JPH06232271A - Connection material and input/output control method - Google Patents

Connection material and input/output control method

Info

Publication number
JPH06232271A
JPH06232271A JP5032508A JP3250893A JPH06232271A JP H06232271 A JPH06232271 A JP H06232271A JP 5032508 A JP5032508 A JP 5032508A JP 3250893 A JP3250893 A JP 3250893A JP H06232271 A JPH06232271 A JP H06232271A
Authority
JP
Japan
Prior art keywords
heating
resistance
electric resistance
interconnections
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5032508A
Other languages
Japanese (ja)
Inventor
Susumu Fujimori
進 藤森
Tsunekazu Iwata
恒和 岩田
Masami Miyagi
雅美 宮城
Iwao Hatakeyama
巌 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5032508A priority Critical patent/JPH06232271A/en
Publication of JPH06232271A publication Critical patent/JPH06232271A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To change the electric resistance of a resistance-variable material reversibly when light is applied or the like by using a material which contains a chemical element selected from a prescribed group and whose electric resistance is changed by irradiation with light, by applying a voltage or by heating. CONSTITUTION:A connection material which contains at least two kinds of chemical elements selected from a group composed of Ge, Te, Sb and In and whose electric resistance is changed by irradiation with light, by applying a voltage or by heating is used. For example, interconnections are formed in two layers in the two X- and Y-directions. Y-direction interconnections 1, X- direction interconnections 2, a substrate 4, lead wires 5 and the like are provided. Then, an SiO2 layer is formed as an intermediate insulating layer 3, and it isolates conductors. Holes are made in points 6 of intersection in the X-Y interconnections, and a resistance-variable connection material, i.e., an (Sb2Te3)50(GeTe)50 thin film, is arranged inside the holes. When a repeated experiment on current application and an insulation operation is tried, it is found out that the mates is operated stably reversibly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ROM等の記憶素子や
電子素子、MDF(main distribusion frame)等の配線
材料において、電気抵抗が変化することができる材料を
用いた高性能素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high performance element using a material such as a memory element such as a ROM or an electronic element, a wiring material such as an MDF (main distribution frame), which can change its electric resistance.

【0002】[0002]

【従来の技術】電子回路におけるON−OFFのスイッ
チングや結線の切り換え、更にメモリー機能の賦与等の
動作については、従来様々な技術の開発がなされ、実用
に供されてきた。MOSデバイスによるメモリーなどは
その1例であり、高速、大容量化の流れの中でROMや
RAMに適用され大きく発展してきた。また、電気通信
機器に関しても電話回線の加入者の接続切り換えに使用
する、いわゆるMDFにおいて、回線網の複雑化や高速
大容量通信の要請の中で、回線の切り換えの自動化につ
いて様々な技術が開発されてきた。しかし、コンピュー
タ アンド コミュニケーションの時代といわれる現代
の電子素子、記憶素子やMDFには、一層小型で高速、
大容量という高性能化が求められ、更には低コスト化に
対する要請もますます厳しいものがある。ROMデバイ
スを例にとると、大容量化の流れの中でダイオードマト
リックスをXY2方向の2層の配線の接点間に配し、情
報の内容(“0”又は“1”)によって、そのダイオー
ドを電気的に外部から加えたパルスによって焼き切った
り、短絡したりするプログラマブルROMが知られてい
る。更にMOS構造のROMでは、一度書き込んだ情報
の消去が可能で、書き換えもできるデバイスが開発され
ている。しかし、これらのデバイスは、精密で微細な加
工技術が要求され、製造上の歩留りが悪く、コスト的に
高くなるという欠点を持っているため、構造が単純で、
動作も簡便、製造コストの低い素子、ひいては、それに
用いる材料が要求される状況にある。
2. Description of the Related Art Various techniques have been developed and put to practical use for operations such as ON / OFF switching in electronic circuits, switching of connections, and addition of a memory function. A memory such as a MOS device is one example, and has been greatly developed by being applied to ROM and RAM in the trend of high speed and large capacity. With regard to telecommunications equipment, in so-called MDF, which is used for connection switching of telephone line subscribers, various technologies have been developed for automation of line switching in response to complication of network and demand for high-speed and large-capacity communication. It has been. However, modern electronic devices, memory devices and MDFs, which are said to be in the age of computer and communication, are much smaller and faster.
High performance with large capacity is required, and demands for cost reduction are more and more severe. Taking a ROM device as an example, a diode matrix is placed between the contacts of two layers of wiring in the XY2 directions in the flow of increasing capacity, and the diode is changed according to the content of information (“0” or “1”). 2. Description of the Related Art There is known a programmable ROM which burns out or is short-circuited by a pulse electrically applied from the outside. Further, in the ROM having the MOS structure, a device has been developed in which the information once written can be erased and rewritten. However, these devices have the drawbacks that precise and minute processing techniques are required, the manufacturing yield is low, and the cost is high, so the structure is simple,
There is a demand for an element that is simple to operate and has a low manufacturing cost, and eventually a material used for the element.

