JPH06230073A - Radiation resistance testing method for semiconductor device - Google Patents

Radiation resistance testing method for semiconductor device

Info

Publication number
JPH06230073A
JPH06230073A JP5015064A JP1506493A JPH06230073A JP H06230073 A JPH06230073 A JP H06230073A JP 5015064 A JP5015064 A JP 5015064A JP 1506493 A JP1506493 A JP 1506493A JP H06230073 A JPH06230073 A JP H06230073A
Authority
JP
Japan
Prior art keywords
sample
ray
distance
alpha
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5015064A
Other languages
Japanese (ja)
Inventor
Haruhide Fuse
玄秀 布施
Masahiko Niwayama
雅彦 庭山
Yuji Matsuda
祐二 松田
Katsuya Ishikawa
克也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP5015064A priority Critical patent/JPH06230073A/en
Publication of JPH06230073A publication Critical patent/JPH06230073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To carry out a radiation resistant test by setting a distance between a semiconductor device sample and an (alpha) ray source of americium so that average energy of an (alpha) ray falls within a specific intensity range on a device surface in the atmosphere. CONSTITUTION:An (alpha) ray radiating standard sample 1 of americium and an LSI device testing object sample 2 are arranged oppositely to each other, and a shutter 3 is arranged between the materials 1 and 2, and radiation time is controlled. The shutter 3 can be opened and closed electrically, and when a radiation test is carried out on a large quantity of sample, a replacing mechanism of a replacement standby testing object sample 4 is added automatically. Now, in the case of looking at a proportion defective of a leakage current, for example, of a large umber of diode arrays when a distance between the materials 1 and 2 is changed to about 20mm-30mm, with regard to the sample 2 having a difference in (alpha) ray resistance, even if it is a sample having no difference in in-vacuum radiation, a difference becomes large as the distance is changed to 20mm or 25mm in the atmosphere. In this way, when average energy of the (alpha) ray is radiated at a distance in the atmosphere so as to become intensity of about 0-400KeV, degradation by the (alpha) ray is accelerated, and can be recognized easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体デバイスの放射
線、特にα線に対する信頼性の加速試験方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of accelerating the reliability of a semiconductor device against radiation, especially α rays.

【0002】[0002]

【従来の技術】従来の耐α線試験照射方法としては、た
とえばα線源としてアメリシウム(Am)を用いて照射
する方法が耐α線の信頼性試験のために行われている。
その方法の一例を図2に示す。図2において1はアメリ
シウムのα線照射用標準試料、2はα線が照射される被
試験試料を示す。3はα線遮蔽用のシャッター、5は真
空チャンバーである。標準α線照射用として用いられる
アメリシウムなどの標準試料1は固体表面に蒸着により
非常に薄いアメリシウム膜を堆積するために、この表面
から出てくるα線は、ほとんど減衰することなく一様な
高いエネルギーである4Mから4.5MeVに揃ってお
り、実際に起こる現象に対するα線の加速試験とかなり
違った結果となる場合があり不都合があった。
2. Description of the Related Art As a conventional α-ray resistance test irradiation method, for example, a method of using americium (Am) as an α-ray source is used for the reliability test of α-ray resistance.
An example of the method is shown in FIG. In FIG. 2, 1 is a standard sample for α-ray irradiation of americium, and 2 is a sample to be tested which is irradiated with α-rays. 3 is a shutter for blocking α rays, and 5 is a vacuum chamber. Since the standard sample 1 such as americium used for standard α-ray irradiation deposits a very thin americium film on a solid surface by vapor deposition, the α-rays emitted from this surface have a uniform high intensity with almost no attenuation. The energy is 4 M to 4.5 MeV, and the result may be quite different from the α-ray acceleration test for the phenomenon that actually occurs, which is a disadvantage.

