JPH06229780A - Sinusoidal winding method for detector winding - Google Patents

Sinusoidal winding method for detector winding

Info

Publication number
JPH06229780A
JPH06229780A JP5262655A JP26265593A JPH06229780A JP H06229780 A JPH06229780 A JP H06229780A JP 5262655 A JP5262655 A JP 5262655A JP 26265593 A JP26265593 A JP 26265593A JP H06229780 A JPH06229780 A JP H06229780A
Authority
JP
Japan
Prior art keywords
winding
phase
slot
winding group
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5262655A
Other languages
Japanese (ja)
Other versions
JP3171737B2 (en
Inventor
Koichi Masaki
耕一 正木
Yoshihisa Fukuzawa
佳尚 福沢
Kanji Kitazawa
完治 北沢
Takenobu Azuma
剛伸 東
Naohiro Naganuma
直広 長沼
Tetsuo Hosoda
哲雄 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP26265593A priority Critical patent/JP3171737B2/en
Publication of JPH06229780A publication Critical patent/JPH06229780A/en
Application granted granted Critical
Publication of JP3171737B2 publication Critical patent/JP3171737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance production efficiency while reducing cost by connecting the winding groups wound for each slot pitch in series to constitute a winding group for one phase and constituting the winding groups for several phases in order to obtain a sine wave flux thereby allowing automatic winding. CONSTITUTION:Windings are applied sequentially, at one slot pitch, to a ring core 20 having an arbitrary number S(e.g. 10) of tooth parts 31 and slots 30 thus forming a winding group (x) having different number of turns for each slot 30. S(10) winding groups (x) are then connected in series thus forming a winding group (y) for one phase of a 2P pole resolver having pole pair number of P. A winding group Z for (n) phases is then constituted using (n) such winding groups (y). This constitution generates pulsating magnetomotive force for every winding group X of each slot 30 over the entire periphery of 2pi radian of the core 20 and a 2P pole n-phase sine wave flux is produced when each magnetomotive force is connected by an approximation line. Since the winding can be applied to each slot 30, automatic winding can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、検出器用巻線の正弦波
巻線方法に関し、特に、各スロットピッチ毎に順次巻回
した巻線グループを直列接続して1相分巻線群を構成
し、この1相分巻線群をn相分巻回して2P極かつn相
の正弦波磁束を得ると共に、自動機による巻線を行うこ
とができるようにするための新規な改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sine wave winding method for a detector winding, and more particularly, a winding group for one phase is formed by serially connecting winding groups sequentially wound at each slot pitch. However, the present invention relates to a novel improvement for winding the one-phase winding group by n phases to obtain a 2P pole and n-phase sinusoidal magnetic flux and performing winding by an automatic machine.

【0002】[0002]

【従来の技術】従来、用いられていたこの種のレゾルバ
又はシンクロ等の検出器用巻線の正弦波巻線方法として
は、一般に、図13から図17に示す方法が採用されて
いる。まず、図15,16において符号20で示される
ものは、全体が円筒状をなすステータであり、このステ
ータ20の内側に形成された複数のスロット30のうち
スロット番1〜16のうち、4と6、3と7、2と8、
1と9、16と10、15と11及び14と12間には
輪状にあらかじめ形成した第1相用の第1ステータ巻線
21が設けられ、この第1ステータ巻線2の装着後に矢
印Bの方向に拡開することにより各スロット30の内側
にロータ受け孔22が形成されている。
2. Description of the Related Art As a sine wave winding method for a detector winding of this type of resolver or synchro, which has been conventionally used, a method shown in FIGS. 13 to 17 is generally adopted. First, the reference numeral 20 in FIGS. 15 and 16 is a stator having a cylindrical shape as a whole, and it is 4 out of the slot numbers 1 to 16 of the plurality of slots 30 formed inside the stator 20. 6, 3 and 7, 2 and 8,
A ring-shaped pre-formed first stator winding 21 for the first phase is provided between 1 and 9, 16 and 10, 15 and 11 and 14 and 12, and after the mounting of the first stator winding 2, arrow B The rotor receiving hole 22 is formed inside each slot 30 by expanding in the direction of.

