JPH06229684A - Measuring method of change in furnace shape of industrial furnace and marker used in measuring - Google Patents

Measuring method of change in furnace shape of industrial furnace and marker used in measuring

Info

Publication number
JPH06229684A
JPH06229684A JP30946393A JP30946393A JPH06229684A JP H06229684 A JPH06229684 A JP H06229684A JP 30946393 A JP30946393 A JP 30946393A JP 30946393 A JP30946393 A JP 30946393A JP H06229684 A JPH06229684 A JP H06229684A
Authority
JP
Japan
Prior art keywords
furnace
wall
marker
wall surface
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30946393A
Other languages
Japanese (ja)
Other versions
JP2882264B2 (en
Inventor
Koji Ashida
耕司 芦田
Kenichi Matsui
健一 松井
Kazuo Hiramoto
一男 平本
Hirotsugu Tomiyama
博次 富山
Takafumi Sachi
孝文 佐地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30946393A priority Critical patent/JP2882264B2/en
Publication of JPH06229684A publication Critical patent/JPH06229684A/en
Application granted granted Critical
Publication of JP2882264B2 publication Critical patent/JP2882264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the expansion amount of a furnace body due to enlargement of a crack and a wear amount of a furnace wall to grasp the state of a damage of an industrial furnace. CONSTITUTION:Markers 2A and 2B are buried in the surface of a furnace wall, and photographed by correspondent cameras 5A and 5B. Distances between the cameras 5A and 5B and a reference point 15 are respectively measured. The locations of the markers 2A and 2B on the cameras 5A and 5B are converted into coordinates with the reference point 15 as the origin based on the distances between markers 2A and 2B and the reference point 15, and the expansion of the furnace body is measured based on changes in the relative distances between the markers 2 converted into the coordinates. The wear amount is measured based on changes with time in the outside shapes of the markers 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種工業炉の炉体形状
変化、すなわち炉体の膨張および炉壁の損耗を適確に計
測する方法とこれに用いるマーカーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately measuring changes in the shape of a furnace body of various industrial furnaces, that is, expansion of the furnace body and wear of the furnace wall, and a marker used therefor.

【0002】[0002]

【従来の技術】コークス炉、高炉、加熱炉等の工業炉の
炉壁は、耐火物で構築されているが、この炉壁は、熱の
影響や被処理材との接触により、溶損、亀裂等の損傷を
生じることがある。この損傷は、炉の老朽化を進める要
因となるため、その損傷状況を見極め、的確なタイミン
グで炉の補修を施すことが、炉を長く使用するために重
要となる。
2. Description of the Related Art The furnace walls of industrial furnaces such as coke ovens, blast furnaces, heating furnaces, etc. are constructed of refractory materials, but this furnace wall is subject to melting loss due to heat or contact with the material to be treated. May cause damage such as cracks. Since this damage is a factor that accelerates the deterioration of the furnace, it is important to determine the damage condition and repair the furnace at an appropriate timing in order to use the furnace for a long time.

【0003】炉の損傷状況の指標の1つとして、炉を構
成する耐火物の膨張量を測定する方法が従来より利用さ
れている。たとえば、コークス炉の場合を例に採ると、
炉体は煉瓦で構成され、1100〜1300℃程度の温度で操業
されている。このコークス炉の損傷は、稼働率の変化に
よる炉温変化、装炭、乾留、窯出しによる炉温の変化、
石炭乾留時の膨張率、コークス押し出しの炉壁に対する
圧力等により発生する。これらの原因により、煉瓦の目
地切れ、亀裂等の損傷が発生、進展し、ひいてはコーク
ス炉の老朽化を進展させる。
As one of the indicators of the state of damage to a furnace, a method of measuring the expansion amount of a refractory forming the furnace has been conventionally used. For example, taking a coke oven as an example,
The furnace body is made of bricks and is operated at a temperature of 1100 to 1300 ℃. The damage of this coke oven is caused by changes in the furnace temperature due to changes in the operating rate, changes in the furnace temperature due to carbonization, carbonization, and kiln removal.
It is generated by the coefficient of expansion during coal carbonization and the pressure of the coke extrusion against the furnace wall. Due to these causes, damage such as joint breakage and cracks of bricks occurs and progresses, and eventually the coke oven deteriorates.

【0004】上記の損傷のうち、亀裂拡大は炉体の炉長
方向の伸びにより発生する。したがって、炉長方向の長
さを一定期間毎に測定すれば、炉体膨張、すなわち亀裂
拡大の進行を定量的に把握することができる。よって、
逆に炉長を精度良く測定することができれば、コークス
炉炉体の炉寿命推定、適性な老朽化対策を実施するため
にきわめて有効である。
Among the above damages, the crack expansion is caused by the elongation of the furnace body in the furnace length direction. Therefore, by measuring the length in the furnace length direction at regular intervals, it is possible to quantitatively grasp the progress of the furnace body expansion, that is, the crack expansion. Therefore,
On the contrary, if the furnace length can be measured with high accuracy, it is extremely effective for estimating the furnace life of the coke oven furnace body and implementing appropriate aging measures.

【0005】コークス炉の炉長測定方法は、従来、たと
えば実開昭61-39136号公報に開示された、炉締め金物表
面あるいは保護板までの距離を炉外部に設けた基準点か
らトランシットを用いて間接的に測量する方法がある。
また、特開平3-245009号公報では、押し出し機側炉口お
よび消化車側炉口についてそれぞれレーザ変位計を用い
て測定し炉全体の伸びを測定する方法を開示している。
Conventionally, the method for measuring the length of a coke oven uses a transit, which is disclosed in, for example, Japanese Utility Model Laid-Open No. 61-39136, a distance from a furnace clamp surface or a protective plate to a reference point provided outside the furnace. There is a method to measure indirectly.
Further, Japanese Patent Application Laid-Open No. 3-245009 discloses a method for measuring the elongation of the entire furnace by measuring the extruder-side furnace opening and the digester-side furnace opening using a laser displacement meter.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術のうち、
実開昭61-39136号公報による方法は、人手による測定で
あるため、測定する人の個人差による誤差を生じ易いも
のである。
Of the above-mentioned conventional techniques,
Since the method according to Japanese Utility Model Laid-Open No. 61-39136 is a manual measurement, an error is likely to occur due to an individual difference of a person who measures.

