JPH06229423A - Solid lubricating rolling bearing - Google Patents

Solid lubricating rolling bearing

Info

Publication number
JPH06229423A
JPH06229423A JP5013734A JP1373493A JPH06229423A JP H06229423 A JPH06229423 A JP H06229423A JP 5013734 A JP5013734 A JP 5013734A JP 1373493 A JP1373493 A JP 1373493A JP H06229423 A JPH06229423 A JP H06229423A
Authority
JP
Japan
Prior art keywords
bearing
rolling
lubricating
inner ring
lubricating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5013734A
Other languages
Japanese (ja)
Inventor
Yoshinobu Akamatsu
良信 赤松
Hiromitsu Kondo
博光 近藤
Hiroshi Yamada
博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP5013734A priority Critical patent/JPH06229423A/en
Publication of JPH06229423A publication Critical patent/JPH06229423A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6696Special parts or details in view of lubrication with solids as lubricant, e.g. dry coatings, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers

Abstract

PURPOSE:To improve the durability and low dusting characteristics in a solid lubricating rolling bearing. CONSTITUTION:Microscopic projecting and recessed parts 1b1 and 1b2 created by mechanical work exist on a rolling travel surface and a collar surface of an inner ring 1, and among them, the projecting part 1b1 has a smooth tip part. The recessed part 1b2 is formed in a wedge shape turning inside a base material. These projecting and recessed parts 1b1 and 1b2 run in a stripe shape on the rolling travel surface and the collar surface. A lubricating coat 1a is formed in an island shape on a surface (rolling travel surface and collar surface) of the inner ring 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造設備等に使
用される固体潤滑転がり軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid lubrication rolling bearing used in semiconductor manufacturing equipment and the like.

【0002】[0002]

【従来の技術】例えば、半導体製造設備に使用される軸
受は、高い清浄度が要求される密封真空下で運転される
ため、その潤滑には、一般に、二硫化モリブデン等の層
状物質、金、銀、鉛等の軟質金属、PTFE、ポリイミ
ド等の高分子材料などの固体潤滑剤が用いられている。
2. Description of the Related Art For example, a bearing used in a semiconductor manufacturing facility is operated under a sealed vacuum which requires high cleanliness. Therefore, for lubrication, a layered substance such as molybdenum disulfide, gold, Solid lubricants such as soft metals such as silver and lead, polymer materials such as PTFE and polyimide are used.

【0003】ところで、近年、半導体製造分野では半導
体の集積度が増すにつれて回路パターンの線幅が微細化
しており、軸受から排出される固体潤滑剤の摩耗粉がパ
ターン上に付着すると種々の弊害を引き起こす可能性が
あることから、固体潤滑剤の特性として、本来の潤滑性
・耐久性の他に、特に低発塵性を要求するようになって
きている。
By the way, in recent years, in the field of semiconductor manufacturing, the line width of circuit patterns has become finer as the degree of integration of semiconductors has increased, and if the abrasion powder of the solid lubricant discharged from the bearing adheres to the pattern, various adverse effects are caused. Because of the possibility of causing it, solid lubricants are required to have particularly low dusting property in addition to the original lubricity and durability.

【0004】このような現状に鑑み、本出願人は、転が
り軸受を構成する部品のうち少なくとも転がり摩擦また
は滑り摩擦を生ずる表面に、平均分子量が5000以下
のポリテトラフルオロエチレン(以下、簡単のため、低
分子量PTFEと略記する。)からなる潤滑被膜を形成
した固体潤滑転がり軸受について既に出願している(特
願平3−190150号等)。従来より、軸受の固体潤
滑剤として用いられているPTFEは平均分子量が1×
105以上、主に、1×106〜1×107のものである
が、低分子量PTFEを用いて潤滑被膜を形成すること
により、潤滑性、耐久性、低発塵性等に優れた潤滑被膜
を得ることができることを上記出願において示した。こ
れらの効果は、低分子量PTFEが、従来より固体潤滑
剤として用いられているPTFEに比べて、剪断強度が
著しく小く、また、転着性に優れていることによるもの
であった。
In view of the above situation, the applicant of the present invention has found that polytetrafluoroethylene having an average molecular weight of 5,000 or less (hereinafter, for the sake of simplicity, on the surface of at least rolling friction or sliding friction among the components constituting the rolling bearing). , Abbreviated as low molecular weight PTFE) has already been filed (Japanese Patent Application No. 3-190150, etc.). Conventionally, PTFE used as a solid lubricant for bearings has an average molecular weight of 1 ×.
10 5 or more, mainly 1 × 10 6 to 1 × 10 7 , but by forming a lubricating film using low molecular weight PTFE, excellent lubricity, durability, low dust generation, etc. It has been shown in the above application that a lubricating coating can be obtained. These effects were due to the fact that low-molecular-weight PTFE has remarkably small shear strength and excellent transferability as compared with PTFE conventionally used as a solid lubricant.