【0003】また、前記各スロット30のうち、スロッ
ト番2と16、3と15、4と14、5と13、6と1
2、7と11及び8と10間には、前記第1ステータ巻
線21と直交して第2相用の輪状をなす第2ステータ巻
線23が設けられ、この第2ステータ巻線23の装着後
に矢印Aの方向に拡開することにより、図15で示すよ
うに、各ステータ巻線21,23は、ステータ20の各
スロット30に配設され、前記ロータ受け孔22内に図
示しないロータ巻線を有するロータを回転自在に設ける
ことができるように構成されている。なお、各ステータ
巻線21,23は、図13,14に示すように各スロッ
ト30に対する巻数がSIN波又はCOS波の磁束分布
となるように設定して巻回されている。
Of the slots 30, the slot numbers 2 and 16, 3 and 15, 4 and 14, 5 and 13, 6 and 1
A second stator winding 23 having a ring shape for the second phase is provided between 2, 7 and 11 and 8 and 10 and is orthogonal to the first stator winding 21. By expanding in the direction of arrow A after mounting, as shown in FIG. 15, the stator windings 21 and 23 are disposed in the respective slots 30 of the stator 20 and the rotor not shown in the rotor receiving hole 22. A rotor having windings can be rotatably provided. The stator windings 21 and 23 are wound such that the number of turns for each slot 30 is set so as to have a magnetic flux distribution of a SIN wave or a COS wave, as shown in FIGS.

【0004】従って、前述の状態において、例えば、前
記ロータ巻線に一定の交流電圧を加えると、電磁誘導に
より各ステータ巻線21,23には鎖交磁束により電圧
が生じ、回転検出信号を得ることができる。
Therefore, in the above-mentioned state, for example, when a constant AC voltage is applied to the rotor winding, a voltage is generated in the stator windings 21 and 23 due to the interlinking magnetic flux due to electromagnetic induction, and a rotation detection signal is obtained. be able to.

【0005】[0005]

【発明が解決しようとする課題】従来の検出器用巻線の
正弦波巻線方法は、以上のように構成されていたため、
次のような課題が存在していた。すなわち、隣接するス
ロットを飛び越した状態で各スロット内にあらかじめ輪
状に形成された巻線を挿入し、その後、この巻線を拡開
して各スロット上に配設する方法であるため、巻線機に
よる自動巻は不可能で、全て手作業によって行うため
に、生産効率の向上及びコストダウンを達成することは
不可能であった。
Since the conventional sine wave winding method for the detector winding is configured as described above,
The following issues existed. That is, it is a method of inserting a winding formed in advance in a ring shape into each slot while jumping over adjacent slots, and then expanding this winding and disposing it on each slot. Since automatic winding by a machine is not possible, and it is impossible to achieve improvement in production efficiency and cost reduction because all are done by hand.

【0006】本発明は、以上のような課題を解決するた
めになされたもので、特に、各スロットピッチ毎に順次
巻回した巻線グループを直列接続して1相分巻線群を構
成し、この1相分巻線群をn相分巻回して2P極かつn
相の正弦波磁束を得ると共に、自動機による巻線を行う
ようにした検出器用巻線の正弦波巻線方法を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and in particular, a winding group for one phase is formed by serially connecting winding groups that are sequentially wound at each slot pitch. , This one-phase winding group is wound for n phases to have 2P poles and n
An object of the present invention is to provide a sine wave winding method for a detector winding, which is capable of obtaining a phase sine wave magnetic flux and performing winding by an automatic machine.

【0007】[0007]

【課題を解決するための手段】本発明による検出器用巻
線の正弦波巻線方法は、任意の数(S)の歯部とスロッ
トを内径側に有する輪状コアにn相巻線群を巻回し、前
記n相巻線群の1相分巻線群が発生する磁束分布が2P
極の正弦波分布となるように構成する検出器用巻線の正
弦波巻線方法において、前記輪状コアの1スロットピッ
チ毎に順次巻回した巻線グループを前記スロットの数
(S)と一致する合計S個として直列接続することによ
り1相分巻線群を構成し、さらに、複数の前記1相分巻
線群を用いることによりn相分のn相分巻線群を構成
し、2P極かつn相の正弦波磁束を得る方法である。
A sine wave winding method for a detector winding according to the present invention comprises winding an n-phase winding group on a ring-shaped core having an arbitrary number (S) of teeth and slots on the inner diameter side. The magnetic flux distribution generated by the winding group for one phase of the n-phase winding group is 2P.
In the sine wave winding method for the detector winding configured to have a pole sine wave distribution, a winding group sequentially wound at every one slot pitch of the annular core is equal to the number of slots (S). A total of S pieces are connected in series to configure a winding group for one phase, and a plurality of winding groups for one phase are used to configure an winding group for n phases for n phases. In addition, it is a method of obtaining n-phase sinusoidal magnetic flux.

