JPH0623118B2 - Hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and method for producing the same - Google Patents

Hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and method for producing the same

Info

Publication number
JPH0623118B2
JPH0623118B2 JP13358189A JP13358189A JPH0623118B2 JP H0623118 B2 JPH0623118 B2 JP H0623118B2 JP 13358189 A JP13358189 A JP 13358189A JP 13358189 A JP13358189 A JP 13358189A JP H0623118 B2 JPH0623118 B2 JP H0623118B2
Authority
JP
Japan
Prior art keywords
formula
terminal
dimethylcarbinol
group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13358189A
Other languages
Japanese (ja)
Other versions
JPH02311437A (en
Inventor
昭生 高岡
俊雄 鷹合
伸一 佐藤
正行 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP13358189A priority Critical patent/JPH0623118B2/en
Publication of JPH02311437A publication Critical patent/JPH02311437A/en
Publication of JPH0623118B2 publication Critical patent/JPH0623118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下記式(1) (但し、式中nは1〜4の整数を示す。) で示される末端ジメチルカルビノール基を有する新規な
ヘキサフルオロプロペンオキシド(HFPO)オリゴエーテル
誘導体及びその製造方法に関する。該化合物は、テトラ
フルオロエチレンやビニリデンフロライドのような重合
性モノマーとの共重合成分としてこれらモノマーの単独
重合ポリマーの耐熱性、化学的安定性、非粘着性、撥水
撥油性、溶融成形性等を改良するため有効な下記式(5) (但し、式中nは1〜4の整数である。) で示される末端イソプロペニル基を有する新規なHFPOオ
リゴエーテル誘導体の合成中間体、及び下記一般式(6) (但し、式中nは1〜4、xは0〜3の整数である。) で示され、耐熱性、低温特性に優れ、撥水撥油性で防汚
性の表面エネルギーの低い特性を有する新規な含フッ素
有機ケイ素化合物の合成中間体として有用である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides the following formula (1): (In the formula, n represents an integer of 1 to 4.) The present invention relates to a novel hexafluoropropene oxide (HFPO) oligoether derivative having a terminal dimethylcarbinol group and a method for producing the same. The compound is a copolymerization component with a polymerizable monomer such as tetrafluoroethylene or vinylidene fluoride, and the heat resistance, chemical stability, non-adhesiveness, water and oil repellency, and melt moldability of a homopolymer of these monomers. The following formula (5) effective for improving (In the formula, n is an integer of 1 to 4.) A synthetic intermediate of a novel HFPO oligoether derivative having a terminal isopropenyl group represented by the following general formula (6) (However, in the formula, n is an integer of 1 to 4 and x is an integer of 0 to 3.) and has excellent heat resistance and low temperature characteristics, water and oil repellency, and antifouling properties with low surface energy. It is useful as a synthetic intermediate for a novel fluorine-containing organosilicon compound.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be Solved by Prior Art and Invention]

従来より、テトラフルオロエチレンやビニリデンフロラ
イドの単独重合体はその優れた特性から種々の用途に広
く使用され、また更に他の特性を付与するため種々の共
重合成分と共重合させた共重合体も広い分野を見い出し
ているが、更にこれらポリテトラフルオロエチレン、ポ
リビニリデンフロライドの耐熱性、化学的安定性、非粘
着性、撥水撥油性、更には溶融成形といった特性を高
め、或いは付与することが望まれる。
Traditionally, homopolymers of tetrafluoroethylene and vinylidene fluoride have been widely used in various applications due to their excellent properties, and copolymers copolymerized with various copolymerization components to impart other properties. Although it has found a wide range of fields, it further enhances or imparts the properties of these polytetrafluoroethylene and polyvinylidene fluoride such as heat resistance, chemical stability, non-adhesiveness, water and oil repellency, and melt molding. Is desired.

また、有機樹脂、シリコーンオイルコンパウンド、シリ
コーンゴム等に配合されるシリカ表面に存在する≡Si-O
H基のシリカ処理剤、種々の半導体デバイスの生産工程
におけるレジスト等の密着性向上剤、光学レンズ、眼鏡
レンズ、ガラス器具等のガラス表面に撥水撥油性及び防
汚性を付与するための表面処理剤として有用な含フッ素
有機ケイ素化合物、或いは低温特性も良好で、耐熱性、
撥水撥油性、防汚性といった特性を有する新規オルガノ
ポリシロキサンも要望されている。
In addition, ≡Si-O existing on the surface of silica compounded with organic resin, silicone oil compound, silicone rubber, etc.
H-based silica treatment agent, adhesion improver for resists in the production process of various semiconductor devices, surface for imparting water and oil repellency and antifouling property to the glass surface of optical lenses, spectacle lenses, glass appliances, etc. Fluorine-containing organosilicon compound useful as a treatment agent, or good low temperature characteristics, heat resistance,
A novel organopolysiloxane having properties such as water and oil repellency and antifouling property is also desired.