【0005】[0005]

【発明が解決しようとする課題】近時、半導体製造分野
においては、製造設備のインライン化、コンパクト化の
傾向が顕著であり、軸受を高荷重下で使用したい、軸受
スペースの縮小化を図りたいという要望が強い。このよ
うな場合、例えば軸受としてころ軸受を用いることによ
って対応することが可能である。
In recent years, in the field of semiconductor manufacturing, there is a marked tendency toward in-line and compact manufacturing facilities, and it is desired to use the bearing under high load and to reduce the bearing space. There is a strong demand. Such a case can be dealt with by using a roller bearing as the bearing, for example.

【0006】しかしながら、低分子量PTFEの潤滑被
膜を形成したころ軸受について耐久性や低発塵性をテス
トしたところ、玉軸受に比べて、その特性がやや劣るこ
とがわかった。これは、ころの端面と軌道輪のつば面と
の間に発生する滑り摩擦力の影響よるものと考えられ
る。すなわち、ころ軸受においては、ころの端面を内輪
や外輪のつば面で接触案内するため、単に、この接触面
に潤滑被膜を形成しただけでは、潤滑被膜が滑り摩擦力
によって掻き取られてしまい、局部的な脱落、早期摩耗
等をおこしてしまう。そして、これが潤滑不良、発塵量
の増大につながると考えられる。前述したように、低分
子量PTFEの潤滑被膜は潤滑性、低発塵性に優れたも
のであるが、以上の理由から、ころ軸受に対してはその
本来の優れた特性を十分に発揮させることが困難であ
る。勿論、このような問題点は、低分子量PTFE以外
の固体潤滑剤を用いた転がり軸受にあってはより顕著で
ある。一方、玉軸受においては上述した問題点は生じに
くいが、半導体製造設備等に使用される軸受の中には、
メインテナンスフリーでの使用を要求されるものもあ
り、このような場合、より一層の耐久性向上が必要とな
る。
However, when the roller bearing on which the lubricating coating of low molecular weight PTFE was formed was tested for durability and low dust generation, it was found that the characteristics were slightly inferior to the ball bearing. This is considered to be due to the effect of sliding frictional force generated between the end surface of the roller and the collar surface of the bearing ring. That is, in the roller bearing, since the end surface of the roller is contact-guided by the flange surfaces of the inner ring and the outer ring, simply forming a lubricating film on this contact surface would cause the lubricating film to be scraped off by sliding frictional force. It causes local drop-off and early wear. It is considered that this leads to poor lubrication and an increase in the amount of dust generation. As described above, the low molecular weight PTFE lubricating coating is excellent in lubricity and low dust generation, but for the above reasons, it is necessary for the roller bearing to fully exhibit its original excellent characteristics. Is difficult. Of course, such a problem is more remarkable in the rolling bearing using the solid lubricant other than the low molecular weight PTFE. On the other hand, in ball bearings, the above-mentioned problems are unlikely to occur, but among bearings used in semiconductor manufacturing equipment, etc.
In some cases, maintenance-free use is required, and in such a case, further improvement in durability is required.

【0007】そこで、本発明の目的は、固体潤滑被膜の
局部的な脱落、早期摩耗等といった弊害を解消し、固体
潤滑転がり軸受の耐久性および低発塵性をより一層向上
させることにある。
Therefore, an object of the present invention is to solve the problems such as local dropout of the solid lubricating coating and early wear, and to further improve the durability and low dust generation of the solid lubricating rolling bearing.