【0008】さらに詳細には、前記1相分巻線群の各ス
ロットにおける巻回数は、数2の(1)式により設定した
方法である。
More specifically, the number of turns in each slot of the one-phase winding group is set by the equation (1) of the equation 2.

【0009】[0009]

【数2】 [Equation 2]

【0010】さらに詳細には、前記n相分巻線群をSI
N相とCOS相でレゾルバを構成し、前記SIN相とC
OS相は前記各スロットの奥側と手前側に交互に設ける
方法である。
More specifically, the n-phase winding group is SI
The resolver is composed of the N phase and the COS phase, and the SIN phase and the C phase.
The OS phase is a method of alternately providing the back side and the front side of each slot.

【0011】さらに詳細には、前記輪状コアの各スロッ
トの外方位置に設けられた案内ピンを介して前記n相分
巻線群を巻回する方法である。
More specifically, it is a method of winding the n-phase winding group through a guide pin provided at an outer position of each slot of the ring-shaped core.

【0012】さらに詳細には、前記輪状のコアの各スロ
ットに、案内ピンを有する絶縁部材を設け、前記案内ピ
ンを介して前記n相分巻線群を巻回する方法である。
More specifically, an insulating member having a guide pin is provided in each slot of the ring-shaped core, and the n-phase winding group is wound via the guide pin.

【0013】[0013]

【作用】本発明による検出器用巻線の正弦波巻線方法に
おいては、輪状コアの1スロットピッチ毎に順次巻回し
て所定のスロット数Sと一致するS個の巻線グループを
得ると共に、各巻線グループを直列接続することにより
1相分巻線群を形成するため、巻線機を介して自動巻を
行うことができる。また、この1相分巻線群をn相分巻
回することによりn相の正弦波磁束を得ることができ
る。
In the sinusoidal winding method of the detector winding according to the present invention, the winding is sequentially wound at each slot pitch of the ring-shaped core to obtain S winding groups corresponding to a predetermined slot number S, and each winding group is wound. Since the winding group for one phase is formed by connecting the wire groups in series, automatic winding can be performed via the winding machine. Further, by winding this one-phase winding group for n phases, an n-phase sinusoidal magnetic flux can be obtained.

【0014】[0014]

【実施例】以下、図面と共に本発明による検出器用巻線
の正弦波巻線方法の好適な実施例について詳細に説明す
る。なお、従来例と同一又は同等部分には同一符号を付
して説明する。図1から図12迄は本発明による検出器
用巻線の正弦波巻線方法を示すためのものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a sinusoidal winding method for a detector winding according to the present invention will be described in detail below with reference to the drawings. It should be noted that the same or equivalent parts as those of the conventional example are designated by the same reference numerals for description. 1 to 12 are for showing a sinusoidal winding method for a detector winding according to the present invention.

【0015】図1において符号20で示されるものは、
内径側に開口した任意の個数Sのスロット30と歯部3
1を有し多数のコアエレメントが積層された構成のステ
ータとしての輪状コアであり、この各スロット30に設
けられた1相巻線群Zは、図2の場合は2相又は1相、
図3の場合は3相(シンクロ)、図4の場合は4相(変
則2相レゾルバ)、図5の場合は5相の場合を示してい
る。
The reference numeral 20 in FIG.
Arbitrary number S of slots 30 and teeth 3 opened on the inner diameter side
1 is a ring-shaped core as a stator having a structure in which a large number of core elements are laminated, and the one-phase winding group Z provided in each slot 30 has two phases or one phase in the case of FIG.
The case of FIG. 3 shows three phases (synchro), the case of FIG. 4 shows four phases (irregular two-phase resolver), and the case of FIG. 5 shows five phases.