【0007】また、特開平3-245009号公報による方法で
は、経年変化により炉蓋の保護板である金物に熱歪が生
じており、煉瓦の伸びによる変化量だけを抽出するのは
困難である。さらには、炉の天井部の異常セリ出しによ
り、保護板と煉瓦面の間に隙間が生じており、煉瓦の伸
びによる変化量だけを抽出するのは困難である。
Further, in the method disclosed in Japanese Patent Laid-Open No. 3-245009, thermal distortion occurs in the metal which is the protective plate of the furnace lid due to aging, and it is difficult to extract only the amount of change due to the elongation of the brick. . Furthermore, due to the abnormal seri- lization of the roof of the furnace, a gap is created between the protective plate and the brick surface, and it is difficult to extract only the amount of change due to the elongation of the brick.

【0008】また、これらの従来技術は、コークス炉以
外に採用する場合にも、同様の問題を生じるものであ
る。
Further, these conventional techniques also cause the same problem when they are applied to other than the coke oven.

【0009】一方、コークス炉の寿命予測およびこれに
基づく補修対策を採る際に、その壁面を構成する煉瓦の
損耗量(摩耗量)を知ることもできれば、きわめて有効
であるが、これを定量的に知る有効な方法がないのが現
状である。
On the other hand, when it is possible to know the amount of wear (amount of wear) of the bricks forming the wall surface when predicting the life of the coke oven and taking repair measures based on it, it is extremely effective, but this is quantitative. Currently, there is no effective way to know.

【0010】したがって、本発明の課題は、コークス炉
等の各種工業炉の亀裂拡大による炉体の膨張量を正確に
測定し、これらの工業炉の損傷状況を把握し、炉の寿命
の推定精度を向上させることにある。また、工業炉の損
傷の指標として、壁面の損耗をも定量的に検知すること
により、炉の寿命の推定精度を高め、適確な補修対策を
講じるることができるようにすることにある。
Therefore, an object of the present invention is to accurately measure the amount of expansion of the furnace body due to crack expansion in various industrial furnaces such as coke ovens, grasp the damage situation of these industrial furnaces, and estimate the life of the furnace. To improve. Further, it is to detect the wear of the wall surface quantitatively as an index of the damage of the industrial furnace so that the accuracy of estimating the life of the furnace can be improved and appropriate repair measures can be taken.

【0011】[0011]

【課題を解決するための手段】上記課題を解決した本願
の第1発明の工業炉の炉体膨張計測方法は、炉内壁面の
複数の測定点に対応して配置した撮像装置により各測定
点付近を撮像し、前記各撮像装置と基準点との各離間距
離を測定し、前記各撮像装置上での各測定点位置を、前
記各離間距離に基づいて、前記基準点を基準とする座標
に変換し、この変換された座標上での各測定点位置間の
相対距離の経時的変化に基づいて炉体の膨張を計測する
ことを特徴とするものである。
A method for measuring the expansion of a furnace body of an industrial furnace according to the first aspect of the present invention, which has solved the above-mentioned problems, is to measure each measurement point by an imaging device arranged corresponding to a plurality of measurement points on the inner wall surface of the furnace. An image of the vicinity is taken, each separation distance between each of the imaging devices and the reference point is measured, and each measurement point position on each of the imaging devices is based on the separation distance, and coordinates based on the reference point. And the expansion of the furnace body is measured based on the change over time in the relative distance between the measurement point positions on the converted coordinates.

【0012】また、この炉体膨張計測などに有効な本願
の第2発明の工業炉の壁面マーカーは、撮像装置による
撮像対象としてのマーカーであって、炉内壁面に埋設さ
れ、壁の深さ方向に順次縮径する頭部と、アンカー部
と、前記頭部とアンカー部との間に径が細い首部とを有
し、前記頭部の外面が前記壁面に面一で埋設され、少な
くとも前記頭部の壁深さ方向のある長さの指標部分は他
の壁面部分と実質的に同一の速度で摩耗する材質からな
り、さらに前記指標部分は他の壁面部分と撮像したとき
画像的に区別される状態にあることを特徴とするもので
ある。
The wall marker of the industrial furnace of the second invention of the present application, which is effective for measuring the expansion of the furnace body, is a marker to be imaged by the image pickup device, and is embedded in the wall surface of the furnace and has a depth of the wall. A head having a diameter that is successively reduced in a direction, an anchor portion, and a neck portion having a small diameter between the head portion and the anchor portion, the outer surface of the head portion being embedded flush with the wall surface, and at least the The index part of a certain length in the wall depth direction of the head is made of a material that wears at substantially the same speed as other wall parts, and the index part is image-wise distinguished from other wall parts when imaged. It is characterized by being in the state of being.

【0013】さらに、本願の第3発明の工業炉の炉壁の
損耗量の計測方法は、工業炉の壁面に、壁深さ方向に外
径が順次狭まる頭部を有するマーカーを、その頭部表面
を前記壁面と面一として埋設し、このマーカーを前記壁
面を睨む撮像装置により撮像し、撮像したマーカー上の
3点以上を抽出し、これらの抽出点を通る常に一定の条
件の下で想定した図形の径または面積を求め、この径ま
たは面積の経時的変化に基づいて前記壁の損耗量を計測
することを特徴とするものである。
Further, in the method for measuring the amount of wear of the furnace wall of the industrial furnace according to the third invention of the present application, a marker having a head portion whose outer diameter is gradually narrowed in the wall depth direction is provided on the wall surface of the industrial furnace. The surface is embedded so as to be flush with the wall surface, the marker is imaged by an imaging device that gazes at the wall surface, three or more points on the imaged marker are extracted, and it is assumed that the markers pass through these extraction points and are always under constant conditions. It is characterized in that the diameter or area of the figure is determined, and the amount of wear of the wall is measured based on the change over time of the diameter or area.

【0014】[0014]

【作用】[Action]

(第1発明の作用)第1発明に従って、炉内壁面の複数
の測定点に対応して配置した撮像装置により各測定点付
近を撮像し、前記各撮像装置と基準点との各離間距離を
測定し、前記各撮像装置上での各測定点位置を、前記各
離間距離に基づいて、前記基準点を基準とする座標に変
換することにより、変換された座標上での各測定点位置
間の相対距離を知ることができる。したがって、この変
換された座標上での各測定点位置間の相対距離の経時的
変化を測定すれば、結果として炉体の膨張を計測するこ
とになる。
(Operation of the first invention) According to the first invention, an image pickup device arranged corresponding to a plurality of measurement points on the inner wall surface of the furnace is used to image the vicinity of each measurement point, and the respective separation distances between the respective image pickup devices and the reference point are measured. By measuring and converting each measurement point position on each of the image pickup devices to coordinates with the reference point as a reference, based on each of the separation distances, between the measurement point positions on the converted coordinates. You can know the relative distance of. Therefore, if the change with time of the relative distance between the respective measurement point positions on the converted coordinates is measured, the expansion of the furnace body will be measured as a result.