【0003】次に、MDFを例にとると、通信回線網の
高度化の中で、回線接続の相互切り換えに関して、特
に、電話交換機等の機器においてますます接続作業の簡
略化、高速化、小型化、大容量化が求められている。現
在のMDFはメタルMDFと呼ばれるものが主流であ
り、結線しようとする2つの配線間にメタルを挿入して
導通させる方法をとっている。メタルの挿入を自動化し
て動作を高速化させようとする試みがなされているが、
通信システム側からの要求条件を満足するのは難しく、
技術的な、ブレークスルーが待望されている。このよう
な状況をふかんすると、技術的な本質は、電極間を結線
する配線材料にある、といえる。この配線材料が外から
の何らかの刺激によって、“導通状態”と“絶縁状態”
の間を可逆的に変化し、かつ、その変化の速度が速く、
更に外的刺激がある閾値以下の場合、各状態の保存性が
良い、というような材料が実現できれば、各種電子素
子、記憶素子、MDF等の性能は飛躍的に向上すると期
待される。
Next, taking the MDF as an example, in connection with the sophistication of the communication line network, with regard to mutual switching of line connections, especially in devices such as telephone exchanges, the connection work is increasingly simplified, speeded up, and miniaturized. Demand for higher capacity and larger capacity. What is called a metal MDF is the mainstream of the current MDF, and a method is adopted in which a metal is inserted between two wirings to be connected to make the MDF electrically conductive. Attempts have been made to speed up the operation by automating the insertion of metal.
It is difficult to meet the requirements from the communication system side,
There is a long-awaited technical breakthrough. Considering this situation, it can be said that the technical essence lies in the wiring material that connects the electrodes. This wiring material is "conductive" and "insulated" due to some external stimulus.
Changes reversibly, and the rate of change is fast,
Furthermore, if a material can be realized in which the external stimulus is below a certain threshold and the storage stability of each state is good, it is expected that the performance of various electronic elements, memory elements, MDF, etc. will be dramatically improved.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
の素子の結線と動作に関する諸問題を解決すべく、抵抗
可変材料、特に、光照射、電圧印加、又は加熱により電
気抵抗が可逆的に変化する結線材料を提供することにあ
り、その材料を用いることにより、素子の性能を飛躍的
に向上させる方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems relating to the connection and operation of the device, in which the resistance is reversible, especially when the electric resistance is reversible by light irradiation, voltage application or heating. The purpose of the present invention is to provide a wiring material that changes to the above, and to provide a method for dramatically improving the performance of the device by using the material.