【0016】図6の場合、輪状コア20の各スロット3
0の外方位置には案内ピン41が植立して設けられてお
り、前記n相巻線群Zはこの各案内ピン41を介して巻
回されている。
In the case of FIG. 6, each slot 3 of the annular core 20
A guide pin 41 is provided upright at an outer position of 0, and the n-phase winding group Z is wound via each of the guide pins 41.

【0017】また、図7の場合、前記各スロット30内
に、案内ピン41を一体に有するスリット絶縁部42を
一体とした一対の輪状の絶縁部材43,43aが輪状コ
ア20の両端に嵌合されており、この案内ピン41を介
してn相巻線群Zを巻回する方法である。
Further, in the case of FIG. 7, a pair of ring-shaped insulating members 43, 43a having a slit insulating part 42 integrally having a guide pin 41 are fitted in both ends of the ring-shaped core 20 in each slot 30. This is a method of winding the n-phase winding group Z via the guide pin 41.

【0018】図8、図9に示す構成は、前述の輪状コア
20を用いてステータを構成し、この輪状コア20の中
心に形成されたロータ案内孔22内にロータ44が回転
自在に設けられ、この輪状コア20とロータ44により
レゾルバ55を構成している。なお、前述の輪状コア2
0はステータに限ることなく、図3で示すロータ44に
も適用することができる。
In the structure shown in FIGS. 8 and 9, a stator is formed by using the above-mentioned ring-shaped core 20, and a rotor 44 is rotatably provided in a rotor guide hole 22 formed at the center of the ring-shaped core 20. The ring-shaped core 20 and the rotor 44 form a resolver 55. The ring-shaped core 2 described above
0 is not limited to the stator, and can be applied to the rotor 44 shown in FIG.

【0019】次に、実際に本発明による検出器用巻線の
正弦波巻線の方法について述べる。例えば、図10で示
す輪状コア20のスロット30が10個すなわちS=1
0で歯部31の数が10個、かつ、1極対数Pの2P極
のレゾルバの1相分巻線群yの場合、各スロット30に
おいて、1スロットピッチ毎に順次巻線40を巻回し、
各スロット30ごとに巻線グループxを前記数S=10
と一致するS個として直列接続し、この10個の巻線グ
ループxにより1相分の1相分巻線群yを形成し、この
1相分巻線群yをn個形成することによりn相分巻線群
Zを形成する。従って、このn相分巻線群Zの形成によ
り、輪状コア20の全周2πラジアンにおいては、各ス
ロット30における各巻線グループx(各スロット30
ごとに巻数が異なる)ごとにパルス状の起磁力が図10
に示す棒グラフのように発生し、各起磁力を近似線で接
続すると正弦波磁束Aを得ることができる。
Next, a method of actually forming the sine wave of the detector winding according to the present invention will be described. For example, ten slots 30 of the ring-shaped core 20 shown in FIG. 10, that is, S = 1
In the case of 0, the number of tooth portions 31 is 10, and one-phase winding group y of a 2P-pole resolver having one pole pair number P, winding 40 is sequentially wound at each slot 30 at each slot pitch. ,
The number of winding groups x is set to S = 10 for each slot 30.
Are connected in series as S pieces of the same number, and the ten winding groups x form a one-phase winding group y for one phase, and n pieces of one-phase winding group y are formed. A phase winding group Z is formed. Therefore, due to the formation of the winding group Z for n phases, each winding group x (each slot 30) in each slot 30 in the entire circumference 2π radian of the annular core 20.
The number of turns is different for each)
A sine wave magnetic flux A can be obtained by connecting the magnetomotive forces with an approximate line.

【0020】また、図12に示す12スロットすなわち
S=12の場合においても、前述と同じ巻線方法によ
り、12個の各巻線グループxを直列接続した1相分巻
線群yを形成し、この1相分巻線群yをn個用いたn相
分巻線群Zを用い、SIN側とCOS側の磁束分布を得
ることができる。
Also in the case of 12 slots shown in FIG. 12, that is, in the case of S = 12, a winding group y for one phase in which twelve winding groups x are connected in series is formed by the same winding method as described above. It is possible to obtain the magnetic flux distributions on the SIN side and the COS side by using the n-phase winding group Z in which the one-phase winding group y is used.