【0008】[0008]

【課題を解決するための手段】本発明の半導体製造設備
用転がり軸受は、転がり軸受を構成する部品のうち少な
くとも転がり摩擦または滑り摩擦を生ずる表面に固体潤
滑被膜を形成したものであって、上記表面は、機械加工
により生じた該表面の微小凹凸部のうち凸部が平滑状に
なっているものである。
A rolling bearing for semiconductor manufacturing equipment according to the present invention has a solid lubricating coating formed on at least a surface of rolling bearing or sliding friction that causes rolling friction or sliding friction. The surface is one in which the convex portions of the minute irregularities on the surface produced by machining are smooth.

【0009】[0009]

【作用】転がり摩擦または滑り摩擦を生ずる表面は、機
械加工により生じた微小な凹凸部のうち凸部が平滑状に
なった表面形状をなす。この表面は、一般軸受部品の転
走面やつば面等の鏡面状表面に比べると表面粗さが大き
いが、凸部は平滑状である。この表面に形成された固体
潤滑被膜が相手面から荷重を受けると、その一部が凹部
のなかに深く入りこみ、この入り込んだ被膜部分がアン
カー効果によって固体潤滑被膜の表面への密着性を高
め、必要以上の剥離・摩耗を防止する。凸部を平滑状に
してあるのは、相手面からの荷重によって発生する凸部
先端部の接触圧を低減し、表面粗さを大きくしたことに
伴う弊害を回避するためである。
The surface that causes rolling friction or sliding friction has a surface shape in which the convex portion of the minute irregularities generated by machining is smooth. Although this surface has a larger surface roughness than a mirror-like surface such as a rolling surface or a flange surface of a general bearing component, the convex portion is smooth. When the solid lubricating coating formed on this surface receives a load from the mating surface, a part of it penetrates deeply into the recess, and the entered coating portion enhances the adhesion to the surface of the solid lubricating coating due to the anchor effect, Prevents unnecessary peeling and wear. The reason why the convex portion is made smooth is to reduce the contact pressure at the tip of the convex portion caused by the load from the mating surface and to avoid the adverse effects caused by increasing the surface roughness.

【0010】[0010]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0011】図1は、本発明を円筒ころ軸受に適用した
実施例について説明する。この軸受は、内輪1、外輪
2、内・外輪1、2間に介在する複数のころ3、ころ3
を円周等間隔に保持する保持器4といった軸受部品で構
成される。内輪1の両端部にはつば部1bがあり、軸受
回転時、ころ3の端面がつば部1bのつば面によって接
触案内される。そして、内・外輪1、2の転走面、内輪
1のつば部1bのつば面、およびころ3の全表面に例え
ば平均分子量が5000以下のPTFE(低分子量PT
FE)の潤滑被膜1a、2a、3aが形成されている。
これらの潤滑被膜は、低分子量PTFE(例えば、日本
アチソン製ARC7)を、25cm離れた位置から被膜
形成面にスプレーして付着させたものである。低分子量
PTFEの被膜コーティング法としては、上記スプレー
法による他、浸漬法等がある。尚、同図では内・外輪
1、2の外表面全体に潤滑被膜1a、2aが形成されて
いるが、図2に示すように、嵌合面等の潤滑被膜が本来
不要な部分については、マスキングによって被膜処理を
施さない、あるいは、最終製品となる前に除去するよう
にすると良い。
FIG. 1 illustrates an embodiment in which the present invention is applied to a cylindrical roller bearing. This bearing includes an inner ring 1, an outer ring 2, a plurality of rollers 3 interposed between the inner and outer rings 1, 2, and a roller 3.
Is constituted by a bearing component such as a retainer 4 for holding at equal intervals around the circumference. The inner ring 1 has a flange portion 1b at both ends thereof, and the end surface of the roller 3 is contact-guided by the flange surface of the flange portion 1b when the bearing rotates. Then, for example, PTFE (low molecular weight PT) having an average molecular weight of 5000 or less is formed on the rolling surfaces of the inner and outer races 1 and 2, the collar surface of the collar portion 1b of the inner race 1, and the entire surface of the roller 3.
FE) lubricating coatings 1a, 2a, 3a are formed.
These lubricating coatings are obtained by spraying and adhering low molecular weight PTFE (for example, ARC7 manufactured by Nippon Acheson) on the coating surface from a position 25 cm away. As a film coating method of low molecular weight PTFE, there is a dipping method in addition to the above-mentioned spraying method. In the figure, the lubricating coatings 1a, 2a are formed on the entire outer surfaces of the inner and outer races 1, 2, but as shown in FIG. It is advisable to perform no masking treatment by masking or to remove it before the final product.