【0005】[0005]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は素子間結線材料に関する発明であっ
て、Ge、Te、Sb及びInよりなる群から選択した
元素のうち少なくとも2種以上の元素を含み、光照射、
電圧印加あるいは加熱によって電気抵抗が変化するもの
であることを特徴とする。そして、本発明の第2の発明
は入出力制御方法に関する発明であって、光照射、電圧
印加あるいは加熱によって電気抵抗が変化する材料で複
数の素子間を電気的に接続し、光照射、電圧印加あるい
は加熱によって、該素子への入出力を制御することを特
徴とする。
SUMMARY OF THE INVENTION The present invention will be summarized. The first invention of the present invention relates to an inter-element connection material, and is an element selected from the group consisting of Ge, Te, Sb and In. Light irradiation, containing at least two elements
It is characterized in that the electric resistance is changed by voltage application or heating. A second invention of the present invention relates to an input / output control method, wherein a plurality of elements are electrically connected by a material whose electric resistance changes by light irradiation, voltage application or heating, and light irradiation, voltage It is characterized in that input / output to / from the element is controlled by applying or heating.

【0006】本発明は素子の配線材料、特に結線材料と
して、光照射、電圧印加、又は加熱(特にヒーター加
熱)で、電気抵抗が可逆的に変化する、いわゆる相変化
材料を用いることを最も主要な特徴とする。相変化材料
は書換型光ディスクに用いる媒体材料として注目されて
おり、光照射あるいは加熱により屈折率が大きく変化す
るユニークな材料である(特開昭62−222442号
参照)。本発明者らはこの材料を慎重に吟味した結果、
材料の組成によっては相変化(非晶質相⇔結晶相の変
化)に際して、電気抵抗が105 Ω・cm以上も変化する
ことを見出した。例えばIn−Sb−Te系の材料で
は、結晶相102 Ω・cmに対して、非晶質相では107
Ω・cm以上となる。この変化は、この材料を電極間の結
線材として用いた場合、低抵抗の時「導通」状態、高抵
抗の時、「絶縁」状態として機能させるのに十分であ
る。また、相変化は100nsecオーダの光照射、あるい
はパルス電圧印加、あるいはヒーターによる加熱等のい
ずれを用いても誘起させることが可能であり、高速に変
化させることができる。また可逆性についても、2つの
状態の間を106 回以上、安定して、可逆的に変化させ
ることができる。更に、状態の保存性についても光ディ
スク材料として広く検討されているように、非晶質状態
(絶縁状態)は、室温で10年以上、変化なく保存さ
れ、十分である。
In the present invention, as the wiring material of the element, especially as the connection material, it is most important to use a so-called phase change material whose electric resistance is reversibly changed by light irradiation, voltage application, or heating (particularly heater heating). It is a characteristic. The phase change material has been attracting attention as a medium material used for a rewritable optical disk, and is a unique material whose refractive index is largely changed by light irradiation or heating (see JP-A-62-222442). As a result of careful examination of this material by the present inventors,
It has been found that the electrical resistance changes by 10 5 Ω · cm or more during the phase change (change between the amorphous phase and the crystalline phase) depending on the composition of the material. For example, an In—Sb—Te-based material has a crystalline phase of 10 2 Ω · cm, whereas an amorphous phase has a crystalline phase of 10 7 Ω · cm.
Ω · cm or more. This change is sufficient to function as a "conducting" state when the resistance is low and an "insulating" state when the resistance is high when this material is used as a connecting material between electrodes. The phase change can be induced by using light irradiation of the order of 100 nsec, pulse voltage application, heating with a heater, and the like, and can be changed at high speed. Regarding reversibility, it is possible to stably and reversibly change between the two states 10 6 or more times. Furthermore, as has been widely studied as a material for optical discs with respect to the storability of the state, the amorphous state (insulating state) is sufficient to be stored at room temperature for 10 years or more without any change.

【0007】この抵抗可変材料を結線材料として用いれ
ば、電子素子、特に記憶素子やMDFなどの性能を飛躍
的に高め、小型化、高速化することができる。また、製
造コスト的にも、素子構造は比較的簡単であり、従来の
ものより有利である。
If this variable resistance material is used as a wire connecting material, the performance of electronic devices, particularly memory devices and MDFs, etc., can be dramatically improved, and downsizing and speeding up can be achieved. Also, in terms of manufacturing cost, the element structure is relatively simple, which is advantageous over the conventional one.