〔課題を解決するための手段及び作用〕[Means and Actions for Solving the Problems]

本発明者は、上記要望に応えるため鋭意検討を行なった
結果、ヘキサフルオロプロペンオキシド(HFPO)を金属フ
ッ化物−アプロティックソルベント系で吹き込むことに
よりHFPOオリゴマーを合成した後、メタノールを反応さ
せ、更にメチルグリニャール試薬CH3MgXを反応させるこ
とにより、又は該HFPOオリゴマーに直接メチルグリニャ
ール試薬を反応させることにより、下記式(1) で示される末端ジメチルカルビノール基を有する新規な
HFPOオリゴエーテル誘導体が得られることを見い出し
た。そして、この化合物(1)は、これを脱水することに
より、下記式(5) で示される末端イソプロペニル基を有する新規なHFPOオ
リゴエーテル誘導体が得られること、この新規化合物
(5)は、テトラフルオロエチレン、ビニリデンフロライ
ドの共重合成分としてこれらモノマーの単独重合ポリマ
ーの耐熱性、化学的安定性、非粘着性、撥水撥油性、溶
融成形性等を改良するため有用であることを知見すると
共に、更に、この(5)式の化合物に で示されるシランを反応させることにより、下記一般式 (式中nは1〜4、xは0〜3の整数である) で示される新規含フッ素有機ケイ素化合物が得られるこ
と、この新規化合物(6)は、クロロシランの反応性とフ
ルオロカーボンの特性とを兼備し、有機樹脂、シリコー
ンオイルコンパウンド及びシリコーンゴム等に配合され
るシリカ表面に存在する 基のシリカ処理剤、種々の半導体デバイスの生産工程に
おけるレジスト等の密着性向上剤、光学レンズ、眼鏡レ
ンズ、ガラス器具等のガラス表面に撥水撥油性及び防汚
性を付与するための表面処理剤としても有効に使用され
ると共に、該化合物から得られるポリシロキサンは低温
特性も良好で、耐熱性、撥水撥油性及び防汚性の特性が
あることを知見し、それ故上記化合物(1)はこれら新規
化合物(5),(6)の合成中間体として有用であることを見
い出し、本発明をなすに至った。
The present inventor, as a result of intensive studies to meet the above-mentioned demand, after synthesizing an HFPO oligomer by blowing hexafluoropropene oxide (HFPO) with a metal fluoride-aprotic solvent system, reacting with methanol, and further By reacting a methyl Grignard reagent CH 3 MgX or by directly reacting the HFPO oligomer with a methyl Grignard reagent, the following formula (1) A novel compound having a terminal dimethylcarbinol group represented by
It has been found that HFPO oligoether derivatives are obtained. And, this compound (1), by dehydrating it, the following formula (5) To obtain a novel HFPO oligoether derivative having a terminal isopropenyl group represented by
(5) is useful for improving the heat resistance, chemical stability, non-adhesiveness, water and oil repellency, melt moldability, etc. of homopolymers of these monomers as a copolymerization component of tetrafluoroethylene and vinylidene fluoride. In addition to discovering that, the compound of formula (5) By reacting a silane represented by (Wherein n is 1 to 4 and x is an integer of 0 to 3), a novel fluorine-containing organosilicon compound is obtained, and the novel compound (6) has reactivity of chlorosilane and properties of fluorocarbon. Is present on the surface of silica compounded with organic resins, silicone oil compounds, silicone rubber, etc. -Based silica treatment agent, adhesion improver for resists in various semiconductor device production processes, surface treatment for imparting water and oil repellency and stain resistance to the glass surface of optical lenses, spectacle lenses, glassware, etc. As well as being effectively used as an agent, it was found that the polysiloxane obtained from the compound has good low-temperature properties, heat resistance, water and oil repellency, and antifouling properties. Was found to be useful as a synthetic intermediate for these novel compounds (5) and (6), and the present invention has been completed.

従って、本発明は上記一般式(1)で示される末端ジメチ
ルカルビノール基を有する新規なヘキサフルオロプロペ
ンオキシドオリゴエーテル誘導体及びその製造方法を提
供する。
Therefore, the present invention provides a novel hexafluoropropene oxide oligoether derivative having a terminal dimethylcarbinol group represented by the above general formula (1) and a method for producing the same.

ここで、上記(1)式で示されるHFPOオリゴエーテル誘導
体の合成スキームは下記の通りである。
Here, the synthetic scheme of the HFPO oligoether derivative represented by the above formula (1) is as follows.

オリゴマー化 エステル化 カルビノール化 まず、のオリゴマー化は公知の方法を採用して行なう
ことができる。例えば、(4)式のHFPOをフッ化カリウム
(KF)、フッ化セシウム(CsF)等の金属フッ化物−アプロ
ティックソルベント系に低温下で吹きこむことにより、
(3)式のHFPOオリゴマー酸フッ化物を得ることができ
る。この場合、アプロティックソルベント(非プロトン
性極性溶媒)としては、例えばジグライム、テトラグラ
イム、テトラヒドロフラン(THF)、ジメチルホルムアマ
イド(DMF)、アセトニトリルなどを使用することができ
る。なお、例えばフッ化セシウム(CsF)、テトラグライ
ム系において、3量体の割合が最大となる反応条件は、
HFPO/CsFのモル比103、CsF/H2Oのモル比2.83、HFPOの
供給速度1.57g/min、反応温度−5〜0℃、反応時間2
16時間程度であり、この反応条件のとき、収率は94
%、生成するオリゴマー分布は2量体34%、3量体5
2%、4量体12%程度である。これらのオリゴマー酸
フッ化物は沸点差が50℃程度あり、精留することによ
り容易に分離できる。
Oligomerization Esterification Carbinolization First, the oligomerization can be carried out by employing a known method. For example, HFPO of formula (4) is converted to potassium fluoride
(KF), cesium fluoride (CsF) and other metal fluorides-by blowing into an aprotic solvent system at low temperature,
An HFPO oligomeric acid fluoride of the formula (3) can be obtained. In this case, as the aprotic solvent (aprotic polar solvent), for example, diglyme, tetraglyme, tetrahydrofuran (THF), dimethylformamide (DMF), acetonitrile or the like can be used. In addition, for example, in cesium fluoride (CsF) and tetraglyme system, the reaction conditions that maximize the proportion of trimer are:
HFPO / CsF molar ratio 103, CsF / H 2 O molar ratio 2.83, HFPO feed rate 1.57 g / min, reaction temperature -5 to 0 ° C, reaction time 2
It takes about 16 hours, and the yield is 94 under these reaction conditions.
%, The resulting oligomer distribution is dimer 34%, trimer 5
It is about 2% and tetramer 12%. These oligomeric acid fluorides have a boiling point difference of about 50 ° C. and can be easily separated by rectifying.