【0003】そこで、この高いエネルギーにスペクトル
の揃った照射しか行えないという問題を解決するため、
従来の方法として、大気中において、被試験試料とα線
源の間にある距離をおいて照射することによりα線のエ
ネルギーを減衰させる方法が特開平1−248070公
報に示されている。ここでは、大気中のα線のエネルギ
ーの減衰を利用して照射することで低いエネルギーのα
線を照射している。この方法を利用して低いエネルギー
のα線を照射した場合、固体撮像素子では素子によって
表面に形成されている色フィルターやオンチップレンズ
などのオンチップ材料のためにα線が減衰してかなり低
いα線となってしまう。そこで素子の種類によって表面
に到達するα線のエネルギーの分布に差が生じてしま
い、素子の種類によっては十分な特性を評価することが
困難であった。
Therefore, in order to solve the problem that only high-energy irradiation with a uniform spectrum can be performed,
As a conventional method, Japanese Patent Application Laid-Open No. 1-248070 discloses a method of attenuating the energy of α rays by irradiating the sample to be tested and an α ray source at a certain distance in the atmosphere. Here, by irradiating by utilizing the attenuation of the energy of α rays in the atmosphere,
Irradiating a line. When low-energy α-rays are irradiated using this method, α-rays are considerably low due to on-chip materials such as color filters and on-chip lenses formed on the surface of the solid-state image sensor by the element. It becomes an alpha ray. Therefore, there is a difference in the energy distribution of α rays reaching the surface depending on the type of element, and it is difficult to evaluate sufficient characteristics depending on the type of element.

【0004】[0004]

【発明が解決しようとする課題】このように上記した構
成では、固体撮像素子の表面状態、オンチップフィルタ
ーやレンズなどのオンチップ材料の厚さや材料の異なる
素子においてα線に対する影響を試験することが困難で
ある。そこで実際に問題となる耐α線の評価をすること
ができないという問題を有していた。
As described above, in the above-mentioned structure, the influence of α-rays on the surface condition of the solid-state image pickup device, the thickness of the on-chip material such as the on-chip filter and the lens, and the influence of α-rays on the different materials are tested. Is difficult. Therefore, there is a problem that the α-ray resistance, which is a problem, cannot be actually evaluated.

【0005】本発明は、かかる点に鑑み、超LSIの耐
α線の試験のために大気中で照射するα線の加速エネル
ギーをオンチップフィルターやレンズなどのオンチップ
材料の厚さに応じて距離を調整しながら被試験試料に照
射することにより、α線の平均エネルギーを素子表面で
ほぼ同等とする効果を与える方法を提供することを目的
とする。
In view of such a point, the present invention determines the acceleration energy of α-rays irradiated in the atmosphere for the α-ray resistance test of VLSI depending on the thickness of the on-chip material such as an on-chip filter or a lens. It is an object of the present invention to provide a method of irradiating a sample under test while adjusting the distance so that the average energy of α rays is substantially equalized on the element surface.

【0006】[0006]

【課題を解決するための手段】アメリシウム標準試料か
ら発生するα線の加速エネルギーは、ほぼ4〜4.5M
eVであるので、大気中では30mm程度で、ほとんど
のα線粒子は停止してしまう。図3は大気中での4Me
Vのα粒子の停止位置の分布の計算結果を示し、1×1
10cm-2の数のα線のデータを示す。ここで10mm
程度では平均エネルギーは約2MeV程度となり、その
エネルギーの近辺のエネルギーで分散を生じる。ほぼ2
0mm程度を越える距離においては平均エネルギーは約
1MeV程度となり、超LSIのパッケージ内で生じる
α線の加速エネルギーの分布と近い分布となる。しかし
ながらこの場合においても高いエネルギーを持つα線が
多く残留する。ほぼ30mm程度での照射は低いエネル
ギーのα線のみとなるが強度の低下が大きく短い時間で
十分な量のα線を照射することが不十分となり評価に必
要な量のα線の量に達しないために照射時間が非常に長
くかかり信頼性試験の時間を多く必要とする。そのため
にほぼ25mm程度の距離が適当であることが判った。
しかしながら固体撮像素子には表面にオンチップフィル
ターやレンズなどのオンチップ材料が装着されており、
その膜厚に応じて減衰する。
[Means for Solving the Problems] The acceleration energy of α rays generated from an americium standard sample is approximately 4 to 4.5 M.
Since it is eV, most α-ray particles stop in about 30 mm in the atmosphere. Figure 3 shows 4Me in the atmosphere
The calculation result of the distribution of the stopping positions of the α particles of V is shown as 1 × 1
The data of α rays with a number of 0 10 cm -2 are shown. 10 mm here
In average, the average energy is about 2 MeV, and dispersion occurs at energies near that energy. Almost 2
At a distance exceeding about 0 mm, the average energy is about 1 MeV, which is close to the distribution of the acceleration energy of α rays generated in the VLSI package. However, even in this case, a lot of α rays having high energy remain. Irradiation at about 30 mm is limited to α-rays with low energy, but there is a large decrease in intensity and it is not enough to irradiate a sufficient amount of α-rays in a short time, and the amount of α-rays necessary for evaluation is reached. Therefore, the irradiation time is very long and a lot of time is required for the reliability test. Therefore, it has been found that a distance of about 25 mm is suitable.
However, on-chip materials such as on-chip filters and lenses are mounted on the surface of the solid-state image sensor,
Attenuates according to the film thickness.