【0008】[0008]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0009】実施例1 図1に示すようにX−Y2方向の2層に配線を作製し
た。すなわち図1は本発明の実施例1のモデル素子の構
造を示す斜視図であり、符号1はY方向配線(上部電極
に相当)、2はX方向配線(下部電極に相当)、3は中
間絶縁層、4は基板、5はリード線、6はクロス・ポイ
ントを意味する。中間絶縁層として、SiO2 層があ
り、導線間を分離している。X−Yの配線のクロス・ポ
イントにはホールがあり、ホール内には抵抗可変結線材
料(Sb2 Te3 50(GeTe)50の薄膜を配した。
クロス・ポイント付近の断面図は図2のようになる。す
なわち、図2は図1におけるクロス・ポイントの断面を
示した図であり、符号1〜4は図1と同義、7は抵抗可
変結線材料を意味する。このモデル素子について、クロ
ス・ポイントの導通と絶縁の試験を行った。
Example 1 As shown in FIG. 1, wiring was formed in two layers in the X-Y2 direction. That is, FIG. 1 is a perspective view showing the structure of a model element of Example 1 of the present invention, where reference numeral 1 is a Y-direction wiring (corresponding to an upper electrode), 2 is an X-direction wiring (corresponding to a lower electrode), and 3 is an intermediate Insulating layer, 4 means substrate, 5 means lead wire, and 6 means cross point. As an intermediate insulating layer, there is a SiO 2 layer, which separates the conducting wires. There is a hole at the cross point of the X-Y wiring, and a thin film of variable resistance connection material (Sb 2 Te 3 ) 50 (GeTe) 50 was arranged in the hole.
A cross-sectional view near the cross point is shown in FIG. That is, FIG. 2 is a view showing a cross section of the cross point in FIG. 1, reference numerals 1 to 4 are synonymous with FIG. 1, and 7 is a resistance variable connection material. This model device was tested for cross point continuity and insulation.

【0010】まず、2配線間にパルス電圧を印加し、高
電圧、短パルスの印加で結晶→非晶質、すなわち、導通
→絶縁に変化し、低電圧、長パルスの印加で、非晶質→
結晶、すなわち、絶縁→導通に変化することを確認し
た。このサイクルの繰返し実験を試みたところ、106
回以上のサイクルにわたり、安定に可逆的に動作するこ
とがわかった。導通状態、絶縁状態の室温付近での保存
性についても、何ら問題は生じなかった。メモリーの読
み出しの1/10以下の電流で行った。この読み出し動
作による劣化はなかった。
First, when a pulse voltage is applied between two wirings, a high voltage and a short pulse are applied to change from crystalline to amorphous, that is, conduction to insulation, and when a low voltage and a long pulse are applied, amorphous. →
It was confirmed that the state of the crystal changed from insulation to conduction. When a repeated experiment of this cycle was tried, 10 6
It was found to operate stably and reversibly over more than one cycle. There was no problem with regard to the storability near the room temperature in the conductive state and the insulating state. It was performed at a current of 1/10 or less of the reading of the memory. There was no deterioration due to this read operation.

【0011】実施例2 実施例1と同様のモデル素子を作製し、同様の実験を行
った。ただし、非晶質→結晶、すなわち、絶縁→導通の
変化に際しては、ここでは、ヒーター加熱により約14
0℃、1分の加熱により変化させた。したがって、各個
の結線の1つ1つについて、変化させるのではなく、一
括して、全結線部を導通状態にすることができた。いわ
ゆるエレイザブル・プログラマブルROMの動作を本モ
デル素子で実現できたわけである。再書き込み、再消去
のサイクルの安定性についても全く問題ないことがわか
った。
Example 2 A model device similar to that of Example 1 was prepared and the same experiment was conducted. However, when changing from amorphous to crystalline, that is, from insulation to electrical continuity, here, about 14
It was changed by heating at 0 ° C. for 1 minute. Therefore, it was possible to bring all the connection parts into a conductive state collectively without changing each connection. The operation of a so-called erasable programmable ROM could be realized by this model element. It was also found that there was no problem in the stability of the rewriting / erasing cycle.