【0012】図3に示すように、内輪1の転走面および
つば面には機械加工により生じた微小な凹凸部1b1、
1b2があり、そのうち凸部1b1は先端部が平滑状に
なっている。凹部1b2は、母材内部に向いたくさび状
になっている。この凹凸部1b1、1b2は、転走面お
よびつば面を筋目状に走っている。凸部1b1の高さ
(凹部1b2の深さ)は最大でも1〜2μm程度である
が、通常使用される軸受部品の転走面やつば面(通常、
研削加工を経て、超仕上げ加工により鏡面状に仕上げら
れており、その表面粗さは0.2〜0.5μm程度であ
る。)に比べると、表面の粗さは大きい。
As shown in FIG. 3, on the rolling surface and the flange surface of the inner ring 1, minute uneven portions 1b1 formed by machining,
1b2, of which the tip of the convex portion 1b1 is smooth. The recess 1b2 has a wedge shape facing the inside of the base material. The concave and convex portions 1b1 and 1b2 run along the rolling surface and the brim surface in a streak pattern. The height of the convex portion 1b1 (the depth of the concave portion 1b2) is about 1 to 2 μm at the maximum.
After grinding, it is mirror-finished by superfinishing and has a surface roughness of about 0.2 to 0.5 μm. The surface roughness is larger than that of

【0013】以上のような表面形状を有する表面は、例
えば、研削加工の後、超仕上げ加工を途中段階まで行な
うことによって形成することができる。図5は、研削完
了後の内輪1の表面を示したものである。尚、施される
研削加工は、一般の軸受製造工程において、超仕上げの
前工程としてなされるものと同じである。研削完了後の
表面は砥石粒により削り取られて生じた多数の研削目で
覆われ、その断面は微小な凹凸状になっている。研削加
工の段階では後の超仕上げによる加工取代分が残される
ので、研削により生じた表面の凹凸部1b1、1b2
は、最終の仕上げ面レベル(通常の軸受部品における)
と比較して言うと、かなり大きい(2〜3μm程度であ
る。)。そして、研削後の超仕上げにおいて、予定され
た加工取代分の加工を終了する前の段階で加工を完了さ
せることによって、図3に示すように、表面の粗さレベ
ルをある程度大きく保ちながら、凸部1b1のみを平滑
状にすることができる。内輪1のみならず、外輪1の転
走面およびボール3の表面も同様しておくと良い。尚、
ボール3は、通常、ラップ仕上げされるが、上記に準じ
て加工を行なうと良い。
The surface having the above-mentioned surface shape can be formed, for example, by performing superfinishing up to an intermediate stage after grinding. FIG. 5 shows the surface of the inner ring 1 after completion of grinding. The grinding process performed is the same as that performed as a pre-process for superfinishing in a general bearing manufacturing process. The surface after the completion of grinding is covered with a large number of grinds produced by being ground off by the grindstones, and the cross section thereof has minute irregularities. In the stage of grinding, a machining allowance for the subsequent superfinishing is left, so the surface irregularities 1b1 and 1b2 caused by grinding are left.
Is the final surface finish level (for normal bearing parts)
Compared with, it is considerably large (about 2 to 3 μm). Then, in the superfinishing after grinding, by finishing the machining before finishing the machining for the planned machining allowance, as shown in FIG. Only the portion 1b1 can be made smooth. Not only the inner race 1, but also the rolling surface of the outer race 1 and the surface of the ball 3 may be similarly provided. still,
The ball 3 is usually lapped, but it is preferable to process it according to the above.