【0007】そこで、本発明の耐放射線試験方法は、大
気中において、α線のエネルギーが半導体デバイスの表
面にて平均エネルギーがほぼ0〜400KeVとなる距
離とし、さらには、その減衰量を空気中の距離に換算し
て25mmからこの相当分を差し引いてた距離とし、距
離を短くして照射するようにしたものである。
Therefore, according to the radiation resistance test method of the present invention, in the atmosphere, the energy of α rays is set to a distance at which the average energy is approximately 0 to 400 KeV on the surface of the semiconductor device, and further, the attenuation amount thereof in air. The distance is converted into 25 mm and the corresponding amount is subtracted from 25 mm, and the distance is shortened for irradiation.

【0008】[0008]

【作用】本発明は前記した構成により、大気中で照射す
る距離を約25mm程度の距離に固定して照射するだけ
で、ほぼ0〜400KeVのエネルギー分布を持つα線
の照射加速試験が実現でき、さらにオンチップ材料で減
衰する距離分を近づけることによってオンチップ材料の
厚さや材料の異なる素子に対しても耐α線加速試験を行
うことが可能となる。
With the above-described structure, the present invention can realize an α-ray irradiation acceleration test having an energy distribution of approximately 0 to 400 KeV by fixing the irradiation distance in the atmosphere to a distance of about 25 mm. Further, by making the attenuation distance of the on-chip material closer to each other, it becomes possible to perform the α-ray acceleration resistance test even for elements having different thicknesses of the on-chip material and different materials.

【0009】[0009]

【実施例】以下本発明の一実施例を図面に基づいて説明
する。図1は本発明の一実施例における耐放射線試験方
法を説明する図である。図1において、1はアメリシウ
ムのα線照射用標準試料、2はLSIデバイスの被試験
試料を示し、図に示すように、互いに相対して配置され
る。α線照射用標準試料1と被試験試料2の間にシャッ
ター3を配置して照射時間の制御を行う。このシャッタ
ー3は電気的に開閉し、照射時間を任意に設定できる構
造のものを用いた。また大量の試料を照射試験するとき
には自動で交換待機被試験試料4を交換する機構を付加
することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a radiation resistance test method according to an embodiment of the present invention. In FIG. 1, 1 is a standard sample for α-ray irradiation of americium, and 2 is a sample under test of an LSI device, which are arranged opposite to each other as shown in the figure. A shutter 3 is arranged between the α-ray irradiation standard sample 1 and the sample to be tested 2 to control the irradiation time. The shutter 3 has a structure that can be opened and closed electrically and the irradiation time can be set arbitrarily. Further, when performing an irradiation test on a large number of samples, it is possible to add a mechanism for automatically exchanging the sample 4 to be tested waiting for exchange.

【0010】以上のように構成された実施例の耐放射線
試験方法において、以下にオンチップ材料のない被試験
試料2を用いたときのアメリシウムのα線照射用標準試
料1との距離を20mmから30mmとしたときの電気
特性について説明する。ここでは評価の一実例施として
被試験試料が多数個のダイオードアレーにおけるリーク
電流による不良率の結果として示す。ダイオードアレー
にα線を照射すると欠陥がリーク電流の増大となって残
留する。このわずかな電流の増加によって評価を行っ
た。
In the radiation resistance test method of the embodiment configured as described above, the distance from the standard sample 1 for α-ray irradiation of americium when the sample 2 to be tested having no on-chip material is used is from 20 mm. The electrical characteristics when the thickness is 30 mm will be described. Here, as an example of the evaluation, the result of the defect rate due to the leakage current in the diode array having a large number of test samples is shown. When the diode array is irradiated with α-rays, defects remain due to an increase in leak current. The evaluation was performed by this slight increase in current.