【0012】実施例3 実施例1と同様のモデル素子を作製し、同様の実験を行
った。ただし、Y方向の配線(上部電極に相当)材料と
して透明導通膜を用いて、クロス・ポイントの結線材料
に光を照射できるようにした。すなわち、各クロス・ポ
イントにレーザ・ビームを照射し、光加熱により結線材
料の抵抗可変材料に状態変化を起こさせた。高パワー、
短パルスの照射で結晶→非晶質、低パワー、長パルスの
照射で非晶質→結晶のサイクリックな繰返しが可能であ
り、それに伴って照射部のクロス・ポイントが“導通”
→“絶縁”と可逆的に変化することを確認した。
Example 3 A model device similar to that of Example 1 was prepared and the same experiment was conducted. However, a transparent conductive film was used as the material of the wiring (corresponding to the upper electrode) in the Y direction so that the connection material at the cross points could be irradiated with light. That is, each cross point was irradiated with a laser beam, and a state change was caused in the resistance variable material of the connection material by light heating. High power,
It is possible to cyclically repeat from crystalline to amorphous by short-pulse irradiation and low power, and from amorphous to crystalline by long-pulse irradiation, and the cross point of the irradiated part is "conducting" accordingly.
→ It was confirmed that it changed reversibly to "insulation".

【0013】実施例4 実施例1〜3において、抵抗可変材料の組成を(Sb2
Te3 50(InTe)50に変えて、同様のモデル素子
を作り、同様の実験を行った。効果としては実施例1〜
3とほぼ同様であった。
Example 4 In Examples 1 to 3, the composition of the variable resistance material was set to (Sb 2
Te 3 ) 50 (InTe) 50 was replaced with the same model device, and the same experiment was conducted. The effect is as in Example 1
It was almost the same as 3.

【0014】実施例5 実施例1〜4のモデル素子をROMメモリーに適用して
“0”、“1”の2信号を各クロス・ポイントに記録
し、再生の実験を行った。また、メモリーの消去、再書
き込みの検討も行った。その結果、本メモリー素子は、
エレーザブル・プログラマブルROMメモリーとして問
題なく正常に機能することを確認できた。
Example 5 The model elements of Examples 1 to 4 were applied to a ROM memory to record two signals "0" and "1" at each cross point, and a reproduction experiment was conducted. We also examined the erasing and rewriting of the memory. As a result, this memory device
It has been confirmed that it functions normally as an erasable programmable ROM memory without any problems.

【0015】実施例6 実施例1〜4のモデル素子をMDFに適用して各クロス
・ポイントの絶縁・導通状態に基づく結線の接続機能を
チェックした。その結果、このモデル素子はMDFとし
て正常に機能し、かつ既存のMDFに比べて高速、簡便
に動作させ得ることがわかった。
Example 6 The model elements of Examples 1 to 4 were applied to an MDF to check the connection function of connection based on the insulation / conduction state of each cross point. As a result, it was found that this model element functions normally as an MDF and can be operated at high speed and easily as compared with the existing MDF.

【0016】実施例7 実施例1〜4の(Sb2 Te3 50(InTe)50及び
(Sb2 Te3 50(GeTe)50の組成比を変え、
(Sb2 Te3 1-x (GeTe)x 、又は(Sb2
3 1-x (InTe)x (0≦x≦1)の組成で各実
験を行った。その結果、いずれの組成においても、素子
の動作は問題なく正常に機能することがわかった。
Example 7 The composition ratios of (Sb 2 Te 3 ) 50 (InTe) 50 and (Sb 2 Te 3 ) 50 (GeTe) 50 of Examples 1 to 4 were changed,
(Sb 2 Te 3 ) 1-x (GeTe) x , or (Sb 2 T
Each experiment was conducted with a composition of e 3 ) 1-x (InTe) x (0 ≦ x ≦ 1). As a result, it was found that the operation of the device worked normally with any composition.