のエステル化反応は分離したオリゴマー酸フッ化物を
冷却下過剰のメタノール中に滴下することにより、瞬時
に反応は完結する。精製・分離は大過剰の水に注ぎ分液
し、中和水洗後蒸留して行なうことができる。
In the esterification reaction of (1), the separated oligomeric acid fluoride is dripped into excess methanol under cooling to instantly complete the reaction. Purification / separation can be carried out by pouring into a large excess of water for liquid separation, washing with neutralized water, and distillation.

なお、HFPOのオリゴマー化後、このオリゴマーを過剰の
アルコールに注ぎ、エステル化し、同様の処理をした
後、精留することにより(2)式のエステルの各オリゴマ
ー体に分離することもできる。
After the oligomerization of HFPO, this oligomer may be poured into an excess of alcohol, esterified, treated in the same manner, and then rectified to separate into oligomers of the ester of formula (2).

のカルビノール化は、グリニャール試薬を反応させる
ことにより行なうもので、これによって本発明に係る
(1)式で示される末端ジメチルカルビノール基を有する
新規なHFPOオリゴエーテル誘導体(3級アルコール)を
得ることができる。
The carbinolation of is carried out by reacting with a Grignard reagent, whereby the
A novel HFPO oligoether derivative (tertiary alcohol) having a terminal dimethylcarbinol group represented by the formula (1) can be obtained.

この場合、(2)式のエステルをエチルエーテル溶液等に
溶解し、この溶液を(2)式のエステルに対して2〜3
倍、好ましくは2.1〜2.5倍モル量のメチルグリニャール
試薬をエチルエーテル中で調製した液に、反応温度0〜
35℃、好ましくは20〜30℃で滴下して、原料のエ
ステルが消失するまで反応させることができる。反応温
度が20〜30℃では、この反応は1時間未満で完結す
る。
In this case, the ester of the formula (2) is dissolved in an ethyl ether solution or the like, and this solution is added to the ester of the formula (2) for 2 to 3 times.
1 time, preferably 2.1 to 2.5 times the molar amount of methyl Grignard reagent in a solution prepared in ethyl ether, at a reaction temperature of 0 to
It can be added dropwise at 35 ° C., preferably 20 to 30 ° C., and reacted until the starting ester disappears. When the reaction temperature is 20 to 30 ° C, the reaction is completed in less than 1 hour.

なお、(3)式の酸フッ化物にメチルグリニャール試薬を
直接反応させても(1)式の3級アルコールを得ることが
できる。
The tertiary alcohol of formula (1) can also be obtained by directly reacting the acid fluoride of formula (3) with a methyl Grignard reagent.

本発明の末端ジメチルカルビノール基を有する新規なHF
POエーテル誘導体は下記式(5) (但し、式中nは1〜4の整数である。) で示される末端イソプロペニル基を有する新規なHFPOオ
リゴエーテル誘導体の合成中間体として有効である。
Novel HF with terminal dimethylcarbinol groups of the invention
The PO ether derivative has the following formula (5) (However, n in the formula is an integer of 1 to 4.) It is effective as a synthetic intermediate for a novel HFPO oligoether derivative having a terminal isopropenyl group represented by

この(5)式のオリゴエーテル誘導体を得るには下記脱水
反応 を採用し得るが、この脱水反応では(1)式の3級アルコ
ールに対して95%硫酸を3〜20倍モル、好ましくは
4〜7倍モル用い、温度100〜200℃、好ましくは
130〜160℃で数時間反応させる条件で行なうこと
ができる。
To obtain this oligoether derivative of formula (5), the following dehydration reaction In this dehydration reaction, 95% sulfuric acid is used in an amount of 3 to 20 times mol, preferably 4 to 7 times mol, with respect to the tertiary alcohol of the formula (1), and the temperature is 100 to 200 ° C., preferably 130 to The reaction can be performed at 160 ° C. for several hours.

ここで、従来、下記の反応スキームが知られている。Here, conventionally, the following reaction schemes are known.

′カルビノール化 ′脱水 この場合、′のカルビノール化反応では、メチル及び
イソプロピルの混合グリニャール試薬を必要とし、しか
も還元剤として作用するイソプロピルグリニャール試薬
は理論量の1.5倍以上必要であり、また、目的生成物を
選択的に合成するためには反応温度を十分制御しなけれ
ばならず、その上反応時間も一昼夜以上の長時間を要す
る。更に、′の脱水反応では、(b)のアルコールから
の脱水が困難で、五酸化二リンと300〜400℃の高
温を必要とする。このように、上記(a),(b)のオリゴエ
ーテルは工業生産上多くの不利があり、生産コスト高を
招いていた。
′ Carbinol conversion 'dehydration In this case, in the carbinolation reaction of ', a mixed Grignard reagent of methyl and isopropyl is required, and the isopropyl Grignard reagent acting as a reducing agent is required to be 1.5 times or more of the theoretical amount. For the synthesis, the reaction temperature must be controlled sufficiently, and the reaction time also requires a long time of one day or more. Furthermore, in the dehydration reaction of ', it is difficult to dehydrate from the alcohol of (b), and diphosphorus pentoxide and a high temperature of 300 to 400 ° C are required. As described above, the oligoethers (a) and (b) described above have many disadvantages in industrial production, resulting in high production cost.