【0015】かかる計測方法においては、基本的に光学
上の計測に依存するものの、人為的要素を排除できるの
で、測定精度が高いものとなる。また、炉壁自体に測定
点を設定しているために、炉壁煉瓦のみの膨張を計測で
き、真の炉体膨張を正確に計測でき、結果として、炉の
寿命を適確に把握できる。
In such a measuring method, although it basically depends on the optical measurement, since the artificial element can be eliminated, the measuring accuracy becomes high. Moreover, since the measurement points are set on the furnace wall itself, the expansion of only the furnace wall brick can be measured, the true furnace body expansion can be accurately measured, and as a result, the life of the furnace can be accurately grasped.

【0016】(第2発明および第3発明の作用)上記第
1発明に用いる測定点としては、たとえばコークス炉を
考えると、石炭の装入およびコークスの排出過程におけ
る摩擦により摩耗し、また、高温下に置かれることか
ら、少なくとも耐摩耗性および耐熱性が要求される。さ
らに、機械的な力が作用しても、容易に脱落しないこと
が要求される。この場合、測定点としてのマーカーとし
て、耐摩耗性が極度に高いものを使用すると、コークス
炉の炉壁煉瓦が摩耗したとき、マーカーが炉壁煉瓦より
突出した状態となり、これを放置しておくと、やがて石
炭またはコークスとの接触により折損したり、埋め込ん
だマーカーが脱落する危険性がある。
(Operation of the second and third inventions) As a measuring point used in the first invention, for example, when considering a coke oven, it is worn due to friction in the process of charging coal and discharging coke, and also has a high temperature. Since it is placed underneath, at least abrasion resistance and heat resistance are required. Further, it is required that even if mechanical force is applied, it does not easily fall off. In this case, if a marker with extremely high wear resistance is used as the measurement point, when the brick wall of the coke oven is worn out, the marker will protrude from the brick wall and leave it alone. Then, there is a risk that it will break due to contact with coal or coke, or the embedded marker will fall off.

【0017】しかるに、第2発明にしたがって、マーカ
ーとして炉壁煉瓦と実質的に同一の速度で摩耗する材質
のものを使用すると、マーカーの折損や脱落は生じな
い。また、マーカーの壁深さ方向に首部を形成し、この
首部より先端にアンカー部を形成しておくことで、マー
カーを埋設した後において、脱落を確実に防止できる。
However, according to the second aspect of the present invention, when the marker made of a material that wears at substantially the same speed as the furnace wall brick is used, the marker does not break or fall off. Further, by forming the neck portion in the wall depth direction of the marker and forming the anchor portion at the tip from the neck portion, it is possible to reliably prevent the marker from falling off after the marker is embedded.

【0018】一方、壁の深さ方向に順次縮径する頭部
を、その外面が壁面に面一で埋設し、さらにこの頭部は
他の壁面部分と撮像したとき画像的に区別される状態に
ある、たとえば煉瓦と材質が異なるものを使用すること
で、壁面の摩耗の進行に伴ってマーカー自体も摩耗し、
その外面面積が順次小さくなるので、その面積または径
の経時的変化を捉えることにより、逆に壁面の損耗量を
求めることができ、炉の寿命の予測を行うことができ
る。
On the other hand, a head whose diameter is successively reduced in the depth direction of the wall is embedded with its outer surface flush with the wall surface, and this head is visually distinguished from other wall surface portions when imaged. , For example, by using a different material from brick, the marker itself will wear as the wall wear progresses,
Since the area of the outer surface is gradually reduced, the wear amount of the wall surface can be obtained conversely by grasping the change in the area or the diameter with time, and the life of the furnace can be predicted.

【0019】[0019]

【実施例】以下本発明を図面を参照しながら実施例によ
りさらに詳説する。以下の説明においては、工業炉とし
てコークス炉を代表例として説明するが、他の工業炉に
おいても本発明を適用できることは明らかである。
The present invention will be described in more detail by way of examples with reference to the drawings. In the following description, a coke oven is described as a representative example of the industrial furnace, but it is obvious that the present invention can be applied to other industrial furnaces.

【0020】(第1発明について)第1発明では、図1
に示すように、コークス炉1の炉内耐火物面に測長の目
印となる測定点としてのマーカー2A,2Bを埋設す
る。このマーカーの数は複数であればその数を限定され
るものではないが、実施例では2個設けてある。
(First Invention) In the first invention, FIG.
As shown in FIG. 3, markers 2A and 2B as measurement points serving as measurement marks are embedded in the in-furnace refractory surface of the coke oven 1. The number of the markers is not limited as long as it is plural, but two markers are provided in the embodiment.

【0021】マーカー2A、2Bにそれぞれ対応してこ
れを睨むテレビカメラなどからなる撮像装置5A,5B
が測定ラック3内に設置され、これらにより観察用窓4
A,4Bを通してそれぞれマーカー2A,2B付近を撮
像する。撮像装置5A,5Bより得られるそれぞれの画
像7A,7B内で、マーカー2A,2Bの視野内の座標
位置X1,Y1,X2,Y2が測定される。一方、トラ
ンシットなどからなる距離測定装置6により、撮像装置
5A,5Bと任意の基準点15との離間距離L1,L2
が測定される。
Imaging devices 5A and 5B, which are television cameras or the like, which gaze at the markers 2A and 2B respectively.
Is installed in the measurement rack 3, and the observation window 4
Images around the markers 2A and 2B are taken through A and 4B, respectively. Coordinate positions X1, Y1, X2, Y2 in the visual fields of the markers 2A, 2B are measured in the respective images 7A, 7B obtained by the imaging devices 5A, 5B. On the other hand, the distance measuring device 6 composed of a transit or the like is used to separate the distances L1 and L2 between the imaging devices 5A and 5B and the arbitrary reference point 15.
Is measured.

【0022】前述の各マーカーの座標位置X1,Y1,
X2,Y2、および離間距離L1,L2の値は演算装置
8に入力され、マーカー2A,2Bと基準点15との相
対的位置が算出される。
Coordinate positions X1, Y1, of the above-mentioned markers
The values of X2, Y2 and the distances L1, L2 are input to the arithmetic unit 8 and the relative positions of the markers 2A, 2B and the reference point 15 are calculated.