【0017】[0017]

【発明の効果】以上説明したように、本発明の抵抗可変
結線材料はパルス光照射、パルス電圧印加、又は加熱に
より電気抵抗が大幅に変化することから電子素子、記憶
素子、MDF等の素子の結線材料として用いた場合、極
めて高性能の素子を実現することができる。素子の高速
化、高密度、大容量化に対する要請が強まる昨今の状況
からみて、本発明の電気通信業界や電子工業に与えるイ
ンパクトは極めて大きく、技術的ブレークスルーとみな
せるものである。また本発明の材料によれば、素子構造
は一般に簡便であり、製造歩留りの向上も期待され、コ
スト的にも有利である。
As described above, the resistance variable wiring material of the present invention has a large change in electric resistance due to pulsed light irradiation, pulse voltage application, or heating, so that it can be used in devices such as electronic devices, memory devices, and MDF. When used as a wiring material, an extremely high-performance element can be realized. In view of the recent demand for higher speed, higher density, and higher capacity of devices, the impact of the present invention on the telecommunications industry and electronics industry is extremely large, and can be regarded as a technological breakthrough. Further, according to the material of the present invention, the device structure is generally simple, the manufacturing yield is expected to be improved, and the cost is advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のモデル素子の構造を示す斜
視図である。
FIG. 1 is a perspective view showing a structure of a model device according to a first embodiment of the present invention.

【図2】図1におけるクロス・ポイントの断面を示す図
である。
FIG. 2 is a diagram showing a cross section of a cross point in FIG.

【符号の説明】[Explanation of symbols]

1:Y方向配線(上部電極に相当)、2:X方向配線
(下部電極に相当)、3:中間絶縁層、4:基板、5:
リード線、6:クロス・ポイント、7:抵抗可変結線材
1: Y-direction wiring (corresponding to the upper electrode), 2: X-direction wiring (corresponding to the lower electrode), 3: intermediate insulating layer, 4: substrate, 5:
Lead wire, 6: Cross point, 7: Variable resistance wire connection material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 1/02 Z 7244−5G H01L 35/16 8832−4M (72)発明者 畠山 巌 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location // H01B 1/02 Z 7244-5G H01L 35/16 8832-4M (72) Inventor Iwahatayama Tokyo 1-1-6 Uchisaiwaicho, Chiyoda-ku, Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ge、Te、Sb及びInよりなる群か
ら選択した元素のうち少なくとも2種以上の元素を含
み、光照射、電圧印加あるいは加熱によって電気抵抗が
変化するものであることを特徴とする素子間結線材料。
1. A material containing at least two kinds of elements selected from the group consisting of Ge, Te, Sb and In, and having an electric resistance which is changed by light irradiation, voltage application or heating. Inter-element wiring material to be used.
【請求項2】 光照射、電圧印加あるいは加熱によって
電気抵抗が変化する材料で複数の素子間を電気的に接続
し、光照射、電圧印加あるいは加熱によって、該素子へ
の入出力を制御することを特徴とする入出力制御方法。
2. A method of electrically connecting a plurality of elements with a material whose electric resistance changes by light irradiation, voltage application or heating, and controlling input / output to the element by light irradiation, voltage application or heating. Input / output control method characterized by.
JP5032508A 1993-01-29 1993-01-29 Connection material and input/output control method Pending JPH06232271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5032508A JPH06232271A (en) 1993-01-29 1993-01-29 Connection material and input/output control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5032508A JPH06232271A (en) 1993-01-29 1993-01-29 Connection material and input/output control method

Publications (1)

Publication Number Publication Date
JPH06232271A true JPH06232271A (en) 1994-08-19

Family

ID=12360933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5032508A Pending JPH06232271A (en) 1993-01-29 1993-01-29 Connection material and input/output control method

Country Status (1)