【0021】前記各巻線グループxと、各巻線グループ
xを直列接続した構成の1相分巻線群yをn相分巻回し
たn相分巻線群Zは、一般式にて表すと、次の数3の
(1)式にて表される。
[0021] An n-phase winding group Z in which each winding group x and one-phase winding group y in which each winding group x is connected in series are wound by n phases is represented by the general formula: Of the next number 3
It is expressed by equation (1).

【0022】[0022]

【数3】 各スロット30(S個ある)のうち、1スロット目から
(S−1)番目迄の任意のk番目の巻線数を示してお
り、各スロット30に対してNk1〜Nk(n)までの各式が
適用される。
[Equation 3] Of the slots 30 (there are S), the number of arbitrary kth windings from the first slot to the (S−1) th is shown, and N k1 to N k (n) for each slot 30 are shown. Each equation up to is applied.

【0023】前述の(1)式はn相巻線の一般式であり、
例えば、レゾルバに限らず、回転機のステータ及びロー
タに適用できるものであるが、レゾルバの場合、n=4
相で変則2相となる。
The above formula (1) is a general formula for an n-phase winding,
For example, the present invention can be applied not only to a resolver but also to a stator and a rotor of a rotary machine. In the case of a resolver, n = 4.
The phase becomes anomalous two phases.

【0024】[0024]

【数4】 すなわち、前述の(2)式によりSIN側の1相巻線であ
る1相分巻線群yを形成し、(3)式によりCOS側の1
相巻線である1相分巻線群yを形成し、各巻線群x,y
によりn相分巻線群Zを構成している。但し、n=3番
目と1番目は同一、n=4番目と3番目は同一であるの
でここでは省略している。
[Equation 4] That is, the one-phase winding group y, which is the one-phase winding on the SIN side, is formed by the equation (2), and the one-phase winding group y on the COS side is formed by the equation (3).
A winding group y for one phase, which is a phase winding, is formed, and each winding group x, y
By this, a winding group Z for n phases is formed. However, since n = 3rd and 1st are the same and n = 4th and 3rd are the same, they are omitted here.

【0025】また、前述の(2)式に示すSIN側の1相
分巻線yを個々のスロット30ごとに分解して巻線グル
ープx(スロット30の数S分ある)を示すと、数5の
(4)式となる。
Further, when the windings y for one phase on the SIN side shown in the above equation (2) are disassembled into individual slots 30 to show the winding group x (there are S for the number of slots 30), Of 5
It becomes the formula (4).

【0026】[0026]

【数5】 [Equation 5]

【0027】次に(3)式のNk2はCOS側の1相巻線群
yを各スロット30ごとに分解して示すと数6の(5)式
となる。
Next, N k2 of the equation (3) is given by the equation (5) of the equation 6 when the one-phase winding group y on the COS side is disassembled for each slot 30.

【0028】[0028]

【数6】 すなわち、(3)式のNk2はスロット30の数Sの巻線と
なる。
[Equation 6] That is, N k2 in the equation (3) is the number S of windings of the slot 30.

【0029】前述の(4)式、(5)式に示す巻線グループx
のN11,N21,N31,N41は、図13に示すように、各
スロット30の奥側B及び手前側Cの位置に各々設けて
いる。
Winding group x shown in the above equations (4) and (5)
As shown in FIG. 13, N 11 , N 21 , N 31 , and N 41 are provided at positions on the back side B and the front side C of each slot 30, respectively.

【0030】前述の1相分巻線群yのSIN相側(4式
に示す)とCOS側(5式に示す)の各スロット30に
おける各巻線グループxは、次の表1の第1表に示すよ
うに配設されている。なお、第1表のS1〜S4は図4
の各端子S1〜S4に相当する。
Each winding group x in each slot 30 on the SIN phase side (shown in equation 4) and the COS side (shown in equation 5) of the one-phase winding group y is shown in Table 1 of Table 1 below. Are arranged as shown in FIG. Note that S1 to S4 in Table 1 are shown in FIG.
Of the terminals S1 to S4.