これに対し、本発明では(2)式のエステルから本発明の
新規な3級アルコールを得ることができるが、これを従
来の上述した(b)の2級アルコールを製造する場合と比
較すると、本発明の3級アルコールの製造ではイソプロ
ピルグリニャール試薬が不要であり、また、反応温度の
制御はシビアではなく、室温で行なうことができ、(b)
の2級アルコール製造では反応時間も一昼夜以上必要と
するのに対し、本発明では1時間程度で反応が完結し、
更に、選択率良く3級アルコールが得られるため、分離
精製が容易であり、従って、工業生産上非常に有利に製
造でき、コスト低減を図ることができるものである。
On the other hand, in the present invention, the novel tertiary alcohol of the present invention can be obtained from the ester of formula (2), but when compared with the conventional case of producing the above-mentioned secondary alcohol of (b), In the production of the tertiary alcohol of the present invention, the isopropyl Grignard reagent is unnecessary, and the reaction temperature can be controlled at room temperature rather than severely, (b)
In the secondary alcohol production, the reaction time is longer than one day and night, whereas in the present invention, the reaction is completed in about 1 hour,
Further, since the tertiary alcohol can be obtained with high selectivity, separation and purification are easy, and therefore, it can be produced very advantageously in industrial production, and the cost can be reduced.

しかも、(1)式の3級アルコールは下記脱水反応 が、従来の(b)式の2級アルコールを脱水する場合に3
00〜400℃の高温でしかも五酸化二リンを必要とす
るのに対し、150℃程度で安価な濃硫酸を使用して容
易にかつ高収率で進行するものであるため、(5)式の末
端イソプロペニル基を有する新規なHFPOのオリゴエーテ
ルは工業的有利に製造でき、低コストである。
Moreover, the tertiary alcohol of the formula (1) is dehydrated by the following dehydration reaction. However, when dehydrating the conventional secondary alcohol of the formula (b), 3
Although it requires diphosphorus pentoxide at a high temperature of 00 to 400 ° C, it proceeds easily and with high yield by using concentrated concentrated sulfuric acid which is inexpensive at about 150 ° C. The novel oligoether of HFPO having a terminal isopropenyl group can be produced industrially advantageously and is low in cost.

上記(5)式で示される末端イソプロペニル基を有する新
規なHFPOのオリゴエーテルは、テトラフルオロエチレン
やビニリデンフロライド等の単独重合性モノマーと共重
合して、これらモノマーの単独重合体の耐熱性、化学的
安定性、非粘着性、撥水撥油性などを維持し、溶融成形
を容易にすることができる。
A novel HFPO oligoether having a terminal isopropenyl group represented by the above formula (5) is copolymerized with a homopolymerizable monomer such as tetrafluoroethylene or vinylidene fluoride, and the heat resistance of a homopolymer of these monomers. The chemical stability, non-adhesiveness, water and oil repellency, etc. can be maintained and melt molding can be facilitated.

また、この(5)式の化合物と で示されるシランとをヒドロシリル化反応させることに
より、下記一般式(6) (式中nは1〜4、xは0〜3の整数である) で示される新規な含フッ素有機ケイ素化合物が得られ
る。
Also, with the compound of formula (5) By a hydrosilylation reaction with a silane represented by the following general formula (6) (Wherein n is 1 to 4 and x is an integer of 0 to 3), a novel fluorine-containing organosilicon compound is obtained.

このヒドロシリル化反応は、オートクレーブ中式(5)の
化合物に対してクロロシランを1.1〜1.5倍モル使用する
と共に、白金触媒1×10−5〜5×10−3モル使用
し、80〜150℃で1〜5日間反応させることが好適
である。
In this hydrosilylation reaction, chlorosilane was used in an amount of 1.1 to 1.5 times the molar amount of the compound of the formula (5) in the autoclave and 1 × 10 −5 to 5 × 10 −3 moles of the platinum catalyst was used. It is preferred to react for ~ 5 days.

この含フッ素化合物は、クロロシランの反応性とフルオ
ロカーボンの特性とを兼備し、有機樹脂、シリコーンオ
イルコンパウンド及びシリコーンゴム等に配合されるシ
リカ表面に存在する 基のシリカ処理剤、種々の半導体デバイスの生産工程に
おけるレジスト等の密着性向上剤、光学レンズ、眼鏡レ
ンズ、ガラス器具等のガラス表面に撥水撥油性及び防汚
性を付与するための表面処理剤としても有効に使用され
ると共に、該化合物から得られるポリシロキサンは低温
特性も良好で、耐熱性、撥水撥油性及び防汚性の特性が
ある。
This fluorine-containing compound has both the reactivity of chlorosilane and the properties of fluorocarbon, and is present on the surface of silica compounded in organic resins, silicone oil compounds, silicone rubber, etc. -Based silica treatment agent, adhesion improver for resists in various semiconductor device production processes, surface treatment for imparting water and oil repellency and stain resistance to the glass surface of optical lenses, spectacle lenses, glassware, etc. In addition to being effectively used as an agent, the polysiloxane obtained from the compound also has good low-temperature characteristics, and has heat resistance, water / oil repellency, and antifouling properties.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の末端ジメチルカルビノー
ル基を有する新規なヘキサフルオロプロペンオキシドオ
リゴエーテル誘導体は上記(5)式で示される有用な用途
を有する末端イソプロペニル基を有する新規なヘキサフ
ルオロプロペンオキシドオリゴエーテル誘導体の合成中
間体、更にはこの(5)式で示されるオリゴエーテルをヒ
ドロシリル化した(6)式で示される有用な用途を有する
新規な含フッ素有機ケイ素化合物の合成中間体として有
用である。
As described above, the novel hexafluoropropene oxide oligoether derivative having a terminal dimethylcarbinol group of the present invention is a novel hexafluoropropene group having a terminal isopropenyl group having a useful use represented by the above formula (5). Useful as a synthetic intermediate for oxide oligoether derivatives, and also as a synthetic intermediate for a novel fluorine-containing organosilicon compound having a useful use represented by formula (6) obtained by hydrosilylating the oligoether represented by formula (5) Is.