【0011】図4は従来の真空中で照射したときのダイ
オードアレーに残留するリーク電流の6種の耐α線の効
果に差を生じる試料の実際の不良率の増加を比較した結
果を示す。図5は本発明による方法で20mmの距離を
離して照射したときのリーク電流による不良個数を6種
類の耐α線に差を持つ試料各10個の平均の値を示す。
図6は、本発明による方法で25mmの距離を離して照
射したときのリーク電流による不良個数を6種類の耐α
線に差を持つ試料各10個の平均の値を示す。図4の真
空中照射については6種の条件での差は全く見られなか
ったが、図5においては明らかに差を持っており、図6
に関してはますますその差は大きくなり実際の2ヵ月長
期にわたる自然α線照射でのデータの差と同様の傾向を
もつことがわかる。
FIG. 4 shows the results of comparing the increase of the actual defective rate of the sample which causes a difference in the effect of the six kinds of α ray resistance of the leakage current remaining in the diode array when irradiated in the conventional vacuum. FIG. 5 shows the average value of the number of defective samples due to leakage current when irradiated with a distance of 20 mm by the method according to the present invention for each of 10 samples having 6 kinds of α ray resistance.
FIG. 6 shows that the number of defects due to leakage current when irradiated with a distance of 25 mm by the method according to the present invention is 6 kinds of α-resistant.
The average value of 10 samples each having a line difference is shown. Regarding the irradiation in vacuum in FIG. 4, no difference was observed under the six conditions, but in FIG. 5, there is a clear difference.
As for the above, the difference becomes larger and larger, and it can be seen that it has the same tendency as the difference in the data obtained by natural α-ray irradiation over the actual two-month long term.

【0012】以上のように、この実施例によれば、大気
中で、適度な距離をおいて照射することによって、容易
にα線によると考えられるリーク電流の長期信頼性を短
期間に調べることができその加速テストとしての効用は
非常に大きい。図5と図6の間のデータの差は、20m
m程度の距離では、なお1MeV程度の高いエネルギー
のα線の成分が残っていることによる影響である。
As described above, according to this embodiment, the long-term reliability of the leak current, which is considered to be due to α rays, can be easily examined in a short time by irradiating the atmosphere at an appropriate distance. The effect as an accelerated test is very large. The data difference between Fig. 5 and Fig. 6 is 20m
This is due to the fact that α-ray components with high energy of about 1 MeV still remain at a distance of about m.

【0013】また実際のパッケージからのα線のスペク
トラムの中には高いエネルギーのものが混じる割合が状
態によって差が生じるために単に低いエネルギーのα線
のみを照射した場合に実際と差を生じる場合もある。そ
こで半導体デバイスの被試験試料とα線源の距離を連続
的あるいは数ステップで変化させることで故意にエネル
ギースペクトラムを形成して照射することで、より実際
に近い加速試験を行うこともできる。このときには、照
射時間でコントロールする方法がもっとも容易である。
また距離を変える代わりに被試験試料とα線源の間に減
衰薄膜を決まった時間設置することでエネルギーの変化
を行う方法もある。この場合には薄膜を回転させて出し
入れする方法などもある。
Further, in the spectrum of α-rays from the actual package, the proportion of high-energy mixed is different depending on the state. Therefore, when only low-energy α-rays are irradiated, there is a difference from the actual case. There is also. Therefore, the distance between the sample to be tested of the semiconductor device and the α-ray source may be changed continuously or in several steps to intentionally form an energy spectrum and irradiate, so that a more realistic acceleration test can be performed. At this time, the method of controlling the irradiation time is the easiest.
Also, instead of changing the distance, there is also a method of changing the energy by placing an attenuation thin film between the sample under test and the α-ray source for a fixed time. In this case, there is a method of rotating the thin film and putting it in and out.