【0023】なお、この場合は、距離測定装置6の位置
を基準点15としている。基準点は、測定の便宜上、距
離測定装置6のある位置とすることが好ましいが、他の
任意の位置でもよい。
In this case, the position of the distance measuring device 6 is used as the reference point 15. The reference point is preferably a position where the distance measuring device 6 is located for convenience of measurement, but may be another position.

【0024】次いで、前記各測定値に基づいて、マーカ
ー2A,2Bの視野画像上の位置を基準点15を基準と
する座標に変換する方法を説明する。図4は、基準点1
5とマーカー2A,2Bの位置関係を示す図である。い
ま、距離測定装置6の位置に設定した基準点15を原点
とする座標系をx−y座標系とすると、このx−y座標
系では、マーカー2A,2Bの位置座標(x1,y1)およ
び(x2,y2)は、同図に示すように、次記の通りであ
る。 x1 =L1+X1 x2 =L2+X2 y1 =Y1 y2 =Y2 これらのマーカー2A,2Bの位置座標(x1,y1)およ
び(x2,y2)を一定期間毎に知ることによりマーカー2
A,2Bの移動量を測定し、この値を、炉体の膨張量
(収縮量)の代表値として使用することができる。具体
的には、マーカー間の水平方向および鉛直方向の相対的
な距離を次式により求めることにより、炉体の膨張を計
測することができる。 水平方向マーカー間距離=|L2−L1|+|X2−X
1| 鉛直方向マーカー間距離=|Y2−Y1| かくして、上記式によって炉壁面に設定したマーカー間
の相対的位置を直接測定することができるため、マーカ
ー間距離測定値は炉を構成する耐火物壁面の伸びにだけ
依存させることが可能となる。したがって、従来例と異
なり、煉瓦の伸びによる変化量だけを抽出することがで
きる。
Next, a method of converting the positions of the markers 2A and 2B on the visual field image into coordinates with the reference point 15 as a reference based on the above-mentioned measured values will be described. FIG. 4 shows the reference point 1
It is a figure which shows the positional relationship of 5 and the markers 2A and 2B. Now, assuming that a coordinate system whose origin is the reference point 15 set at the position of the distance measuring device 6 is an xy coordinate system, in this xy coordinate system, the position coordinates (x 1 , y 1 of the markers 2A, 2B are represented. ) And (x 2 , y 2 ), as shown in FIG. x 1 = L1 + X1 x 2 = L2 + X2 y 1 = Y1 y 2 = Y2 The marker 2 is obtained by knowing the position coordinates (x 1 , y 1 ) and (x 2 , y 2 ) of these markers 2A and 2B at regular intervals.
The moving amount of A and 2B can be measured, and this value can be used as a representative value of the expansion amount (contraction amount) of the furnace body. Specifically, the expansion of the furnace body can be measured by obtaining the relative distance between the markers in the horizontal direction and the vertical direction by the following equation. Horizontal marker distance = | L2-L1 | + | X2-X
1 | Vertical distance between markers = | Y2-Y1 | Thus, since the relative position between the markers set on the furnace wall surface can be directly measured by the above formula, the measured distance between the markers is the refractory material constituting the furnace. It is possible to make it depend only on the elongation of the wall surface. Therefore, unlike the conventional example, it is possible to extract only the amount of change due to the elongation of the brick.

【0025】一方、撮像装置5A,5Bと基準点15と
の離間距離測定方法としては、図1に示す測定ラック3
をたとえばスクリューネジ5C,5C送りなどにより炉
1内に挿入する時の挿入量を測定する方法や、あるい
は、建築,土木等に使用する光波測距儀やトランシット
により撮像装置5A,5Bの部分をターゲットとして測
定する方法などを挙げることができる。
On the other hand, as a method of measuring the distance between the image pickup devices 5A and 5B and the reference point 15, the measurement rack 3 shown in FIG.
Of the image pickup device 5A, 5B by a method of measuring the insertion amount when inserting into the furnace 1 by, for example, feeding the screw screws 5C, 5C, or by a lightwave rangefinder or a transit used for construction, civil engineering, etc. Examples include a method of measuring as a target.

【0026】なお、光波測距儀にて距離を測定する場
合、光波測距儀は、その原理上光の速度を利用するが、
大気中の光の速度は屈折率に依存し、屈折率は、大気温
度によって変化する。そのために、光波測距儀の測定精
度を向上させるために、当該測定装置内の大気温度分布
を抑制することが望ましい。大気温度分布の抑制のため
の方法としては、たとえば測定装置を断熱材で覆い、炉
壁面からの熱の伝達を抑制したり、測定装置内を冷却す
る手段を設ける方法がある。
When the distance is measured by the light wave range finder, the light wave range finder uses the speed of light because of its principle.
The speed of light in the atmosphere depends on the refractive index, which changes with atmospheric temperature. Therefore, in order to improve the measurement accuracy of the light distance measuring device, it is desirable to suppress the atmospheric temperature distribution in the measuring device. As a method for suppressing the atmospheric temperature distribution, for example, there is a method in which the measuring device is covered with a heat insulating material to suppress the transfer of heat from the furnace wall surface or to provide a means for cooling the inside of the measuring device.

【0027】距離測定装置が、各撮像装置5A,5B
と、たとえば測定ラック3を介して一体となり、それら
の間の距離が既知であれば不要とも考えられるが、炉内
挿入中に測定ラック3の長さが熱膨張により変化するな
どの理由により、膨張度の測定精度を高めるためには、
前記の距離測定は必要である。
The distance measuring device is used for each of the image pickup devices 5A and 5B.
For example, it is considered unnecessary if they are integrated via the measurement rack 3 and the distance between them is known, but due to the reason that the length of the measurement rack 3 changes due to thermal expansion during insertion into the furnace, To improve the measurement accuracy of the expansion degree,
The distance measurement described above is necessary.

【0028】図2は第1発明における第2実施例を示し
たもので、測定ラック3内にテレビカメラ5A,5Bに
付随してコーナーキューブ9A,9Bが設けられ、炉外
に置かれた光波測距儀10A,10Bにより各コーナー
キューブ9A,9Bまでの距離L1,L2を測定する例
である。7は画像処理装置である。この測定原理は、第
1実施例と同様であるので説明を省略する。
FIG. 2 shows a second embodiment of the first invention, in which the corner cubes 9A and 9B are provided in the measurement rack 3 in association with the television cameras 5A and 5B, and the light waves placed outside the furnace are shown. This is an example in which the distances L1 and L2 to the corner cubes 9A and 9B are measured by the rangefinders 10A and 10B. Reference numeral 7 is an image processing device. The measurement principle is the same as that of the first embodiment, and the description thereof is omitted.