【0014】図4に示すように、潤滑被膜1aは内輪1
の表面(転走面、つば面)に島状に形成されている。潤
滑被膜1aはころ3から荷重を受けると、くさび状をな
す凹部1b2の近傍の被膜部分1a1が凹部1b2に深
く入り込む。そして、ころ3との接触によって潤滑被膜
1aが摩擦力を受けた場合には、凹部1b2に深く入り
込んだ被膜部分1a1が一種のアンカーとなって潤滑被
膜1aを表面に保持する。この作用は、表面の粗さをあ
る程度大きくしたことによるものであるが、この構成だ
けでは、却って潤滑被膜1aの脱落、摩耗を促進させて
しまう結果となる。すなわち、図5に示す研削後の表面
に生じる凸部1b1は鋭角状であり、仮にこの表面に直
接潤滑被膜1aを形成すると、ころ3から負荷される荷
重によって凸部1b1の先端部に高接触圧が発生し、凸
部1b1周辺の潤滑被膜1aが局部的に脱落・摩耗も起
こしてしまうからである。そして、これが進行すると、
凸部1b1が潤滑被膜1aの表面から突出し、ころ3と
直接接触する可能性がある。この実施例において、凸部
1b1を平滑状にしてあるのは、凸部1b1の先端部に
おいて発生する接触圧を低減し、このような弊害を回避
するためである。以上により、潤滑被膜1aは表面への
密着性が高く、比較的大きな転がり摩擦力または滑り摩
擦力を受けても容易に脱落することがなく、良好な潤滑
性、低発塵性を長期にわたって発揮する。特に、内輪1
のつば面ところ3の端面との間には滑り摩擦力が発生す
るため、この部分における潤滑被膜1aは特に脱落し易
いが、つば面を図3および図4に示すような表面形状と
することによってこれを効果的に防止することができ
る。尚、以上の効果は、凹凸部1b1、1b2の筋目を
ころ3の運動方向に対して傾斜(筋目を交差させる場合
も含む)させることによって、より一層顕著なものとす
ることができる。
As shown in FIG. 4, the lubricating coating 1a is the inner ring 1
Is formed like an island on the surface (rolling surface, brim surface). When the lubricating coating 1a receives a load from the rollers 3, the coating portion 1a1 near the wedge-shaped recess 1b2 deeply penetrates into the recess 1b2. Then, when the lubricating coating 1a receives a frictional force due to the contact with the rollers 3, the coating portion 1a1 deeply entering the recess 1b2 serves as a kind of anchor to hold the lubricating coating 1a on the surface. This action is due to the fact that the surface roughness is increased to some extent. However, this structure alone rather promotes the slippage and wear of the lubricating coating 1a. That is, the convex portion 1b1 generated on the surface after grinding shown in FIG. 5 has an acute angle, and if the lubricating coating 1a is formed directly on this surface, the tip of the convex portion 1b1 is in high contact with the load applied from the roller 3. This is because a pressure is generated and the lubricating coating 1a around the convex portion 1b1 is locally dropped and worn. And as this progresses,
The convex portion 1b1 may protrude from the surface of the lubricating coating 1a and may come into direct contact with the rollers 3. In this embodiment, the convex portion 1b1 is made smooth so as to reduce the contact pressure generated at the tip of the convex portion 1b1 and avoid such an adverse effect. As described above, the lubricating coating 1a has high adhesion to the surface, does not easily fall off even when subjected to a relatively large rolling frictional force or sliding frictional force, and exhibits good lubricity and low dust generation for a long period of time. To do. Especially inner ring 1
Since a sliding frictional force is generated between the rib surface and the end surface of the rib surface 3, the lubricating coating 1a in this portion is particularly likely to fall off, but the rib surface should have a surface shape as shown in FIGS. 3 and 4. This can effectively prevent this. The above effects can be made more remarkable by inclining the lines of the uneven portions 1b1 and 1b2 with respect to the movement direction of the roller 3 (including the case of intersecting the lines).

【0015】また、本実施例において、潤滑被膜1aを
島状分布としてあるのは次の理由による。すなわち、島
状分布とすることにより、潤滑被膜1aの表面から削り
取られた潤滑粉1a3が、島1a2と島1a2との間の
母材部分に捕捉され、その部分に転着被膜を形成するの
で、潤滑性がより一層向上するばかりでなく、潤滑粉1
a3が軸受外に排出されにくくなるので低発塵性もより
一層向上するからである。
In the present embodiment, the lubricating coating 1a has an island-shaped distribution for the following reason. That is, the island-shaped distribution allows the lubricant powder 1a3 scraped from the surface of the lubricating coating 1a to be trapped in the base metal portion between the islands 1a2 and 1a2 and form the transfer coating on that portion. , Not only the lubricity is further improved, but also the lubricating powder 1
This is because a3 is less likely to be discharged to the outside of the bearing, and the low dust generation property is further improved.