以下に実施例を挙げて本発明を具体的に説明するが、本
発明は下記実施例に制限されるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.

〔実施例1〕 内容積3の乾燥した4つ口フラスコに削り状マグネシ
ウム36g(1.5モル)及び乾燥したエチルエーテル20
0mを仕込んだ後、滴下ロートからヨウ化メチル(CH3
I)230g(1.5モル)のエチルエーテル(300m)
溶液をゆっくり還流する速度で約4時間かけて滴下し
た。
Example 1 In a dry four-necked flask having an inner volume of 3, 36 g (1.5 mol) of shaving magnesium and 20 parts of dried ethyl ether were added.
After charging 0 m, methyl iodide (CH 3
I) 230 g (1.5 mol) of ethyl ether (300 m)
The solution was added dropwise at a rate of slow reflux over about 4 hours.

次いで、このフラスコをアイスバス中に入れ、冷却した
後、下記式 で示されるエステル302g(純度97%,0.59モル)
のエチルエーテル(500m)溶液を反応溶液の温度
を10〜20℃に保ちながら滴下ロートより1時間かけ
て滴下し、更に約10℃で1時間攪拌した。
Then, after placing this flask in an ice bath and cooling, the following formula 302 g of ester represented by (purity 97%, 0.59 mol)
Of ethyl ether (500 m) was added dropwise from the dropping funnel over 1 hour while maintaining the temperature of the reaction solution at 10 to 20 ° C., and the mixture was further stirred at about 10 ° C. for 1 hour.

次に反応溶液を冷飽和塩化アンモニウム500mに注
ぎ、更に5N−塩酸で溶液を酸性側とした。層に分かれ
た反応溶液のうち下層の有機層を分離し、上層の水層を
エチルエーテルで2度抽出し、これを有機層と合わせた
後、この有機層を飽和炭酸水素ナトリウム、飽和食塩水
の順序で洗條し、次に硫酸マグネシウムで乾燥した。
Next, the reaction solution was poured into 500 m of cold saturated ammonium chloride, and the solution was acidified with 5N-hydrochloric acid. The lower organic layer of the reaction solution separated into layers was separated, the upper aqueous layer was extracted twice with ethyl ether, and this was combined with the organic layer, and the organic layer was saturated sodium hydrogen carbonate and saturated saline. Was washed in this order and then dried over magnesium sulfate.

次いで、溶媒を留去し、得られた反応生成物を減圧蒸留
し、沸点84〜85℃/32mmHgにおける留分として下
記式 で示される3級アルコール245g(純度97%,収率
79%)を得た。
Then, the solvent was distilled off, and the obtained reaction product was distilled under reduced pressure to obtain a fraction represented by the following formula at a boiling point of 84 to 85 ° C./32 mmHg. 245 g of tertiary alcohol (purity 97%, yield 79%) was obtained.

この3級アルコールについて元素分析及びGC-MS分析を
行ない、また、赤外線吸収スペクトル及び1H-NMRスペク
トルを測定した。結果を次に示す。
This tertiary alcohol was subjected to elemental analysis and GC-MS analysis, and infrared absorption spectrum and 1 H-NMR spectrum were measured. The results are shown below.

元素分析: GC-MS:m/e(M) 分子量510 赤外線スペクトル: 第1図にチャートを示す。このチャートから波数3640、3
470cm-1に-OH基に由来するピークが観察された。1 H-NMRスペクトル: 溶媒:DMSO-d6/CCl4 内部標準:TMS δ(ppm):4.27(s,1H,-OH) 2.70(s,6H,2×CH3) 〔参考例1〕 内容積0.5のフラスコに単蒸留セットを組み立て、フ
ラスコに、上記3級アルコール158g(0.30モル)、
95%濃度の硫酸200g(1.94モル)及び重合禁止剤
としてt−ブチルハイドロキノン(TBHQ)0.25gを仕込
み、150℃で4時間攪拌した後、同一温度で有機物を
減圧下で留出させた。
Elemental analysis: GC-MS: m / e (M + ) molecular weight 510 Infrared spectrum: A chart is shown in FIG. Wavenumber 3640,3 from this chart
A peak derived from the —OH group was observed at 470 cm −1 . 1 H-NMR spectrum: Solvent: DMSO-d 6 / CCl 4 Internal standard: TMS δ (ppm): 4.27 (s, 1H, -OH) 2.70 (s, 6H, 2 × CH 3 ) [Reference Example 1] Contents A simple distillation set was assembled in a flask having a volume of 0.5, and 158 g (0.30 mol) of the above tertiary alcohol was added to the flask.
200 g (1.94 mol) of 95% strength sulfuric acid and 0.25 g of t-butylhydroquinone (TBHQ) as a polymerization inhibitor were charged and stirred at 150 ° C. for 4 hours, and then organic substances were distilled off under reduced pressure at the same temperature.

