JPH06232625A - Dual resonance inverted-f antenna - Google Patents

Dual resonance inverted-f antenna

Info

Publication number
JPH06232625A
JPH06232625A JP3253693A JP3253693A JPH06232625A JP H06232625 A JPH06232625 A JP H06232625A JP 3253693 A JP3253693 A JP 3253693A JP 3253693 A JP3253693 A JP 3253693A JP H06232625 A JPH06232625 A JP H06232625A
Authority
JP
Japan
Prior art keywords
radiator
antenna
sub
conductor plate
inverted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3253693A
Other languages
Japanese (ja)
Inventor
Ryuichi Masuda
隆一 増田
Shinichi Kotajima
真一 古田島
Tetsuro Ogawa
哲朗 尾川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Japan Ltd
Original Assignee
Nippon Motorola Ltd
Motorola Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Motorola Ltd, Motorola Japan Ltd filed Critical Nippon Motorola Ltd
Priority to JP3253693A priority Critical patent/JPH06232625A/en
Publication of JPH06232625A publication Critical patent/JPH06232625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To provide the dual resonance inverted-F antenna with a wide band and less gain deterioration. CONSTITUTION:A main radiator 2 is provided on a grounded conductor plate 1 and one end of the major radiator 2 is connected electrically to the grounded conductor plate 1 via a short-circuit piece 3. A feeder 5 is connected to a feeding point 4 of the major radiator 2, and the feeder 5 is connected to a transmitter- receiver (not shown). A sub radiator 6 is provided to an upper part of the major radiator 2, a short-circuit piece 7 is connected electrically from one end of the sub radiator 6 to a ground conductor plate 1 separately from the short- circuit piece 3. The major radiator 2 and the sub radiator 6 may be a conductive material and, for example, copper is suitable for the material. The grounded conductor plate 1 is connected to a case of a portable radio equipment usually. Since the major radiator 2 is connected to the grounded conductor plate 1 and the sub radiator 6 is connected to the grounded conductor plate 1 separately respectively, the dual resonance inverted-F antenna with a broad band and less gain deterioration within a band of the operating frequency is provided while keeping the size of the antenna small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、携帯無線装置に使用さ
れる複共振逆Fアンテナに関し、さらに詳しくは、複共
振逆Fアンテナの副放射器が、主放射器と別個に接地さ
れる複共振逆Fアンテナの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-resonance inverted-F antenna used in a portable radio device, and more specifically, a multi-resonance inverted-F antenna whose sub-radiator is grounded separately from a main radiator. It relates to the structure of a resonant inverted F antenna.

【0002】[0002]

【従来の技術】従来から複共振逆Fアンテナは周知であ
り、様々な改良が行なわれている。複共振逆Fアンテナ
は、接地された導体板に対抗して配置された導体放射板
を有し、導体放射板の一端は接地された導体板に接続さ
れた構造である。この構造を横から見るとあたかもF形
の形状をしているので、上述のように呼ばれる。従来の
複共振逆Fアンテナに対する改良として、たとえば、特
開昭60−58704(複共振形逆Fアンテナ)、特開
昭61−41205(広帯域伝送線路アンテナ)、米国
特許4,070,676(Multiple Reso
nance Radio Frequency Mic
rostrip Antenne Structur
e)、米国特許4,131,893(Microstr
ip Radiator with Folded R
esonant Cavity)、および米国特許4,
218,681(Multiple Band Cir
culary Polarized Microstr
ip Antenne)などがある。
2. Description of the Related Art A multi-resonant inverted F antenna has been well known, and various improvements have been made. The multi-resonance inverted-F antenna has a conductor radiating plate arranged to oppose a grounded conductor plate, and one end of the conductor radiating plate is connected to the grounded conductor plate. When this structure is viewed from the side, it is as if it had an F-shape, so it is called as described above. As an improvement over the conventional multi-resonance inverted F antenna, for example, JP-A-60-58704 (multi-resonance inverted F antenna), JP-A-61-41205 (broadband transmission line antenna), and U.S. Pat. No. 4,070,676 (Multiple). Reso
nonce Radio Frequency Mic
rostripe anne Structur
e), U.S. Pat. No. 4,131,893 (Microstr
ip Radiator with Folded R
essonant Cavity), and US Pat.
218,681 (Multiple Band Cir)
circularly Polarized Microstr
ip Antenne).