【0014】また半導体デバイスの表面のオンチップレ
ンズやフィルターなどのオンチップ材料のトータル厚さ
b×10-3(mm)に対して大気中での試料との距離a
mmをa=23−(10/9)b±5とすることでオン
チップ材料の影響をなくすことができる。この値は27
ミクロンのオンチップフィルターで空気中30mmに相
当することからきている。たとえば、オンチップ材料の
厚さが9mmのときはa=13±5(mm)となる。な
おオンチップ材料が違っている場合には当然そのストッ
ピングパワーに応じて前式中の10/9の値を変化させ
ることは言うまでもない。またアメリシウムと違った標
準試料を使用する場合にもそのエネルギーにあわせて式
中の距離の23mmを変えることが必要であり、あくま
でオンチップ下の試料表面でのα線エネルギーの平均が
ほぼ0〜400KeVとなる距離を選択する。
Further, the distance a to the sample in the air is given with respect to the total thickness b × 10 −3 (mm) of the on-chip material such as the on-chip lens and the filter on the surface of the semiconductor device.
By setting mm to be a = 23− (10/9) b ± 5, the influence of the on-chip material can be eliminated. This value is 27
This is because the micron on-chip filter corresponds to 30 mm in air. For example, when the thickness of the on-chip material is 9 mm, a = 13 ± 5 (mm). Needless to say, when the on-chip material is different, the value of 10/9 in the above equation is naturally changed according to the stopping power. Also, when using a standard sample different from americium, it is necessary to change the distance of 23 mm in the formula according to the energy, and the average α-ray energy on the sample surface under the on-chip is almost 0 to 0. Select a distance that gives 400 KeV.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
空気中で約25mm程度の距離に固定して照射するだけ
で簡単に比較的低い加速エネルギーのα線となり、しか
も数百keVの幅のエネルギー分布を持つα線の照射加
速試験を実現することができ、その実用的効果は大き
い。
As described above, according to the present invention,
By irradiating in air with a fixed distance of about 25 mm, it is possible to easily realize an α-ray irradiation acceleration test with relatively low acceleration energy α-rays and an energy distribution with a width of several hundred keV. It is possible and its practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における耐放射線試験方法を
説明する図
FIG. 1 is a diagram illustrating a radiation resistance test method according to an embodiment of the present invention.

【図2】従来の真空中での耐放射線試験方法を説明する
FIG. 2 is a diagram illustrating a conventional radiation resistance test method in a vacuum.

【図3】大気中で標準のα線源からの距離を24〜28
mm離したときのα線の停止分布を示す図
FIG. 3 shows the distance from a standard α-ray source in the atmosphere of 24-28.
Diagram showing stop distribution of α-rays when separated by mm

【図4】真空中100mmの距離で照射したときのリー
ク電流不良率を説明する図
FIG. 4 is a diagram illustrating a leak current defect rate when irradiation is performed in a vacuum at a distance of 100 mm.

【図5】大気中で20mmの距離で照射したときのリー
ク電流不良率を説明する図
FIG. 5 is a diagram illustrating a leak current defect rate when irradiation is performed in the atmosphere at a distance of 20 mm.

【図6】大気中で25mmの距離で照射したときのリー
ク電流不良率を説明する図
FIG. 6 is a diagram illustrating a leak current defect rate when irradiation is performed in the atmosphere at a distance of 25 mm.

【符号の説明】[Explanation of symbols]

1 α線照射用標準試料 2 被試験試料 3 シャッター 4 交換待機評価試料 1 Standard sample for α-ray irradiation 2 Sample to be tested 3 Shutter 4 Standby replacement evaluation sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 克也 大阪府門真市大字門真1006番地 松下電子 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuya Ishikawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electronics Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 大気中において半導体デバイスの被試験
試料とα線源の距離をα線のエネルギーが半導体デバイ
スの表面にて平均エネルギーがほぼ0から400keV
となる距離とすることを特徴とする半導体装置の耐放射
線試験方法。
1. The distance between the sample to be tested of the semiconductor device and the α-ray source in the atmosphere is such that the energy of α-rays is about 0 to 400 keV on the surface of the semiconductor device.
A radiation resistance test method for a semiconductor device, characterized in that:
【請求項2】 α線源をアメリシウムとすることを特徴
とする請求項1記載の半導体装置の耐放射線試験方法。
2. The radiation resistance test method for a semiconductor device according to claim 1, wherein the α-ray source is americium.
【請求項3】 照射する半導体デバイスを固体撮像素子
とすることを特徴とする請求項1記載の半導体装置の耐
放射線試験方法。
3. The radiation resistance test method for a semiconductor device according to claim 1, wherein the semiconductor device to be irradiated is a solid-state image sensor.
【請求項4】半導体デバイスの表面に形成されたオンチ
ップ材料の厚さに応じて大気中での被試験試料とα線源
の距離を短かくすることを特徴とする請求項1記載の半
導体装置の耐放射線試験方法。
4. The semiconductor according to claim 1, wherein the distance between the sample to be tested and the α-ray source in the atmosphere is shortened according to the thickness of the on-chip material formed on the surface of the semiconductor device. Radiation resistance test method for equipment.
【請求項5】半導体デバイスの表面に形成されたオンチ
ップ材料のトータル厚さb×10-3(mm)に対して大
気中での被試験試料とα線源の距離a(mm)をa=2
3−(10/9)b±5とすることを特徴とする請求項
4記載の半導体装置の耐放射線試験方法。
5. The distance a (mm) between the sample to be tested and the α-ray source in air is a with respect to the total thickness b × 10 −3 (mm) of the on-chip material formed on the surface of the semiconductor device. = 2
The radiation resistance test method for a semiconductor device according to claim 4, wherein the radiation resistance test method is 3- (10/9) b ± 5.
JP5015064A 1993-02-02 1993-02-02 Radiation resistance testing method for semiconductor device Pending JPH06230073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015064A JPH06230073A (en) 1993-02-02 1993-02-02 Radiation resistance testing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015064A JPH06230073A (en) 1993-02-02 1993-02-02 Radiation resistance testing method for semiconductor device

