols]

1 脱硝装置 2 高温排煙取出
口 3 エアヒーター 4 電気集塵器 5 フォーリングフィルム型濃縮器 6 ベーパーコン
プレッサー 7 濃縮液循環ポンプ 8 濃縮液タンク 9 濃縮液供給ポンプ 10 ロータリーデ
ィスクスプレー乾燥器 11 誘引ファン 12 ロータリーバ
ルブ 13 サイクロン 14 エアースライ
ド板 15 高温ボイラー排煙 16 未処理排煙 17 フライアッシュ 18 脱硫排水 19 濃縮スラリー 20 蒸発ベーパー 21 凝縮水 22 凝縮水貯槽 23 熱交換器 24 貯水タンク 25 脱気槽 31 分配器 32 頂部液槽 33 内管 34 ジャケット 35 循環液槽 36 循環液 37 マグネチック
流量指示制御計 38 スチーム圧指示調節計 39 スリット 40 スチーム 41 覗き窓 42 スチームトラップ
1 Denitration device 2 High temperature flue gas outlet 3 Air heater 4 Electrostatic precipitator 5 Falling film type concentrator 6 Vapor compressor 7 Concentrated liquid circulation pump 8 Concentrated liquid tank 9 Concentrated liquid supply pump 10 Rotary disk spray dryer 11 Induction fan 12 Rotary valve 13 Cyclone 14 Air slide plate 15 High temperature boiler flue gas 16 Untreated flue gas 17 Fly ash 18 Desulfurization drainage 19 Concentrated slurry 20 Evaporative vapor 21 Condensed water 22 Condensed water tank 23 Heat exchanger 24 Water storage tank 25 Degassing tank 31 Distributor 32 Top liquid tank 33 Inner tube 34 Jacket 35 Circulating liquid tank 36 Circulating liquid 37 Magnetic flow rate indicating controller 38 Steam pressure indicating controller 39 Slit 40 Steam 41 Peephole 42 Steam trap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 湿式排煙脱硫装置および関連設備から排
出される脱硫排水を濃縮する第一工程、残留する濃縮液
をボイラー煙道からの高温排煙を用いて乾燥する第二工
程、および得られる乾燥粉状物を前記煙道に吹き込みフ
ライアッシュ中に混入希釈する第三工程、からなること
を特徴とする、脱硫排水を直接投棄可能な物質となす方
法。
1. A first step of concentrating desulfurization effluent discharged from a wet flue gas desulfurization apparatus and related equipment, a second step of drying the remaining concentrated liquid using hot flue gas from a boiler flue, and A third step of blowing the dry powdery substance into the flue and mixing and diluting it into fly ash.
JP4182397A 1992-07-09 1992-07-09 Treatment of desulfurization waste water Pending JPH0623347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4182397A JPH0623347A (en) 1992-07-09 1992-07-09 Treatment of desulfurization waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4182397A JPH0623347A (en) 1992-07-09 1992-07-09 Treatment of desulfurization waste water

Publications (1)

Publication Number Publication Date
JPH0623347A true JPH0623347A (en) 1994-02-01

Family

ID=16117600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4182397A Pending JPH0623347A (en) 1992-07-09 1992-07-09 Treatment of desulfurization waste water

Country Status (1)

Country Link
JP (1) JPH0623347A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115408A1 (en) * 2013-01-24 2014-07-31 三菱重工業株式会社 Exhaust gas processing system and exhaust gas processing method
CN105051456A (en) * 2013-03-14 2015-11-11 西门子股份公司 Localized flue gas dilution in heat recovery steam generator
CN107792906A (en) * 2017-12-08 2018-03-13 北京尤科恩环保工程有限公司 A kind of boiler flue gas desulfurization method of wastewater treatment and system
CN108383313A (en) * 2018-05-10 2018-08-10 广东德嘉电力环保科技有限公司 A kind of MVR concentration cooperates with treatment process and system with swirling flow atomizing
CN112194298A (en) * 2020-08-07 2021-01-08 东方电气集团东方锅炉股份有限公司 System and method for recycling wastewater of whole power plant

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115408A1 (en) * 2013-01-24 2014-07-31 三菱重工業株式会社 Exhaust gas processing system and exhaust gas processing method
JP2014140823A (en) * 2013-01-24 2014-08-07 Mitsubishi Heavy Ind Ltd Exhaust gas treatment system and method
US20150352490A1 (en) * 2013-01-24 2015-12-10 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
US9669356B2 (en) 2013-01-24 2017-06-06 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
US9943804B2 (en) 2013-01-24 2018-04-17 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
CN105051456A (en) * 2013-03-14 2015-11-11 西门子股份公司 Localized flue gas dilution in heat recovery steam generator
US9587828B2 (en) 2013-03-14 2017-03-07 Siemens Aktiengesellschaft Localized flue gas dilution in heat recovery steam generator
CN107792906A (en) * 2017-12-08 2018-03-13 北京尤科恩环保工程有限公司 A kind of boiler flue gas desulfurization method of wastewater treatment and system
CN108383313A (en) * 2018-05-10 2018-08-10 广东德嘉电力环保科技有限公司 A kind of MVR concentration cooperates with treatment process and system with swirling flow atomizing
CN112194298A (en) * 2020-08-07 2021-01-08 东方电气集团东方锅炉股份有限公司 System and method for recycling wastewater of whole power plant
CN112194298B (en) * 2020-08-07 2022-11-01 东方电气集团东方锅炉股份有限公司 System and method for recycling wastewater of whole power plant

Similar Documents

Publication Publication Date Title
US9943804B2 (en) Air pollution control system and air pollution control method
KR100288993B1 (en) Flue Gas Treating Process and System
JPS61178022A (en) Simultaneous treatment of so2, so3 and dust
US20150375166A1 (en) Air pollution control system and air pollution control method
KR100287634B1 (en) Flue Gas Treatment Facility
KR101860295B1 (en) Treatment Apparatus of FGD Wastewater by using Vacuum Evaporation and Method Thereof
CN110723858A (en) Desulfurization wastewater zero-discharge treatment system and treatment process
JPS6338240B2 (en)
JPS6038611B2 (en) Method and device for evaporating and concentrating waste sludge using exhaust gas from an incinerator
JP6121158B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN109019734B (en) Desulfurization waste water zero release's system
JPWO2004023040A1 (en) Smoke treatment system
CN211367297U (en) Desulfurization waste water zero release processing system
CN109205909B (en) System and method for treating flue gas desulfurization wastewater of coal-fired power plant boiler
JPH0623347A (en) Treatment of desulfurization waste water
CN207918474U (en) A kind of waste water from power plant device
JPH11207146A (en) Method for recovering gypsum from flue gas desulfurization wastewater
JP3497459B2 (en) Desulfurization wastewater treatment method and apparatus
JPS6350079B2 (en)
JPH08131764A (en) Wet type exhaust gas treatment method and apparatus
JP3526975B2 (en) Coal ash solidification treatment method for desulfurization wastewater
CN112624236A (en) System for desulfurization waste water evaporation treatment and evaporation product utilization
JPS61181519A (en) Treatment of waste liquid in waste gas treating apparatus
JPH0248024Y2 (en)
JPS60235625A (en) Treatment of exhaust gas