留出した有機層を飽和炭酸水素ナトリウム、次いで飽和
食塩水で洗浄した後、硫酸マグネシウムを加えて乾燥し
た。
The distilled organic layer was washed with saturated sodium hydrogen carbonate and then with saturated saline, and magnesium sulfate was added to dry it.

この有機層を蒸留し、沸点147〜148℃における留
分として下記式 で示されるアルケン128g(収率85%)を得た。
This organic layer was distilled to obtain the following formula as a fraction at a boiling point of 147 to 148 ° C. 128 g (yield 85%) of the alkene represented by

このアルケンについて元素分析及びGC-MS分析を行な
い、また、赤外線吸収スペクトル及び1H-NMRスペクトル
を測定した。その結果を下記に示す。
This alkene was subjected to elemental analysis and GC-MS analysis, and infrared absorption spectrum and 1 H-NMR spectrum were measured. The results are shown below.

元素分析: GC-MS: m/e(M) 分子量492,M−19 473 赤外線スペクトル: OH基に由来する3640、3470cm-1のピークが消失し、新た
に1660cm-1にC=Cに基づくピークが生じたことが観察
された。1 H-NMRスペクトル: 溶媒:CCl4 内部標準:TMS δ(ppm):5.30〜5.70(m,2H,=CH2) 1.93(s,3H,CH3) 更に、オートクレーブ中、上記アルケン87.4g(0.178モ
ル)、トリクロロシラン35.0g(0.25モル)及び塩化白金
酸のn−ブタノール変性触媒(白金濃度2.0重量%)1.5
0g(1.50×10−4モル)を混合し、110℃で64時
間反応させた(GLCで転化率40%、選択率85%)。反
応終了後、はじめに常圧蒸留して沸点145〜148℃
の留分44.6g(原料のアルケン)を得、次いで減圧蒸留
したところ、沸点86〜88℃/8mmHgの留分として下
記式で示される化合物40.4g(収率36%)が得られ
た。
Elemental analysis: GC-MS: m / e ( M +) molecular weight 492, M-19 473 Infrared spectrum: peaks of 3640,3470Cm -1 derived from the OH group disappears, a peak newly based on 1660 cm -1 to C = C is It was observed to have occurred. 1 H-NMR spectrum: Solvent: CCl 4 Internal standard: TMS δ (ppm): 5.30-5.70 (m, 2H, = CH 2 ) 1.93 (s, 3H, CH 3 ) Further, in an autoclave, the above alkene 87.4 g ( 0.178 mol), trichlorosilane 35.0 g (0.25 mol) and n-butanol modification catalyst of chloroplatinic acid (platinum concentration 2.0 wt%) 1.5
0 g (1.50 × 10 −4 mol) was mixed and reacted at 110 ° C. for 64 hours (40% conversion by GLC, selectivity 85%). After the reaction is completed, first, atmospheric distillation is performed and the boiling point is 145 to 148 ° C.
44.6 g (alkene of the starting material) was obtained and then distilled under reduced pressure to obtain 40.4 g (yield 36%) of a compound represented by the following formula as a fraction having a boiling point of 86 to 88 ° C./8 mmHg.

得られた化合物を元素分析及びGC-MS分析に供し、ま
た、この化合物の赤外線スペクトル及び1H-NMRスペクト
ルを測定したところ、下記の結果が得られた。
The obtained compound was subjected to elemental analysis and GC-MS analysis, and the infrared spectrum and 1 H-NMR spectrum of this compound were measured. The following results were obtained.

元素分析: GC-MS:m/e 627(M) IRスペクトル: C=Cに由来する1660cm-1のピークは消失した。1 H-NMRスペクトル: 溶媒;CCl4 内部標準:TMS δ(ppm);5.33(m,1H,CH),3.50(m,2H,CH2) 2.70(m,3H,CH3) 〔実施例2〕 下記式 で示されるエステル104g(0.30モル)をエチルエー
テル150mに溶解した溶液を、マグネシウム18g
(0.75モル)、ヨウ化メチル115g(0.75モル)、エチ
ルエーテル150mを用いて実施例1と同様に調製し
たCH3MgI溶液中に滴下し、室温で2時間反応させた後、
実施例1と同様に処理、精製した。
Elemental analysis: GC-MS: m / e 627 (M + ) IR spectrum: The peak at 1660 cm -1 derived from C = C disappeared. 1 H-NMR spectrum: solvent; CCl 4 internal standard: TMS δ (ppm); 5.33 (m, 1H, CH), 3.50 (m, 2H, CH 2 ) 2.70 (m, 3H, CH 3 ) [Example 2 ] The following formula A solution of 104 g (0.30 mol) of the ester represented by is dissolved in 150 m of ethyl ether to obtain 18 g of magnesium.
(0.75 mol), 115 g (0.75 mol) of methyl iodide, and 150 m of ethyl ether were added dropwise to a CH 3 MgI solution prepared in the same manner as in Example 1 and reacted for 2 hours at room temperature,
The same treatment and purification as in Example 1 were carried out.