【0016】図6は、上記構成の転がり軸受(凸部平滑
状表面:軸受Aとする)と、標準軸受部品に低分子量P
TFEの潤滑被膜を形成した円筒ころ軸受(鏡面状表
面:軸受Bとする)とについて行なった耐久性試験の結
果を示す。耐久性試験は、軸を支承させた2個の試験軸
受を、室温、真空度10-6Torr以下、スラスト荷重
10N、回転数2500rpmの条件下に回転させ、2
個の試験軸受の摩擦トルクの総和が10-2Nmに達した
時点を寿命とした。同図に示すように、軸受Aは軸受B
に比べ2倍以上の耐久性を示した。ただし、軸受Bの耐
久性は、固体潤滑剤として二硫化モリブデンを等を使用
した軸受に比べればかなり大きい。
FIG. 6 shows a rolling bearing (smooth surface of convex portion: bearing A) having the above structure and a low molecular weight P in a standard bearing part.
The results of a durability test conducted on a cylindrical roller bearing (specular surface: bearing B) on which a TFE lubricating film is formed are shown. In the durability test, two test bearings supporting the shaft were rotated under the conditions of room temperature, vacuum degree of 10 -6 Torr or less, thrust load of 10 N, and rotation speed of 2500 rpm.
The life was defined as the time point when the total friction torque of the individual test bearings reached 10 -2 Nm. As shown in the figure, bearing A is bearing B
2 times more durable than that of However, the durability of the bearing B is considerably higher than that of a bearing using molybdenum disulfide as a solid lubricant.

【0017】図7は、軸受Aと軸受Bとについて行なっ
た発塵試験の結果を示す。発塵試験は、回転数:50r
pm、スラスト荷重:10N、真空度:10-6Tor
r、温度:室温の条件下で試験軸受を回転させ、試験軸
受の直下に配置した発塵検出器により発塵量を測定し
た。同図に示すように、軸受Aの発塵量は軸受Bの1/
2以下であり、軸受Aはきわめて良好な低発塵性を示し
た。ただし、軸受Bの発塵量は固体潤滑剤として二硫化
モリブデンを等を使用した軸受に比べればかなり少な
い。
FIG. 7 shows the results of the dust generation test conducted on the bearing A and the bearing B. Dust generation test, rotation speed: 50r
pm, thrust load: 10 N, vacuum degree: 10 -6 Tor
r, temperature: The test bearing was rotated under the conditions of room temperature, and the amount of dust generated was measured by a dust detector arranged directly below the test bearing. As shown in the figure, the amount of dust generated by bearing A is 1 / the amount of dust generated by bearing B.
It was 2 or less, and the bearing A showed extremely low dust generation. However, the amount of dust generated on the bearing B is considerably smaller than that of a bearing using molybdenum disulfide as a solid lubricant.

【0018】尚、潤滑被膜は島状分布に限らず、連続し
た島状分布(島と島とを薄い被膜部分で連続させたも
の)、一様分布としても良い。また、固体潤滑剤とし
て、例示した低分子量PTFEに限らず、一般のPTF
E、二硫化モリブデン等を使用しても良い。その場合で
も、同様の作用効果を得ることができる。さらに、軸受
形式は、図1および図2に示すような円筒ころ軸受に限
らず、円すいころ軸受、自動調心ころ軸受等のころ軸受
の他、玉軸受を含めた転がり軸受一般に適用することが
できる。玉軸受に本発明を適用する場合には、少なくと
もボールの表面を図3に示す表面形状にする。潤滑被膜
の表面への密着性が向上し、良好な潤滑性、低発塵性が
長期にわたって維持されるため、半導体製造設備におい
て、玉軸受のメインテナンスフリー化を図ることができ
る。
The lubricating coating is not limited to the island-shaped distribution, and may have a continuous island-shaped distribution (islands in which the thin coating portions are continuous) or a uniform distribution. Further, the solid lubricant is not limited to the exemplified low molecular weight PTFE, but may be a general PTF.
E, molybdenum disulfide or the like may be used. Even in that case, the same effect can be obtained. Further, the bearing type is not limited to the cylindrical roller bearings shown in FIGS. 1 and 2, but can be applied to roller bearings such as tapered roller bearings and self-aligning roller bearings, as well as rolling bearings including ball bearings in general. it can. When the present invention is applied to a ball bearing, at least the surface of the ball has the surface shape shown in FIG. Since the adhesion of the lubricating coating to the surface is improved and good lubricity and low dust generation are maintained for a long period of time, it is possible to achieve maintenance-free ball bearings in semiconductor manufacturing equipment.