【0003】[0003]

【発明が解決しようとする課題】特開昭60−5870
4で開示された複共振形逆Fアンテナでは、第3図から
理解されるようにリターンロスの低くなる周波数が2つ
あり、複共振を起こしている。しかしながら、上記2つ
の周波数を含む帯域ではゲイン(利得)が一定でなくま
た劣化している。特開昭61−41205で開示された
広帯域伝送線路アンテナでは、ゲインが一定でありかつ
劣化も少ないが、アンテナの形状を小さくするために導
体板間の距離を短くすると広帯域化の効果が薄れる結果
となる。また、米国特許4,070,676で開示され
たマイクロストリップ・アンテナでは、やはり導体素子
間の距離を短くすると広帯域化の効果が薄れる結果とな
る。さらに、米国特許4,131,893のマイクロス
トリップ・ラジエータは、構造が複雑であり、給電され
るラジエータ(放射器)が半波長タイプであるので、小
型化には限界がある。また、米国特許4,218,68
1で開示されたマイクロストリップ・アンテナでは、導
体素子間の距離を短くすると、前述したのと同様に、広
帯域化の効果が薄れ、さらに給電される放射器が半波長
タイプであるので、小型化には限界がある。
Problems to be Solved by the Invention JP-A-60-5870
In the multi-resonance type inverted F antenna disclosed in 4, there are two frequencies at which the return loss becomes low, as shown in FIG. 3, and multiple resonance occurs. However, in the band including the above two frequencies, the gain is not constant and deteriorates. In the wideband transmission line antenna disclosed in Japanese Patent Laid-Open No. 61-41205, the gain is constant and the deterioration is small, but if the distance between the conductor plates is shortened in order to reduce the shape of the antenna, the effect of widening the band is weakened. Becomes Further, in the microstrip antenna disclosed in U.S. Pat. No. 4,070,676, if the distance between the conductor elements is shortened, the effect of widening the band is reduced. Furthermore, the microstrip radiator of US Pat. No. 4,131,893 has a complicated structure, and the radiator (radiator) to be fed is a half-wavelength type, so there is a limit to miniaturization. Also, US Pat. No. 4,218,68
In the microstrip antenna disclosed in 1), if the distance between the conductor elements is shortened, the effect of widening the band is weakened as described above, and the radiator to be fed is a half-wave type, so that the size is reduced. Is limited.

【0004】以上のように、従来の複共振逆Fアンテナ
は、小型化、広帯域化、およびゲイン劣化において問題
を有する。本願発明は、上記問題点を解決する新規な複
共振逆Fアンテナである。
As described above, the conventional multi-resonance inverted-F antenna has problems in miniaturization, wide band, and gain deterioration. The present invention is a novel multi-resonant inverted F antenna that solves the above problems.

【0005】[0005]

【課題を解決するための手段】本発明は、接地した板状
導体と予め定める距離だけ対抗して配置された板状導体
の主放射器であって、給電線が前記主放射器の給電点に
電気的に接続された前記主放射器と、前記接地した板状
導体と反対側に前記主放射器から予め定める距離だけ対
抗させて配置された板状導体の副放射器と、から構成さ
れる複共振逆Fアンテナにおいて、前記主放射器および
前記副放射器は、前記接地した板状導体とそれぞれ別個
に電気的に接続される複共振逆Fアンテナである。
DISCLOSURE OF THE INVENTION The present invention is a main radiator of a plate-shaped conductor arranged so as to oppose a grounded plate-shaped conductor by a predetermined distance, and a feed line is a feeding point of the main radiator. A main radiator electrically connected to the main radiator, and a sub-radiator of a plate conductor disposed opposite to the grounded plate conductor by a predetermined distance from the main radiator. In the multi-resonance inverted-F antenna, the main radiator and the sub-radiator are multiple-resonance inverted-F antennas that are electrically connected to the grounded plate conductors, respectively.