【0029】図3は、第1発明における第3実施例を示
したもので、測定ラック3内にミラー13およびビーム
スプリッタ14を設け、炉外部に設けた撮像装置である
テレビカメラ5によりマーカー2A,2B付近の画像を
得る構成となっている。
FIG. 3 shows a third embodiment of the first invention, in which a mirror 13 and a beam splitter 14 are provided in the measurement rack 3, and a marker 2A is provided by a television camera 5 which is an image pickup device provided outside the furnace. , 2B near the image is obtained.

【0030】ミラー13およびビームスプリッタ14は
テレビカメラ5の撮像方向に対して45°の角度で設置
され、それぞれマーカー2B,2Aその像を反射し、そ
の射影をテレビカメラ5により、対応するミラー13お
よびビームスプリッタ14までの焦点距離を調節するこ
とで撮像する。L1,L2の測定やマーカー2A,2B
の位置演算方法は実施例1と同様である。
The mirror 13 and the beam splitter 14 are installed at an angle of 45 ° with respect to the image pickup direction of the television camera 5, and reflect the images of the markers 2B and 2A, respectively, and project the projection by the television camera 5 by the corresponding mirror 13. Also, an image is taken by adjusting the focal length to the beam splitter 14. L1 and L2 measurement and markers 2A and 2B
The position calculation method of is the same as that of the first embodiment.

【0031】この第3実施例においては、測定ラック3
内には、ミラー13、ビームスプリッタ14、コーナー
キューブ9A,9Bからなる光学部品のみ設けるため、
実施例1および実施例2に比較し、冷却能力が少なくて
済む。
In this third embodiment, the measuring rack 3
Since only the optical components including the mirror 13, the beam splitter 14, and the corner cubes 9A and 9B are provided inside,
Compared to the first and second embodiments, less cooling capacity is required.

【0032】使用するマーカーとしては、耐火物に設け
られ、耐火物壁面の挙動に合わせて移動するものであれ
ばよい。たとえば、炉壁面を構成している煉瓦の目地を
利用してもよいし、また、一部煉瓦面を加工、たとえば
凹凸加工して利用してもよい。あるいは、これら煉瓦の
目地等が視認困難な場合は、セラミックス等の耐火物で
作成した、背景と異なるマーカーを直接煉瓦に埋め込ん
で利用してもよい。
Any marker may be used as long as it is provided on the refractory and moves according to the behavior of the wall surface of the refractory. For example, the joints of the bricks forming the wall surface of the furnace may be used, or a part of the brick surface may be processed, for example, unevenly processed. Alternatively, when the joints and the like of these bricks are difficult to visually recognize, a marker made of a refractory material such as ceramics and different from the background may be directly embedded in the brick for use.

【0033】(第2発明および第3発明について)前述
の通り、コークスの炉の寿命の予測に際して、炉体の膨
張以外に、炉壁の摩耗も指標として有効に用いることで
できる。そこで、第2発明においては、炉壁の損耗(摩
耗)量を計測するに適しており、かつ炉壁からの脱落が
ないマーカーを提供する。
(Regarding the second and third inventions) As described above, when predicting the life of the coke oven, the wear of the oven wall can be effectively used as an index in addition to the expansion of the oven body. Therefore, the second invention provides a marker that is suitable for measuring the amount of wear (wear) of the furnace wall and does not fall off the furnace wall.

【0034】このために、第2発明においては、マーカ
ー2を炉壁煉瓦に埋設する。マーカー2(マーカー2A
に相当する)の埋設個所としては、図5に示すように、
比較的煉瓦の損傷が少ない窯口から1.5m付近で、か
つ亀裂に入り難いハンマーブリック19(図6参照、寸
法を併示した)に埋設することができる。高さ方向の埋
設数は、1個でも複数個でもよい。複数個埋設する場合
には、損耗量を平均化処理するなどして総合的に判断で
きる。
Therefore, in the second aspect of the invention, the marker 2 is embedded in the brick wall of the furnace. Marker 2 (Marker 2A
(Corresponding to), as shown in FIG.
It can be embedded in a hammer brick 19 (see FIG. 6, the dimensions are shown together) which is relatively close to the brick opening at a distance of 1.5 m from the kiln where damage to the brick is relatively small and which is unlikely to crack. The number of embeddings in the height direction may be one or more. In the case of embedding a plurality of pieces, it is possible to make a comprehensive judgment by averaging the amount of wear.

【0035】マーカー2の形状例を図7に示す。すなわ
ち、壁の深さ方向に順次縮径する円錐形の頭部20と、
アンカー部21と、これらの間に径が細い首部22とを
有する。頭部20が外面が、壁面すなわちハンマーブリ
ック19に面一で埋設されている。マーカー2はハンマ
ーブリック19と実質的に同一の速度で摩耗する材質の
ものとされる。ここで、摩耗の指標部分、たとえば頭部
20の表面からある深さ部分のみをハンマーブリック1
9と実質的に同一の速度で摩耗する材質のものとし、他
の部分は非摩耗性の材料で形成することもできる。実施
例においては、全体が同材質で形成してある。頭部20
の外面には、中心点25を示すために、図示のように十
字の切り込みやポンチ孔などを刻設してある。
An example of the shape of the marker 2 is shown in FIG. That is, a conical head 20 having a diameter that is gradually reduced in the depth direction of the wall,
It has an anchor portion 21 and a neck portion 22 having a small diameter between them. The outer surface of the head portion 20 is flush and embedded in the wall surface, that is, the hammer brick 19. The marker 2 is made of a material that wears at substantially the same speed as the hammer brick 19. Here, only the wear index portion, for example, a depth portion from the surface of the head 20 is hammer-bricked 1
It is also possible to use a material that wears at substantially the same speed as that of No. 9 and the other portions to be formed of a non-wearing material. In the embodiment, the whole is made of the same material. Head 20
In order to show the center point 25, a cross cut, a punch hole or the like is engraved on the outer surface of the.