次に、得られた反応生成物を蒸留し、沸点133〜13
5℃における留分として下記式 で示される3級アルコール84g(収率81%)を得
た。
Next, the obtained reaction product is distilled to give a boiling point of 133 to 13
The following formula for the fraction at 5 ° C 84 g (yield 81%) of the tertiary alcohol represented by

この3級アルコールについて元素分析及びGC-MS分析を
行ない、また、赤外線吸収スペクトル及び1H-NMRスペク
トルを測定した。結果を次に示す。
This tertiary alcohol was subjected to elemental analysis and GC-MS analysis, and infrared absorption spectrum and 1 H-NMR spectrum were measured. The results are shown below.

元素分析: GC-MS:m/e(M) 344 赤外線吸収スペクトル: 第2図にチャートを示す。このチャートから3650、3450c
m-1に-OHに由来するピークが測定された。1 H-NMRスペクトル: 溶媒:CCl4 内部標準:TMS δ(ppm):2.47(s,1H,OH) 1.40(s,6H,2×CH3) 〔参考例2〕 参考例1と同一の装置を用い、95%濃度の硫酸250
g(2.42モル)に、上で得られた3級アルコール82g
(0.24モル)を加えて110〜120℃で5時間強く攪
拌した。次いで、同様な方法で留出、洗浄、乾燥を行な
った後、得られた反応生成物を蒸留し、沸点96℃にお
ける留分として下記式 で示される2−メチル−3−トリフルオロメチル−4−
オキサ−3,5,5,6,6,7,7,7−オクタフルオロペンテン−
1 73g(収率93%)を得た。
Elemental analysis: GC-MS: m / e (M + ) 344 Infrared absorption spectrum: A chart is shown in FIG. 3650, 3450c from this chart
A peak derived from —OH was measured at m −1 . 1 H-NMR spectrum: Solvent: CCl 4 Internal standard: TMS δ (ppm): 2.47 (s, 1H, OH) 1.40 (s, 6H, 2 × CH 3 ) [Reference Example 2] The same apparatus as Reference Example 1 With sulfuric acid of 95% concentration 250
82 g of the tertiary alcohol obtained above to g (2.42 mol)
(0.24 mol) was added, and the mixture was vigorously stirred at 110 to 120 ° C for 5 hours. Then, after distilling, washing, and drying in the same manner, the obtained reaction product is distilled to obtain a fraction represented by the following formula at a boiling point of 96 ° C. 2-methyl-3-trifluoromethyl-4-
Oxa-3,5,5,6,6,7,7,7-octafluoropentene-
173 g (yield 93%) was obtained.

この化合物について実施例1と同様に元素分析及びGC-M
S分析を行ない、また、赤外線吸収スペクトル及び1H-NM
Rスペクトルを測定した。その結果を下記に示す。
This compound was subjected to elemental analysis and GC-M in the same manner as in Example 1.
S analysis, infrared absorption spectrum and 1 H-NM
The R spectrum was measured. The results are shown below.

元素分析: GC-MS:m/e(M) 326 赤外線吸収スペクトル: OH基に由来する3650、3450cm-1のピークが消失し、新た
に1660cm-1にC=Cに基づくピークが生じたことが観察
された。1 H-NMRスペクトル: 溶媒:CCl4 内部標準:TMS δ(ppm):5.30〜5.60(m,2H,=CH2) 1.90(s,3H,CH3) 更に、オートクレーブ中、上で得られた化合物65g
(0.20モル)、トリクロロシラン35g(0.25モル)及び
塩化白金酸のn−ブタノール変性触媒(白金濃度2.0重
量%)0.90g(9.2×10−5モル)を混合し、110℃
で64時間反応させた(GLCで転化率92%、選択率98
%)。反応終了後、はじめに常圧蒸留して沸点93〜9
8℃の留分22.0g(原料のアルケン)を得、次いで減圧
蒸留したところ、沸点66〜67℃/10mmHgにおける留
分として下記式の化合物47.8g(収率50%)が得られ
た。
Elemental analysis: GC-MS: m / e ( M +) 326 IR absorption spectrum: peaks of 3650,3450Cm -1 derived from the OH group disappears, newly it is observed that peak based on the C = C to 1660 cm -1 is generated Was done. 1 H-NMR spectrum: Solvent: CCl 4 Internal standard: TMS δ (ppm): 5.30-5.60 (m, 2H, = CH 2 ) 1.90 (s, 3H, CH 3 ) Further obtained in autoclave above Compound 65g
(0.20 mol), 35 g (0.25 mol) of trichlorosilane and 0.90 g (9.2 × 10 −5 mol) of an n-butanol modification catalyst of chloroplatinic acid (platinum concentration 2.0 wt%) were mixed, and the mixture was heated at 110 ° C.
The reaction was performed for 64 hours (GLC conversion 92%, selectivity 98
%). After the reaction is completed, first, atmospheric distillation is carried out to have a boiling point of 93 to 9
After obtaining 22.0 g of a fraction at 8 ° C. (alkene as a raw material) and then performing vacuum distillation, 47.8 g (yield 50%) of a compound represented by the following formula was obtained as a fraction at a boiling point of 66 to 67 ° C./10 mmHg.

得られた化合物を元素分析及びGC-MS分析に供し、ま
た、この化合物の赤外線スペクトル及び1H-NMRスペクト
ルを測定したところ、下記の結果が得られた。
The obtained compound was subjected to elemental analysis and GC-MS analysis, and the infrared spectrum and 1 H-NMR spectrum of this compound were measured. The following results were obtained.