【0019】[0019]

【発明の効果】以上説明したように、本発明の固体潤滑
転がり軸受は、転がり摩擦または滑り摩擦を生ずる表面
の凸部が平滑状になった構成を有するので、この表面に
形成された固体潤滑被膜が転がり摩擦、滑り摩擦力を受
けても容易に脱落・摩耗することがなく、長期にわたっ
て良好な潤滑性、耐久性を維持する。したがって、本発
明によれば、固体潤滑転がり軸受の耐久性、低発塵性を
より一層向上させることができ、ころ軸受にあっては半
導体製造設備などへの適用化、玉軸受にあっては耐久性
向上によるメインテナンスフリー化を達成することがで
きる。
As described above, the solid lubrication rolling bearing of the present invention has a structure in which the convex portions of the surface that cause rolling friction or sliding friction are smooth, and therefore the solid lubrication formed on this surface is Even if the coating film receives rolling friction and sliding frictional force, it does not easily fall off or wear, maintaining good lubricity and durability for a long period of time. Therefore, according to the present invention, it is possible to further improve the durability and low dust generation of the solid lubrication rolling bearing, and in the case of the roller bearing, the application to semiconductor manufacturing equipment and the like, and in the case of the ball bearing, Maintenance-free can be achieved by improving durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる円筒ころ軸受を示す断
面図である。
FIG. 1 is a sectional view showing a cylindrical roller bearing according to an embodiment of the present invention.

【図2】図1において、嵌合面等の潤滑被膜を除去等し
た状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which a lubricating coating such as a fitting surface is removed in FIG.

【図3】内輪の表面を模式的に示す拡大断面図である。FIG. 3 is an enlarged sectional view schematically showing the surface of the inner ring.

【図4】内輪の表面に形成された潤滑被膜を模式的に示
す拡大断面図である。
FIG. 4 is an enlarged sectional view schematically showing a lubricating coating formed on the surface of the inner ring.

【図5】研削後の内輪の表面を示す拡大平面図(図
a)、拡大断面図(図)である。
FIG. 5 is an enlarged plan view (FIG. A) and an enlarged sectional view (FIG.) Showing the surface of the inner ring after grinding.

【図6】耐久性試験の結果を示す図である。FIG. 6 is a diagram showing a result of a durability test.

【図7】発塵試験の結果を示す図である。FIG. 7 is a diagram showing results of a dusting test.

【符号の説明】[Explanation of symbols]

1 内輪 1a 潤滑被膜 1b1 凸部 1b2 凹部 2 外輪 2a 潤滑被膜 3 ころ 3a 潤滑被膜 4 保持器 1 Inner ring 1a Lubricating film 1b1 Convex part 1b2 Recessed part 2 Outer ring 2a Lubricating film 3 Roller 3a Lubricating film 4 Cage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 転がり軸受を構成する部品のうち少なく
とも転がり摩擦または滑り摩擦を生ずる表面に固体潤滑
被膜を形成したものであって、上記表面は、機械加工に
より生じた該表面の微小凹凸部のうち凸部が平滑状にな
っていることを特徴とする固体潤滑転がり軸受。
1. A solid lubricating coating is formed on at least a surface of rolling bearings that causes rolling friction or sliding friction, and the surface has a minute uneven portion formed by machining. The solid lubrication rolling bearing is characterized in that the convex portion is smooth.
JP5013734A 1993-01-29 1993-01-29 Solid lubricating rolling bearing Pending JPH06229423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5013734A JPH06229423A (en) 1993-01-29 1993-01-29 Solid lubricating rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013734A JPH06229423A (en) 1993-01-29 1993-01-29 Solid lubricating rolling bearing