【0036】マーカー2の埋設に際しては、新設のコー
クス炉の場合には、予めマーカー2を埋設した煉瓦を積
むことができるが、既設のコークス炉に埋設する場合、
炭化室の幅が400〜460mm程度で狭いので、たとえ
ば図8に示す態様で埋設作業を行うことができる。すな
わち、レール50上を炉団方向に走行する作業台車51
の作業デッキ52から、チェーンブロック54により吊
持しながら、作業足場室53を炉内に進出させ、その作
業足場室53の窓から、作業員がドリルにてマーカー2
の長さ分を正確に孔開けし、その孔にマーカー2を円周
方向に90度間隔で介在させるアンカー材23と共に挿
入し、耐火モルタル24にて固定するものである。この
埋設完了状態を図9に示す。このように、埋設作業スペ
ースが狭いので、ドリルによる孔開け作業は斜めとなる
ので、図7にも示されているように、マーカー2もたと
えば炉壁深さ方向に対して軸線を約60度の角度で傾か
せてある。新設のコークス炉用に対しては、かかる工夫
は不要である。
When burying the marker 2, in the case of a new coke oven, bricks in which the marker 2 is embedded can be stacked in advance, but when burying in the existing coke oven,
Since the width of the carbonization chamber is as narrow as 400 to 460 mm, the burying work can be performed in the mode shown in FIG. 8, for example. That is, the work carriage 51 traveling on the rail 50 in the furnace group direction
The work scaffolding chamber 53 is advanced into the furnace while being suspended from the work deck 52 by the chain block 54, and a worker drills through the window of the work scaffolding chamber 53 with the marker 2
The holes are accurately drilled, the markers 2 are inserted into the holes together with the anchor material 23 interposed at intervals of 90 degrees in the circumferential direction, and the markers 2 are fixed by the refractory mortar 24. This buried state is shown in FIG. In this way, since the burying work space is narrow, the drilling work by the drill is oblique. Therefore, as shown in FIG. 7, the marker 2 also has an axis of about 60 degrees with respect to the depth direction of the furnace wall. Is tilted at an angle of. For a newly installed coke oven, such a device is not necessary.

【0037】マーカー2の材質の選定に当たり、摩耗速
度とともに、マーカー2を撮像したとき画像的に背景、
すなわち煉瓦と区別できることが必要である。
In selecting the material of the marker 2, the wear rate as well as the background of the image when the marker 2 was imaged,
That is, it must be distinguishable from bricks.

【0038】このために、マーカー2の材質としては、
煉瓦と同一のものやある種のセラミックスを用いること
ができる。煉瓦と同材質の場合には、背景の煉瓦との画
像的区別ができないので、着色材を混入ししておく、表
面に着色材を含有した層をセラミックス溶射などにより
形成することができる。
For this reason, the material of the marker 2 is
It is possible to use the same bricks or some ceramics. When the material is the same as that of the brick, it is not possible to distinguish it from the background brick, so that it is possible to form a layer containing a coloring material on the surface by ceramics spraying or the like, in which a coloring material is mixed.

【0039】一般に材質が相違すれば、画像的な区別は
容易である。したがって、マーカー2を煉瓦と異なる材
質のセラミックスで作製するのが望ましい。このセラミ
ックス材料のうち、煉瓦とほぼ同一の摩耗性を示す材料
としては、たとえば炉壁煉瓦が珪石煉瓦である場合、ア
ルミナ99%、残部窒化珪素であるセラミックを好適に
用いることができる。このセラミックは、また、珪石煉
瓦より熱膨張率が低く、体積変動(部分膨張)による形
状変化が起こりにくく、頭部の外面の形状が楕円等とは
なりにくい。また、アルミナ主体であるために、耐食
性、耐熱性がよく、割れのおそれも少ない。アルミナの
量としては、90〜99.6%が好ましい。アルミナの
含有量が少ないと、摩耗量が少なく、損耗量の指標とは
なり難い。
Generally, if the materials are different, it is easy to distinguish images. Therefore, it is desirable that the marker 2 be made of a ceramic material different from that of the brick. Among the ceramic materials, as a material exhibiting almost the same wear resistance as the brick, for example, when the furnace wall brick is a silica brick, a ceramic containing 99% alumina and the remaining silicon nitride can be preferably used. Further, this ceramic has a lower coefficient of thermal expansion than silica brick, is less likely to change its shape due to volume fluctuation (partial expansion), and is unlikely to have an elliptical outer surface of the head. Also, since it is mainly composed of alumina, it has good corrosion resistance and heat resistance, and there is little risk of cracking. The amount of alumina is preferably 90 to 99.6%. When the content of alumina is small, the amount of wear is small and it is difficult to serve as an index of the amount of wear.

【0040】かかるマーカー2は、炉体の膨張の計測の
ためには、第1発明のように、炉長方向に複数埋設さ
れ、その中心点25を座標点として、炉体の膨張計測に
用いられる。
In order to measure the expansion of the furnace body, a plurality of such markers 2 are embedded in the furnace length direction as in the first invention, and the center point 25 thereof is used as a coordinate point to measure the expansion of the furnace body. To be

【0041】他方で、マーカー2単独で炉壁の損耗の指
標とすることができる。すなわち、煉瓦の損耗と同時に
マーカー2自体も損耗する。マーカー2の損耗に伴っ
て、炉内の露出している円錐形頭部20の外面の面積も
順次小さくなる。したがって、経時的にその頭部20の
外面に面積変化を捉えることにより、炉壁の損耗量を知
ることができる。
On the other hand, the marker 2 alone can be used as an index of wear of the furnace wall. That is, the marker 2 itself is worn at the same time as the brick is worn. As the marker 2 wears, the area of the exposed outer surface of the conical head 20 in the furnace also gradually decreases. Therefore, the amount of wear of the furnace wall can be known by capturing the area change on the outer surface of the head 20 over time.

【0042】たとえば、マーカー2を前述のように、壁
面を睨む撮像装置により撮像し、得られた画像上の複数
の点、たとえば図10に示すように、A,B,C,Dの
4点を抽出し、これらの抽出点を通る常に一定の条件の
下で想定した図形、図示例においては円として、その円
の面積を求める。この演算に際しては、A,B,C,D
の4点を座標化し、それぞれ(XA ,YA )、(XB
B )、(XC ,YC)、(XD ,YD )とする。これ
ら各座標の中心点25からの距離(半径)rA、rB
C 、rD を、次記(1)〜(4)式により、それぞれ
算出する。
For example, as described above, the marker 2 is imaged by the imaging device that gazes at the wall surface, and a plurality of points on the obtained image, for example, four points A, B, C, D are shown in FIG. Is extracted, and the area of the circle is determined as a figure assumed under a constant condition that passes through these extraction points, that is, a circle in the illustrated example. In this calculation, A, B, C, D
4 points are converted into coordinates, and (X A , Y A ), (X B ,
Y B), and (X C, Y C), (X D, Y D). The distance (radius) r A , r B from the center point 25 of each of these coordinates,
r C and r D are calculated by the following equations (1) to (4), respectively.