【0031】[0031]

【表1】 [Table 1]

【0032】従って、前述の第1表に示されるように、
各巻線グループxは、スロット30の奥側Bと手前側C
(図13で示す)に交互に配設されている。
Therefore, as shown in Table 1 above,
Each winding group x has a back side B and a front side C of the slot 30.
(Shown in FIG. 13) are arranged alternately.

【0033】[0033]

【発明の効果】本発明による検出器用巻線の正弦波巻線
方法は、以上のように構成されているため、各スロット
毎に巻線を施すことができ、従来、不可能であった自動
巻線機による巻線が可能となり、大幅なコストダウンを
達成することができる。前述の入れ方の効果により、2
相のコイルのスロット30内での位置が均一化されるた
め、精度が安定し、改善される。また、各巻線部の巻数
を容易に(1)式を用いて演算できるため、高精度な正弦
波状の磁束分解分布を得ることができ、レゾルバ等とし
て得られる回転アナログ信号の精度を大幅に向上させる
ことができる。
The sine wave winding method for the detector winding according to the present invention is configured as described above, so that the winding can be provided for each slot, which has been impossible in the past. Winding by a winding machine becomes possible, and a significant cost reduction can be achieved. 2 due to the effect of the above insertion method
Since the positions of the phase coils in the slot 30 are made uniform, the accuracy is stabilized and improved. Also, since the number of turns of each winding part can be easily calculated using equation (1), a highly accurate sinusoidal magnetic flux decomposition distribution can be obtained, and the accuracy of the rotation analog signal obtained as a resolver etc. is greatly improved. Can be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による検出器巻線を用いた輪状コアを示
す斜視図である。
FIG. 1 is a perspective view showing a ring-shaped core using a detector winding according to the present invention.

【図2】2相又は1相の巻線を示す構成図である。FIG. 2 is a configuration diagram showing a two-phase or one-phase winding.

【図3】3相の巻線を示す構成図である。FIG. 3 is a configuration diagram showing a three-phase winding.

【図4】4相=変則2相のレゾルバ巻線を示す構成図で
ある。
FIG. 4 is a configuration diagram showing a resolver winding of four phases = anomalous two phases.

【図5】n相の巻線を示す構成図である。FIG. 5 is a configuration diagram showing an n-phase winding.

【図6】図1の他例を示す斜視図である。FIG. 6 is a perspective view showing another example of FIG. 1.

【図7】図6の他例を示す分解斜視図である。FIG. 7 is an exploded perspective view showing another example of FIG.

【図8】レゾルバの断面図である。FIG. 8 is a sectional view of a resolver.

【図9】レゾルバの側面図である。FIG. 9 is a side view of a resolver.

【図10】1相分巻線群と正弦波分布を示す構成図であ
る。
FIG. 10 is a configuration diagram showing a winding group for one phase and a sine wave distribution.

【図11】1相分巻線群と正弦波分布の他例を示す構成
図である。
FIG. 11 is a configuration diagram showing another example of one-phase winding group and sine wave distribution.

【図12】各スロットにおける巻線グループを示す構成
図である。
FIG. 12 is a configuration diagram showing a winding group in each slot.

【図13】従来の巻線方法を示す構成図である。FIG. 13 is a configuration diagram showing a conventional winding method.

【図14】従来の巻線方法を示す構成図である。FIG. 14 is a configuration diagram showing a conventional winding method.

【図15】従来のレゾルバを示す斜視図である。FIG. 15 is a perspective view showing a conventional resolver.

【図16】従来の巻線を示す構成図である。FIG. 16 is a configuration diagram showing a conventional winding.

【図17】従来の巻線と正弦波分布を示す構成図であ
る。
FIG. 17 is a configuration diagram showing a conventional winding and a sine wave distribution.