【0006】[0006]

【実施例】図1は、本発明の一実施例の基本構成を示す
斜視図である。接地された導体板1上に主放射器2が設
けられ、主放射器2の一端は、短絡片3を介して、接地
導体板1に電気的に接続される。主放射器2の給電点4
には給電線5が接続され、給電線5は、図示しない送受
信機に接続される。主放射器2の上部には、副放射器6
が設けられ、副放射器6の一端からは短絡片7が、短絡
片3とは別個に接地導体板1に電気的に接続される。主
放射器2および副放射器6は、導電性のものであればよ
く、例えば、銅が好適である。接地導体板1は、通常携
帯無線機の筐体に接続されている。
1 is a perspective view showing the basic construction of an embodiment of the present invention. The main radiator 2 is provided on the grounded conductor plate 1, and one end of the main radiator 2 is electrically connected to the ground conductor plate 1 via the short-circuit piece 3. Feeding point 4 of main radiator 2
Is connected to a power supply line 5, and the power supply line 5 is connected to a transceiver (not shown). On the upper part of the main radiator 2, the sub radiator 6
Is provided, and the short-circuit piece 7 is electrically connected to the ground conductor plate 1 separately from the short-circuit piece 3 from one end of the sub radiator 6. The main radiator 2 and the sub radiator 6 may be conductive ones, for example, copper is preferable. The ground conductor plate 1 is usually connected to the housing of the portable wireless device.

【0007】接地導体板1、主放射器2および副放射器
6のそれぞれの間隔は、使用する周波数によって異な
り、共振周波数は、主放射器2および副放射器6の大き
さおよび主放射器2と副放射器6との間隔によって決ま
る。図2に主放射器2および副放射器6の大きさをそれ
ぞれ25mm×25mm、10mm×15mmとし、主
放射器2と副放射器6との間隔を5mmとした場合のア
ンテナ・リターンロスの実測値を示す。図2から理解さ
れるように、A点(1.41GHz)およびB点(1.
46GHz)に示す周波数にリターンロスの低いとこ
ろ、すなわち、共振周波数が2箇所存在する。
The spacing between the ground conductor plate 1, the main radiator 2 and the sub radiator 6 differs depending on the frequency used, and the resonance frequency is the size of the main radiator 2 and the sub radiator 6 and the main radiator 2. And the distance between the sub radiator 6 and the sub radiator 6. FIG. 2 shows the actual measurement of antenna return loss when the sizes of the main radiator 2 and the sub radiator 6 are 25 mm × 25 mm, 10 mm × 15 mm, and the distance between the main radiator 2 and the sub radiator 6 is 5 mm. Indicates a value. As can be seen from FIG. 2, point A (1.41 GHz) and point B (1.
46 GHz) has a low return loss, that is, there are two resonance frequencies.

【0008】図3は、本実施例の複共振逆Fアンテナの
特性インピーダンスを示すスミスチャート、図4は、そ
の実測ゲイン特性図である。図4において、特性Dはダ
イポールアンテナのゲイン特性を、特性Cは、本発明の
ゲイン特性を示す。図4のゲイン特性図から分かるよう
に、本発明に係る複共振逆Fアンテナは、ダイポールア
ンテナに比べ、1.38GHzないし1.46GHzの
帯域(80MHz)において最大2dBのゲイン低下を
きたすにとどまる。
FIG. 3 is a Smith chart showing the characteristic impedance of the multi-resonance inverted F antenna of this embodiment, and FIG. 4 is its measured gain characteristic diagram. In FIG. 4, the characteristic D shows the gain characteristic of the dipole antenna, and the characteristic C shows the gain characteristic of the present invention. As can be seen from the gain characteristic diagram of FIG. 4, the multi-resonance inverted-F antenna according to the present invention causes a maximum gain reduction of 2 dB in the band of 1.38 GHz to 1.46 GHz (80 MHz) as compared with the dipole antenna.