Country Link
JP (1) JPH06232271A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012183A (en) * 2003-06-18 2005-01-13 Macronix Internatl Co Ltd Method of adjusting threshold voltage of memory cell
JP2005317955A (en) * 2004-04-02 2005-11-10 Semiconductor Energy Lab Co Ltd Semiconductor device
WO2006043611A1 (en) * 2004-10-22 2006-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2006135251A (en) * 2004-11-09 2006-05-25 Hitachi Ltd Laser crystallization equipment
JP2007180406A (en) * 2005-12-28 2007-07-12 Toshiba Corp Non-volatile switching element, its manufacturing method and integrated circuit having the same
JP2009065184A (en) * 2006-03-30 2009-03-26 Panasonic Corp Nonvolatile memory device and method for manufacturing same
JPWO2007058175A1 (en) * 2005-11-21 2009-04-30 株式会社ルネサステクノロジ Semiconductor device
US7858972B2 (en) 2006-04-28 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
JP2011103491A (en) * 2004-04-02 2011-05-26 Semiconductor Energy Lab Co Ltd Semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012183A (en) * 2003-06-18 2005-01-13 Macronix Internatl Co Ltd Method of adjusting threshold voltage of memory cell
JP2005317955A (en) * 2004-04-02 2005-11-10 Semiconductor Energy Lab Co Ltd Semiconductor device
US8045369B2 (en) 2004-04-02 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of the same
JP2011103491A (en) * 2004-04-02 2011-05-26 Semiconductor Energy Lab Co Ltd Semiconductor device
US7781758B2 (en) 2004-10-22 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2006043611A1 (en) * 2004-10-22 2006-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8227802B2 (en) 2004-10-22 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2006135251A (en) * 2004-11-09 2006-05-25 Hitachi Ltd Laser crystallization equipment
JPWO2007058175A1 (en) * 2005-11-21 2009-04-30 株式会社ルネサステクノロジ Semiconductor device
JP2007180406A (en) * 2005-12-28 2007-07-12 Toshiba Corp Non-volatile switching element, its manufacturing method and integrated circuit having the same
JP2009065184A (en) * 2006-03-30 2009-03-26 Panasonic Corp Nonvolatile memory device and method for manufacturing same
US8227786B2 (en) 2006-03-30 2012-07-24 Panasonic Corporation Nonvolatile memory element
US7858972B2 (en) 2006-04-28 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US8203142B2 (en) 2006-04-28 2012-06-19 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device

Similar Documents

Publication Publication Date Title
US9985076B2 (en) Diode/superionic conductor/polymer memory structure
CN100481552C (en) Phase transfer element and fabricating method thereof, and phase transfer memory cell
JP3936246B2 (en) Parallel access of cross-point diode memory arrays
TW550764B (en) Low cross-talk electrically programmable resistance cross point memory
KR100368819B1 (en) A read-only memory and read-only memory devices
US6703680B2 (en) Programmable element programmed by changes in resistance due to phase transition
CA1124857A (en) Amorphous semiconductor memory device for employment in an electrically alterable read-only memory
US7375365B2 (en) Multilevel phase-change memory, manufacture method and operating method thereof
JP3895640B2 (en) Crosspoint diode memory array addressing and sensing
US20100321982A1 (en) Nonvolatile storage device and method for writing into the same
US20110180775A1 (en) Programmable metallization cell with ion buffer layer
CN1136222A (en) Memory and manufacture thereof
JPH023278A (en) Electrically programmable low impedance non-fusible device
JPH06232271A (en) Connection material and input/output control method
US4112505A (en) Read-only-memory with shunt path to divert programming current
TWI258858B (en) Methods and memory structures using tunnel-junction device as control element
CN113657065B (en) Clock circuit, memory and method for manufacturing semiconductor structure
EP0156135A2 (en) Preconditioned memory cell
EP0432792B1 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2009518843A (en) Electronic circuit having memory matrix
CN103871464B (en) Can program editing resistive element memory body, operating method and electronic system
KR860002827A (en) Adaptive Memory Device
US3428954A (en) Element for resistive permanent memory
CN102339949B (en) High-reliability one-time programmable (OTP) memory unit, memory and manufacturing method thereof
JP2017182848A (en) Programming method for complementary switch unit, and semiconductor device