【0043】[0043]

【数1】 [Equation 1]

【0044】求められたこれら半径rA 、rB 、rC
D の値より、(5)式によって、マーカー2の頭部の
平均半径rを算出する。
These calculated radii r A , r B , r C ,
From the value of r D , the average radius r of the head of the marker 2 is calculated by the equation (5).

【0045】[0045]

【数2】 [Equation 2]

【0046】マーカー2の平均半径rの2倍が、その平
均直径Dである。マーカー2の損耗量は、マーカー2の
平均直径Dに反比例する。したがって、この関係は、次
記の(6)式にて表すことができる。 S=KD+n(K,nは定数)………(6) よって、演算装置8により、(6)式に基づいて、マー
カー2の損耗量、すなわち炉壁の損耗量を計測できる。
Twice the average radius r of the marker 2 is its average diameter D. The amount of wear of the marker 2 is inversely proportional to the average diameter D of the marker 2. Therefore, this relationship can be expressed by the following expression (6). S = KD + n (K and n are constants) (6) Therefore, the arithmetic unit 8 can measure the amount of wear of the marker 2, that is, the amount of wear of the furnace wall based on the equation (6).

【0047】なお、前述のマーカーの頭部形状を円錐形
状としたが、たとえば、角錐形状としてもよく、横断面
形状が限定されるものではない。また、面積を求めるに
際して、抽出点は3点以上であればよい。ただし、経時
的変化を求めるのであるから、常に一定の条件で図形を
想定することが必要となる。なお、頭部の勾配は、演算
が若干複雑になるが、一様である必要はない。
Although the head shape of the above-mentioned marker is conical, it may be pyramidal, for example, and the cross-sectional shape is not limited. Further, when obtaining the area, the number of extraction points may be three or more. However, since the change over time is obtained, it is necessary to always assume a figure under constant conditions. The head gradient does not have to be uniform, although the calculation is slightly complicated.

【0048】<実験例>コークス炉の窯口から約1.5
mの位置にあるハンマーブリックに、マーカー2,2を
埋設し、炉壁の損耗量(=マーカー2の損耗量)および
炉の膨張量を5年間計測した。マーカー2は、アルミナ
99%、残部窒化珪素としたセラミックのものを使用し
た。その結果を表1に示す。
<Experimental example> Approximately 1.5 from the kiln port of the coke oven
The markers 2 and 2 were embedded in the hammer brick located at the position of m, and the wear amount of the furnace wall (= wear amount of the marker 2) and the expansion amount of the furnace were measured for 5 years. As the marker 2, a ceramic having 99% alumina and the rest silicon nitride was used. The results are shown in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】表1から判るように、コークス炉の膨張量
とともに、炉壁の損耗量をも定量的に把握できることが
判明した。その結果、炉体損傷度が的確に把握でき、補
修タイミング、炉体寿命の計算の判断に大いに役立っ
た。
As can be seen from Table 1, it has been found that the wear amount of the furnace wall can be quantitatively grasped together with the expansion amount of the coke oven. As a result, the degree of damage to the furnace body could be accurately grasped, which was very useful for the judgment of repair timing and calculation of the life of the furnace body.

【0051】[0051]

【発明の効果】以上の説明から明らかな通り、本発明に
よれば、炉壁の膨張量を直接的に計測するため、煉瓦等
の亀裂拡大による炉体の膨張量のみを反映した測定値を
得ることができる。さらに、炉壁の損耗量を適確に計測
できる。したがって、適正な老朽化対策の実施による炉
命延長、炉の寿命推定精度向上による張り替え時期への
反映等の保守管理を適確に実施することが可能となる。
As is apparent from the above description, according to the present invention, since the expansion amount of the furnace wall is directly measured, the measured value reflecting only the expansion amount of the furnace body due to the crack expansion of brick or the like is used. Obtainable. Furthermore, the amount of wear of the furnace wall can be accurately measured. Therefore, it becomes possible to properly carry out maintenance management such as extending the life of the reactor by taking appropriate measures against aging and reflecting it in the replacement time by improving the accuracy of estimating the life of the furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1発明の第1実施例を示した説明図である。FIG. 1 is an explanatory diagram showing a first embodiment of the first invention.

【図2】第1発明の第2実施例の説明図である。FIG. 2 is an explanatory diagram of a second embodiment of the first invention.

【図3】第1発明の第3実施例の説明図である。FIG. 3 is an explanatory diagram of a third embodiment of the first invention.

【図4】第1発明によるマーカー位置測定の原理を示し
た図である。
FIG. 4 is a diagram showing the principle of marker position measurement according to the first invention.

【図5】コークス炉におけるマーカーの埋設位置例を示
す斜視図である。
FIG. 5 is a perspective view showing an example of an embedded position of a marker in a coke oven.

【図6】ハンマーブリックの説明用斜視図である。FIG. 6 is an explanatory perspective view of a hammer brick.

【図7】マーカー例の斜視図である。FIG. 7 is a perspective view of an example marker.

【図8】マーカーの埋設作業態様例の概要説明図であ
る。
FIG. 8 is a schematic explanatory diagram of an example of a marker burying work mode.

【図9】マーカーの埋設状態縦断面図である。FIG. 9 is a vertical cross-sectional view of the embedded state of the marker.

【図10】マーカー頭部の面積算出例の説明図である。FIG. 10 is an explanatory diagram of an example of calculating the area of the marker head.