【0009】なお、本発明の一実施例として、単一の副
放射器が設けられた場合について述べたが、複数の副放
射器が多層された場合も同様の効果が得られ、副放射器
の数に対応する副共振周波数を得ることができる。ま
た、主放射器を、複数の多層した副放射器にサンドイッ
チ状に構成することも可能である。
As an embodiment of the present invention, the case where a single sub-radiator is provided has been described, but the same effect can be obtained when a plurality of sub-radiators are multi-layered. It is possible to obtain sub-resonant frequencies corresponding to the number of It is also possible to construct the main radiator in a sandwich form with a plurality of sub-radiators in multiple layers.

【0010】[0010]

【発明の効果】以上説明したように、本発明に従えば、
主放射器および副放射器の接地導体板への接続をそれぞ
れ別個に行なったので、アンテナの形状を小型に維持し
たまま、広帯域でかつ使用周波数の帯域内でゲイン劣化
の少ない複共振逆Fアンテナを実現することが可能であ
る。
As described above, according to the present invention,
Since the main radiator and the sub-radiator are connected to the ground conductor plate separately, the multi-resonance inverted F antenna with wide band and less gain deterioration in the operating frequency band while keeping the antenna shape small. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である複共振逆Fアンテナの
基本構成を示す斜視図を示す。
FIG. 1 is a perspective view showing a basic configuration of a multi-resonance inverted F antenna according to an embodiment of the present invention.

【図2】図1に示す一実施例である複共振逆Fアンテナ
のアンテナ・リターンロス特性である。
FIG. 2 is an antenna return loss characteristic of the multi-resonance inverted F antenna according to the embodiment shown in FIG.

【図3】図1に示す一実施例である複共振逆Fアンテナ
のスミスチャート上での特性インピーダンス図である。
FIG. 3 is a characteristic impedance diagram on the Smith chart of the multi-resonance inverted F antenna according to the embodiment shown in FIG.

【図4】図1に示す一実施例である複共振逆Fアンテナ
のゲイン特性である。
4 is a gain characteristic of the multi-resonance inverted F antenna according to the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1 接地導体板 2 主放射器 3 短絡片 4 給電点 5 給電線 6 副放射器 7 短絡片 1 Grounding conductor plate 2 Main radiator 3 Short-circuit piece 4 Feed point 5 Feed line 6 Sub-radiator 7 Short-circuit piece

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 接地した板状導体と予め定める距離だけ
対抗して配置された板状導体の主放射器であって、給電
線が前記主放射器の給電点に電気的に接続された前記主
放射器と、前記接地した板状導体と反対側に前記主放射
器から予め定める距離だけ対抗させて配置された板状導
体の副放射器と、から構成される複共振逆Fアンテナに
おいて、 前記主放射器および前記副放射器は、前記接地した板状
導体とそれぞれ別個に電気的に接続されることを特徴と
する複共振逆Fアンテナ。
1. A main radiator of a plate conductor arranged to oppose a grounded plate conductor by a predetermined distance, wherein a feed line is electrically connected to a feeding point of the main radiator. In a multi-resonance inverted-F antenna composed of a main radiator and a sub-radiator of a plate-shaped conductor arranged opposite to the grounded plate-shaped conductor by a predetermined distance from the main radiator, The multi-resonance inverted F antenna, wherein the main radiator and the sub radiator are electrically connected to the grounded plate-shaped conductor separately.
【請求項2】 前記副放射器は、予め定める距離を保っ
て複数層状に配置されることを特徴とする請求項1記載
の複共振逆Fアンテナ。
2. The multi-resonance inverted F antenna according to claim 1, wherein the sub-radiators are arranged in a plurality of layers with a predetermined distance maintained therebetween.
JP3253693A 1993-01-29 1993-01-29 Dual resonance inverted-f antenna Pending JPH06232625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253693A JPH06232625A (en) 1993-01-29 1993-01-29 Dual resonance inverted-f antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253693A JPH06232625A (en) 1993-01-29 1993-01-29 Dual resonance inverted-f antenna