元素分析: GC-MS:m/e 461(M) IRスペクトル: C=Cに由来する1660cm-1のピークは消失した。1 H-NMRスペクトル: 溶媒;CCl4 内部標準;TMS Elemental analysis: GC-MS: m / e 461 (M + ) IR spectrum: The peak at 1660 cm -1 derived from C = C disappeared. 1 H-NMR spectrum: solvent; CCl 4 internal standard; TMS

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第2図はそれぞれ実施例1〜2の目的化合物
の赤外線吸収スペクトルである。
1 and 2 are infrared absorption spectra of the target compounds of Examples 1 and 2, respectively.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08F 299/00 MRS 7442−4J (72)発明者 佐藤 伸一 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社シリコーン電子材料技術研 究所内 (72)発明者 大山 正行 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社シリコーン電子材料技術研 究所内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location C08F 299/00 MRS 7442-4J (72) Inventor Shinichi Sato 2-13-1 Isobe, Annaka-shi, Gunma Shin-Etsu Kagaku Kogyo Co., Ltd. Silicone Electronic Materials Research Laboratory (72) Inventor Masayuki Oyama 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Silicone Electronic Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記式(1) (但し、式中nは1〜4の整数を示す。) で示される末端ジメチルカルビノール基を有するヘキサ
フルオロプロペンオキシドオリゴエーテル誘導体。
1. The following formula (1) (In the formula, n represents an integer of 1 to 4.) A hexafluoropropene oxide oligoether derivative having a terminal dimethylcarbinol group represented by:
【請求項2】下記式(2) (但し、式中nは1〜4の整数を示す) で示されるエステルとメチルグリニャール試薬とを反応
させて請求項1記載の(1)式で示される誘導体を製造す
ることを特徴とする末端ジメチルカルビノール基を有す
るヘキサフルオロプロペンオキシドオリゴエーテル誘導
体の製造方法。
2. The following formula (2) (Wherein n represents an integer of 1 to 4) and a methyl Grignard reagent are reacted to produce a derivative represented by the formula (1) according to claim 1. A method for producing a hexafluoropropene oxide oligoether derivative having a dimethylcarbinol group.
【請求項3】下記式(3) (但し、式中nは1〜4の整数を示す) で示されるオリゴマー酸フッ化物とメチルグリニャール
試薬とを反応させて請求項1記載の(1)式で示される誘
導体を製造することを特徴とする末端ジメチルカルビノ
ール基を有するヘキサフルオロプロペンオキシドオリゴ
エーテル誘導体の製造方法。
3. The following formula (3) (Wherein, n represents an integer of 1 to 4) and an oligomeric acid fluoride represented by the following formula is reacted with a methyl Grignard reagent to produce a derivative represented by the formula (1). And a method for producing a hexafluoropropene oxide oligoether derivative having a terminal dimethylcarbinol group.
JP13358189A 1989-05-26 1989-05-26 Hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and method for producing the same Expired - Lifetime JPH0623118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13358189A JPH0623118B2 (en) 1989-05-26 1989-05-26 Hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13358189A JPH0623118B2 (en) 1989-05-26 1989-05-26 Hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02311437A JPH02311437A (en) 1990-12-27
JPH0623118B2 true JPH0623118B2 (en) 1994-03-30

Family

ID=15108158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13358189A Expired - Lifetime JPH0623118B2 (en) 1989-05-26 1989-05-26 Hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0623118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6923921B2 (en) * 2002-12-30 2005-08-02 3M Innovative Properties Company Fluorinated polyether compositions

Also Published As

Publication number Publication date
JPH02311437A (en) 1990-12-27

Similar Documents

Publication Publication Date Title
US4337211A (en) Fluorocarbon ethers having substituted halogen site(s) and process to prepare
US5262557A (en) Fluorine-containing organosilicon compound and process for producing the same
CN110612319A (en) Method for producing fluorine-containing ether compound, and fluorine-containing ether compound
US5099053A (en) Fluorine-containing organic silicon compounds and a manufacturing method thereof
US2485928A (en) Method of making siloxanes
JP4741508B2 (en) Fluorinated polymer, optical member, electrical member and coating material
JPH0623118B2 (en) Hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and method for producing the same
EP0414186B1 (en) Novel fluorinated organic silicon compounds and a method for making them
JPH0623121B2 (en) Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same
US4987267A (en) Oligohexafluoropropylene oxide compound terminated with vinyl group at its one end
JPH0692957A (en) Production of fluorine-containing dioxolane compound
US4578508A (en) Fluoroacrylate ester, polymer thereof, and process of making the same
CN109516897A (en) A kind of synthetic method of octafluoro amyl propylene ether
EP0558348B1 (en) Fluorine-containing organo-silicon compound and process of producing the same
CN102898454A (en) M-methylphenyldiethoxymethylsilane and preparation method thereof
JPS63255288A (en) Fluorine-containing organosilicon compound
US4739123A (en) Fluorine-containing compounds, and their preparation and use
US5202453A (en) Fluorinated cyclic organic silicon compounds and method for making
CA1075710A (en) Perfluoroalkylacetyl chlorides and process for their manufacture
EP0418568A2 (en) Novel fluorinated cyclic organic silicon compounds and a method for making them
JPH0730096B2 (en) α-Trifluoromethylacrylic acid triorganosilyl methyl ester
US5214177A (en) Fluorinated organic silicon compounds and method for making
US4124469A (en) Perfluoroalkylacetyl chloride process
US3574699A (en) Process for the preparation of divinyl carbonates
JP3823339B2 (en) Perfluoro (2-methyl-1,2-epoxypropyl) ether compound and process for producing the same