【符号の説明】[Explanation of symbols]

1…コークス炉、2A,2B…マーカー、5A,5B…
撮像装置、6…距離測定装置、8…演算装置、15…基
準点、20…頭部、21…アンカー部、22…首部。
1 ... Coke oven, 2A, 2B ... Marker, 5A, 5B ...
Imaging device, 6 ... Distance measuring device, 8 ... Computing device, 15 ... Reference point, 20 ... Head, 21 ... Anchor part, 22 ... Neck part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富山 博次 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鉄所内 (72)発明者 佐地 孝文 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroji Toyama, 3rd light, Oshima, Kashima-machi, Kashima-gun, Ibaraki Prefecture, Sumitomo Metal Industries, Ltd. Kashima Steel Works (72) Takafumi Saji, Kashima-machi, Kashima-gun, Ibaraki Prefecture No. 3 Sumitomo Metal Industry Co., Ltd. Kashima Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炉内壁面の複数の測定点に対応して配置し
た撮像装置により各測定点付近を撮像し、前記各撮像装
置と基準点との各離間距離を測定し、 前記各撮像装置上での各測定点位置を、前記各離間距離
に基づいて、前記基準点を基準とする座標に変換し、こ
の変換された座標上での各測定点位置間の相対距離の経
時的変化に基づいて炉体の膨張を計測することを特徴と
する工業炉の炉体膨張計測方法。
1. An image pickup device arranged corresponding to a plurality of measurement points on an inner wall surface of a furnace to image the vicinity of each measurement point and measure each distance between each image pickup device and a reference point. Each measurement point position on the above, based on each separation distance, is converted into coordinates with the reference point as a reference, to the change over time of the relative distance between each measurement point position on the converted coordinates. A furnace body expansion measuring method for an industrial furnace, comprising measuring the furnace body expansion based on the above.
【請求項2】撮像装置による撮像対象としてのマーカー
であって、炉内壁面に埋設され、壁の深さ方向に順次縮
径する頭部と、アンカー部と、前記頭部とアンカー部と
の間に径が細い首部とを有し、前記頭部の外面が前記壁
面に面一で埋設され、少なくとも前記頭部の壁深さ方向
のある長さの指標部分は他の壁面部分と実質的に同一の
速度で摩耗する材質からなり、さらに前記指標部分は他
の壁面部分と撮像したとき画像的に区別される状態にあ
ることを特徴とする工業炉の壁面マーカー。
2. A marker as an object to be imaged by an imaging device, comprising a head embedded in a wall surface of a furnace and having a diameter gradually reduced in a depth direction of the wall, an anchor portion, and the head portion and the anchor portion. A neck portion having a small diameter therebetween, the outer surface of the head portion is embedded flush with the wall surface, and at least the index portion of a certain length in the wall depth direction of the head portion is substantially different from other wall surface portions. A wall marker of an industrial furnace, characterized in that it is made of a material that wears at the same speed, and that the index portion is in a state of being image-distinguished from other wall portions when imaged.
【請求項3】工業炉の壁面に、壁深さ方向に外径が順次
狭まる頭部を有するマーカーを、その頭部表面を前記壁
面と面一として埋設し、このマーカーを前記壁面を睨む
撮像装置により撮像し、撮像したマーカー上の3点以上
を抽出し、これらの抽出点を通る常に一定の条件の下で
想定した図形の径または面積を求め、この径または面積
の経時的変化に基づいて前記壁の損耗量を計測すること
を特徴とする工業炉の炉壁の損耗量の計測方法。
3. A marker having a head portion whose outer diameter is gradually narrowed in the wall depth direction is embedded in a wall surface of an industrial furnace so that the head surface is flush with the wall surface, and the marker is gazed at the wall surface. Images are picked up by the device, three or more points on the picked-up markers are extracted, and the diameter or area of the figure assumed under a constant condition that passes through these extraction points is obtained, and based on the change over time of this diameter or area. A method for measuring the amount of wear of a furnace wall of an industrial furnace, characterized in that the amount of wear of the wall is measured.
JP30946393A 1992-12-09 1993-12-09 Method for measuring furnace body shape change of industrial furnace and marker used in the method Expired - Lifetime JP2882264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30946393A JP2882264B2 (en) 1992-12-09 1993-12-09 Method for measuring furnace body shape change of industrial furnace and marker used in the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32962592 1992-12-09
JP4-329625 1992-12-09
JP30946393A JP2882264B2 (en) 1992-12-09 1993-12-09 Method for measuring furnace body shape change of industrial furnace and marker used in the method

Publications (2)

Publication Number Publication Date
JPH06229684A true JPH06229684A (en) 1994-08-19
JP2882264B2 JP2882264B2 (en) 1999-04-12

Family

ID=26565965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30946393A Expired - Lifetime JP2882264B2 (en) 1992-12-09 1993-12-09 Method for measuring furnace body shape change of industrial furnace and marker used in the method

Country Status (1)

Country Link
JP (1) JP2882264B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315035A (en) * 2002-04-19 2003-11-06 Jfe Steel Kk Oven wall shape measurement method in coke oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315035A (en) * 2002-04-19 2003-11-06 Jfe Steel Kk Oven wall shape measurement method in coke oven

Also Published As

Publication number Publication date
JP2882264B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
US5961214A (en) Determining protective layer thickness of blast furnaces
US8083982B2 (en) Method for repairing a protective lining of an industrial reaction or transport vessel
JP2882264B2 (en) Method for measuring furnace body shape change of industrial furnace and marker used in the method
KR20210124481A (en) Inspection apparatus and method for coke oven shaft furnace, and coke oven shaft furnace method
JP2008127619A (en) Method for deciding whether repair of refractory in molten iron ladle is needed or not
JP3754094B2 (en) Refractory structure spalling test method, firing crack evaluation method and test apparatus
JP6555016B2 (en) Coke oven carbonization chamber repair method
JP2014142152A (en) Residual thickness measurement method of wear layer
Sakaida et al. Development of diagnosis/repair apparatus for coke oven chamber wall
Sadri et al. Refractory wear and lining profile determination in operating electric furnaces using stress wave non-destructive testing (NDT)
O’Shaughnessy et al. Tap-hole repair: the UCAR® V repair solution
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JP2016085202A (en) Life prediction method for refractory
Vinogradov et al. Use of Non-distractive Testing AU-E Technology to Evaluate Hearth Conditions at CherMK–SEVERSTAL
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
Salem et al. Creep behavior of silicon nitride determined from curvature and neutral axis shift measurements in flexure tests
Polatschek IoT for clogging and refractory wear detection
JPS60239604A (en) Estimation of residual thickness of lining refractory material of molten metal vessel
JPS62288685A (en) Method for repairing furnace wall of coke oven
KR950008977Y1 (en) A measuring instrument for refractory thickness of ladle
JPS63191005A (en) Method and apparatus for measuring carbonization chamber width of coke furnace
JP2024040153A (en) Molten iron manufacturing method
JPH07243812A (en) Method and apparatus for measurement of worn-out amount of oven wall of coke oven
JP2004115689A (en) Method and apparatus for measuring volume expansion of oven body of coke oven
JPS63194185A (en) Position measuring method of molten-metal lined surface