Publications (1)

Publication Number Publication Date
JPH06232625A true JPH06232625A (en) 1994-08-19

Family

ID=12361666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253693A Pending JPH06232625A (en) 1993-01-29 1993-01-29 Dual resonance inverted-f antenna

Country Status (1)

Country Link
JP (1) JPH06232625A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271796B1 (en) 1998-01-30 2001-08-07 Matsushita Electric Industrial Co., Ltd. Built-in antenna for radio communication terminals
WO2002013312A1 (en) * 2000-08-04 2002-02-14 Matsushita Electric Industrial Co., Ltd. Antenna device and radio communication device comprising the same
US6924769B2 (en) 2001-12-27 2005-08-02 Matsushita Electric Industrial Co., Ltd. Antenna for communication terminal apparatus
US6987485B2 (en) 2000-08-31 2006-01-17 Matsushita Electric Industrial Co., Ltd. Built-in antenna for radio communication terminal
JP2010004457A (en) * 2008-06-23 2010-01-07 Sumitomo Electric Ind Ltd Wireless relay apparatus with integrated antennas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271796B1 (en) 1998-01-30 2001-08-07 Matsushita Electric Industrial Co., Ltd. Built-in antenna for radio communication terminals
WO2002013312A1 (en) * 2000-08-04 2002-02-14 Matsushita Electric Industrial Co., Ltd. Antenna device and radio communication device comprising the same
US6781553B2 (en) 2000-08-04 2004-08-24 Matsushita Electric Industrial Co., Ltd. Antenna device and radio communication device comprising the same
US6987485B2 (en) 2000-08-31 2006-01-17 Matsushita Electric Industrial Co., Ltd. Built-in antenna for radio communication terminal
US6924769B2 (en) 2001-12-27 2005-08-02 Matsushita Electric Industrial Co., Ltd. Antenna for communication terminal apparatus
JP2010004457A (en) * 2008-06-23 2010-01-07 Sumitomo Electric Ind Ltd Wireless relay apparatus with integrated antennas

Similar Documents

Publication Publication Date Title
US7782257B2 (en) Multi-band internal antenna of symmetry structure having stub
US6765539B1 (en) Planar multiple band omni radiation pattern antenna
KR100771775B1 (en) Perpendicular array internal antenna
US6380903B1 (en) Antenna systems including internal planar inverted-F antennas coupled with retractable antennas and wireless communicators incorporating same
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US6734825B1 (en) Miniature built-in multiple frequency band antenna
KR101163419B1 (en) Hybrid Patch Antenna
US6606071B2 (en) Multifrequency antenna with a slot-type conductor and a strip-shaped conductor
US20060244668A1 (en) Hybrid antenna using parasitic excitation of conducting antennas by dielectric antennas
JPH03253106A (en) On-vehicle antenna
US8654013B2 (en) Multi-band antenna
US6864842B2 (en) Tri-band antenna
JP2003505963A (en) Capacitively tuned broadband antenna structure
JPH11150415A (en) Multiple frequency antenna
US20040021605A1 (en) Multiband antenna for mobile devices
KR100616545B1 (en) Multi-band laminated chip antenna using double coupling feeding
US7466272B1 (en) Dual-band antenna
KR20090131853A (en) Antenna device for portable terminal
Li et al. Internal printed loop‐type mobile phone antenna for penta‐band operation
KR100570072B1 (en) Internal antenna for mobile communication terminal
JP2004147327A (en) Multiband antenna
JP3030590B2 (en) Flat antenna
JPH06232625A (en) Dual resonance inverted-f antenna
US11862873B2 (en) Antenna device
WO2005015689A1 (en) Antennas for wireless communication of a laptop computer