【符号の説明】[Explanation of symbols]

20 輪状コア 30 スロット x 巻線グループ y 1相分巻線群 Z n相分巻線群 B 奥側 C 手前側 41 案内ピン 43 絶縁部材 20 ring-shaped core 30 slot x winding group y 1-phase winding group Z n-phase winding group B back side C front side 41 guide pin 43 insulating member

フロントページの続き (72)発明者 東 剛伸 長野県飯田市大休1879番地 多摩川精機株 式会社飯田工場内 (72)発明者 長沼 直広 長野県飯田市大休1879番地 多摩川精機株 式会社飯田工場内 (72)発明者 細田 哲雄 長野県飯田市大休1879番地 多摩川精機株 式会社飯田工場内Front page continued (72) Inventor Takenobu Higashi 1879 Okyu Iida, Nagano Prefecture Tamagawa Seiki Co., Ltd.Iida factory (72) Inventor Naohiro Naganuma 1879 Okyu Iida, Nagano Tamagawa Seiki Co., Ltd. Iida factory (72) Inventor Tetsuo Hosoda 1879 Okyu, Iida City, Nagano Tamagawa Seiki Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 任意の数(S)の歯部(31)とスロット(3
0)を内径側に有する輪状コア(20)にn相巻線群(Z)を
巻回し、前記n相巻線群(Z)の1相分巻線群(y)が
発生する磁束分布が2P極の正弦波分布となるように構
成する検出器用巻線の正弦波巻線方法において、前記輪
状コア(20)の1スロットピッチ毎に順次巻回した巻線グ
ループ(x)を前記スロット(30)の数(S)と一致する
合計S個として直列接続することにより前記1相分巻線
群(y)を構成し、さらに、複数の前記1相分巻線群
(y)を用いることによりn相分の前記n相分巻線群
(Z)を構成し、2P極かつn相の正弦波磁束を得るこ
とを特徴とする検出器用巻線の正弦波巻線方法。
1. An arbitrary number (S) of teeth (31) and slots (3).
The n-phase winding group (Z) is wound around the ring-shaped core (20) having (0) on the inner diameter side, and the magnetic flux distribution generated by the one-phase winding group (y) of the n-phase winding group (Z) is In a sinusoidal winding method for a detector winding configured to have a 2P pole sinusoidal distribution, a winding group (x) sequentially wound at each slot pitch of the annular core (20) is provided in the slot ( 30) The one-phase winding group (y) is configured by connecting in series as a total of S pieces corresponding to the number (S) of (30), and a plurality of the one-phase winding group (y) is further used. A sine wave winding method for a detector winding, characterized in that the above-mentioned n phase winding group (Z) for n phases is configured to obtain a 2P pole and n phase sine wave magnetic flux.
【請求項2】 前記1相分巻線群(y)の各スロット(3
0)における巻回数は、数1の(1)式により設定したこと
を特徴とする請求項1記載の検出器用巻線の正弦波巻線
方法。 【数1】
2. The slots (3) of the one-phase winding group (y)
The sine wave winding method for the detector winding according to claim 1, wherein the number of turns in (0) is set by the equation (1) of the equation 1. [Equation 1]
【請求項3】 前記n相分巻線群(Z)をSIN相とC
OS相でレゾルバを構成し、前記SIN相とCOS相は
前記各スロット(30)の奥側(B)と手前側(C)に交互
に設けることを特徴とする請求項1又は2記載の検出器
用巻線の正弦波巻線方法。
3. The n-phase winding group (Z) is connected to SIN phase and C
3. The detection according to claim 1 or 2, wherein a resolver is constituted by an OS phase, and the SIN phase and the COS phase are alternately provided on the back side (B) and the front side (C) of each slot (30). Method for sinusoidal winding of equipment coil.
【請求項4】 前記輪状コア(20)の各スロット(30)の外
方位置に設けられた案内ピン(41)を介して前記n相分巻
線群(Z)を巻回することを特徴とする請求項1ないし
3の何れかに記載の検出器用巻線の正弦波巻線方法。
4. The n-phase winding group (Z) is wound via a guide pin (41) provided at an outer position of each slot (30) of the annular core (20). The method for winding a sine wave on a detector winding according to any one of claims 1 to 3.
【請求項5】 前記輪状のコア(20)の各スロット(30)
に、案内ピン(41)を有する絶縁部材(43)を設け、前記案
内ピン(41)を介して前記n相分巻線群(Z)を巻回する
ことを特徴とする請求項1ないし3の何れかに記載の検
出器用巻線の正弦波巻線方法。
5. Each slot (30) of the ring-shaped core (20)
4. An insulating member (43) having a guide pin (41) is provided on the above, and the n-phase winding group (Z) is wound via the guide pin (41). The method for winding a sine wave of the detector winding according to any one of 1.
JP26265593A 1992-10-27 1993-10-20 Sinusoidal winding method for detector winding Expired - Lifetime JP3171737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26265593A JP3171737B2 (en) 1992-10-27 1993-10-20 Sinusoidal winding method for detector winding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-288798 1992-10-27
JP28879892 1992-10-27
JP26265593A JP3171737B2 (en) 1992-10-27 1993-10-20 Sinusoidal winding method for detector winding