Publications (1)

Publication Number Publication Date
JPH06229423A true JPH06229423A (en) 1994-08-16

Family

ID=11841484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013734A Pending JPH06229423A (en) 1993-01-29 1993-01-29 Solid lubricating rolling bearing

Country Status (1)

Country Link
JP (1) JPH06229423A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108248A1 (en) * 2007-03-02 2008-09-12 Ntn Corporation Thrust bearing
JP2008240758A (en) * 2007-03-26 2008-10-09 Ntn Corp Thrust bearing
JP2009115255A (en) * 2007-11-08 2009-05-28 Ntn Corp Rolling bearing for aircraft
JP2009133403A (en) * 2007-11-30 2009-06-18 Ntn Corp Spindle supporting rolling bearing for wind power generation device
JP2010025254A (en) * 2008-07-22 2010-02-04 Jtekt Corp Rolling bearing
WO2017164256A1 (en) * 2016-03-24 2017-09-28 Ntn株式会社 Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
JP2018204771A (en) * 2017-06-09 2018-12-27 株式会社ジェイテクト Rolling bearing and manufacturing method of rolling bearing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108248A1 (en) * 2007-03-02 2008-09-12 Ntn Corporation Thrust bearing
JP2008240758A (en) * 2007-03-26 2008-10-09 Ntn Corp Thrust bearing
JP2009115255A (en) * 2007-11-08 2009-05-28 Ntn Corp Rolling bearing for aircraft
JP2009133403A (en) * 2007-11-30 2009-06-18 Ntn Corp Spindle supporting rolling bearing for wind power generation device
JP2010025254A (en) * 2008-07-22 2010-02-04 Jtekt Corp Rolling bearing
WO2017164256A1 (en) * 2016-03-24 2017-09-28 Ntn株式会社 Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
US10808761B2 (en) 2016-03-24 2020-10-20 Ntn Corporation Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
JP2018204771A (en) * 2017-06-09 2018-12-27 株式会社ジェイテクト Rolling bearing and manufacturing method of rolling bearing
CN110709614A (en) * 2017-06-09 2020-01-17 株式会社捷太格特 Rolling bearing and method for producing a rolling bearing
US11143233B2 (en) 2017-06-09 2021-10-12 Jtekt Corporation Rolling bearing and method for manufacturing rolling bearing
TWI772435B (en) * 2017-06-09 2022-08-01 日商捷太格特股份有限公司 Rolling bearing and manufacturing method of rolling bearing

Similar Documents

Publication Publication Date Title
JP2992717B2 (en) Rolling bearings for semiconductor manufacturing equipment
KR100281621B1 (en) Non-retainer type rolling bearing
JP2989521B2 (en) Chain incorporating rolling elements
JPH06229423A (en) Solid lubricating rolling bearing
JP3121701B2 (en) Rolling bearings for semiconductor manufacturing equipment
JPS61165021A (en) Roller bearing
JP2758518B2 (en) Rolling roller
JP2899735B2 (en) Rolling bearing
TWI772435B (en) Rolling bearing and manufacturing method of rolling bearing
US4872771A (en) Bearing
JPH06229421A (en) Solid lubricating slide bearing
JP3021909B2 (en) Rolling bearings for semiconductor manufacturing equipment
JP2504066B2 (en) Ball bearing with solid lubricant layer
JP2503966Y2 (en) Rolling bearing
JPS6329942Y2 (en)
JPH02154812A (en) Rolling bearing and its application
JP3066163B2 (en) Rolling bearings for semiconductor manufacturing equipment
JP2002266875A (en) Rolling bearing
JPH06341444A (en) Solid lubricant film and forming method thereof
JPH03172611A (en) Solid lubrication type rolling bearing
JP2503174Y2 (en) Solid lubrication rolling bearing
JPH05209624A (en) Slide bearing for semiconductor manufacturing equipment
JP2008281077A (en) Automatic aligning roller bearing for paper making machine
JPH11209771A (en) Production of solid lubricant roller bearing
JPH04282023A (en) Solid lublication rolling bearing

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010615