Publications (1)

Publication Number Publication Date
JPH06230073A true JPH06230073A (en) 1994-08-19

Family

ID=11878418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015064A Pending JPH06230073A (en) 1993-02-02 1993-02-02 Radiation resistance testing method for semiconductor device

Country Status (1)

Country Link
JP (1) JPH06230073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075692A1 (en) * 1999-06-04 2000-12-14 The Secretary Of State For Defence Standard alpha particle source
US6310475B1 (en) * 1998-07-28 2001-10-30 Canon Denshi Kabushiki Kaisha Magnetic sensor having magnetic detectors arranged in a direction orthogonal to a relative moving direction
JP2010091334A (en) * 2008-10-06 2010-04-22 Toyota Motor Corp Irradiation test method for semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310475B1 (en) * 1998-07-28 2001-10-30 Canon Denshi Kabushiki Kaisha Magnetic sensor having magnetic detectors arranged in a direction orthogonal to a relative moving direction
WO2000075692A1 (en) * 1999-06-04 2000-12-14 The Secretary Of State For Defence Standard alpha particle source
GB2363673A (en) * 1999-06-04 2002-01-02 Secr Defence Standard alpha particle source
GB2363673B (en) * 1999-06-04 2004-02-18 Secr Defence Standard alpha particle source
JP2010091334A (en) * 2008-10-06 2010-04-22 Toyota Motor Corp Irradiation test method for semiconductor device

Similar Documents

Publication Publication Date Title
Reed Electron probe microanalysis
US2747104A (en) Interval timing apparatus
CN105940456A (en) Method for manufacturing a charge dissipative surface layer
Cheng et al. Modelling accretion disc emission with generalized temperature profile and its effect on AGN spectral energy distribution
US2889188A (en) Method of making photoconductive image transducer tubes
JPH06230073A (en) Radiation resistance testing method for semiconductor device
Jacobs et al. Large-area photoconductive x-ray pickup-tube performance
Kasap et al. X‐ray induced hole trapping in electroradiographic plates
Hillier On microanalysis by electrons
US2706790A (en) X-ray detection
Nandra et al. Soft X-ray and ultraviolet observations of MRK 841: implications for the blue bump
JPS609261B2 (en) Electrophotographic film article and method for manufacturing the same
US3723873A (en) Radiation method for determining semiconductor stability and reliability
Villa et al. The optical/UV filters for the EPIC experiment
Johnson et al. Seyferts and radio galaxies
US3457408A (en) Track-etch neutron radiography
US4857259A (en) Neutron dosimeter
Ditali et al. X-ray radiation effect in DRAM retention time
US3483379A (en) Automatic x-ray exposure control having a detector whose response is correlated with the x-ray absorption properties of the x-ray film
Bernard et al. Considerations for minimizing radiation doses to components during X-ray inspection
US2875344A (en) Protection system
RU2082178C1 (en) Method for selecting plates with radiation-resistant mos integrated circuits
US4082951A (en) Compton effect thermally activated depolarization dosimeter
US2939027A (en) Photoconductive image transducer tubes
JPS59192946A (en) Method and device for ion-analyzing insulating sample