Publications (2)

Publication Number Publication Date
JPH06229780A true JPH06229780A (en) 1994-08-19
JP3171737B2 JP3171737B2 (en) 2001-06-04

Family

ID=26545638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26265593A Expired - Lifetime JP3171737B2 (en) 1992-10-27 1993-10-20 Sinusoidal winding method for detector winding

Country Status (1)

Country Link
JP (1) JP3171737B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012202A1 (en) * 2000-03-13 2001-09-27 Siemens Ag Shaft position and velocity sensor has sinusoidal edge form does not require frequency generator
US7148599B2 (en) 2003-02-19 2006-12-12 Minebea Co., Ltd. Iron core winding, method of winding an iron core, and variable reluctance angle detector
DE102008051634A1 (en) 2007-10-26 2009-04-30 AISAN KOGYO K.K., Obu-shi position sensor
US7791335B2 (en) 2008-01-11 2010-09-07 Nidec Corporation Resolver, motor, power steering apparatus and method of manufacturing the resolver
WO2011104898A1 (en) * 2010-02-23 2011-09-01 多摩川精機株式会社 Method of detecting rotational angle or method of winding for synchronizing device windings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012202A1 (en) * 2000-03-13 2001-09-27 Siemens Ag Shaft position and velocity sensor has sinusoidal edge form does not require frequency generator
DE10012202C2 (en) * 2000-03-13 2002-11-07 Siemens Ag Device for detecting the speed, direction of movement and / or position of a part of the device to be moved
US7148599B2 (en) 2003-02-19 2006-12-12 Minebea Co., Ltd. Iron core winding, method of winding an iron core, and variable reluctance angle detector
DE102008051634A1 (en) 2007-10-26 2009-04-30 AISAN KOGYO K.K., Obu-shi position sensor
US7791335B2 (en) 2008-01-11 2010-09-07 Nidec Corporation Resolver, motor, power steering apparatus and method of manufacturing the resolver
WO2011104898A1 (en) * 2010-02-23 2011-09-01 多摩川精機株式会社 Method of detecting rotational angle or method of winding for synchronizing device windings

Also Published As

Publication number Publication date
JP3171737B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
US5486731A (en) Sinusoidally distributed winding method suitable for a detector winding
JP3182493B2 (en) Variable reluctance angle detector
US5936325A (en) Synchronous type electrical machine
EP0170452B1 (en) Rotating electric motor
US4556811A (en) Coil unit and coil form for electrical machines
CN107408856B (en) Rotating electric machine
JP3926664B2 (en) Rotation angle detector and rotating electric machine using the same
JPH07107732A (en) Linear motor
CN102769343A (en) Stator and resolver
US3949254A (en) Winding for dynamoelectric machine
JPS6077660A (en) Synchron resolver device
JPH06229780A (en) Sinusoidal winding method for detector winding
US20230127155A1 (en) Stator having coil structure of distributed winding, and three-phase ac electric motor comprising said stator
JP3103487B2 (en) Variable reluctance angle detector
JP3313639B2 (en) Resolver winding method and structure
JPH05161325A (en) Synchronous motor with a reduced cogging torque
JP2001272204A (en) Torsion quantity measuring apparatus
WO2023053283A1 (en) Stator, m-phase alternating-current electric motor comprising same, and production method for stator
JPH0984310A (en) Winding method for polyphase motor and the polyphase motor wound by the same method
JP3515144B2 (en) Brushless motor
JP3365578B2 (en) Rotary transformer type resolver
JPS61277354A (en) Flat type motor with frequency generator
JPS6026550Y2 (en) Stator of brushless motor
RU96111144A (en) ANCHOR OF MULTI-PHASE ELECTRIC MACHINE
Ishizaki et al. Theory and characteristics of novel variable reluctance 1X resolver

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

EXPY Cancellation because of completion of term