JPH06228343A - Process and apparatus for surface modification of fluororesin - Google Patents

Process and apparatus for surface modification of fluororesin

Info

Publication number
JPH06228343A
JPH06228343A JP2038493A JP2038493A JPH06228343A JP H06228343 A JPH06228343 A JP H06228343A JP 2038493 A JP2038493 A JP 2038493A JP 2038493 A JP2038493 A JP 2038493A JP H06228343 A JPH06228343 A JP H06228343A
Authority
JP
Japan
Prior art keywords
fluororesin
water
hydrophilic
contact
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2038493A
Other languages
Japanese (ja)
Inventor
Satoshi Inazaki
聡 稲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2038493A priority Critical patent/JPH06228343A/en
Publication of JPH06228343A publication Critical patent/JPH06228343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To easily and uniformly make the surface of a fluororesin hydrophilic. CONSTITUTION:The apparatus consists of an ultraviolet source and a container for holding a fluororesin and highly pure water to be brought into contact with the resin and an optical means for irradiating the desired part of the contact surface between the fluororesin and the water with the light from the ultraviolet source. When the fluorinecarbon covalent bonds of the fluororesin are broken by ultraviolet light, the dissociated fluorine atoms are bonded to the hydrogen atoms of water, while the resulting hydroxyl groups are bonded to the carbon atoms at which the covalent bonds have been broken. Since the highly pure water is in contact with the fluororesin, while it is kept uniform in composition, the fluororesin can be made uniformly hydrophilic. Since the highly pure water has a good light transmittance, the ultraviolet irradiation can be performed through the water. Therefore, the surface of the fluororesin can be made hydrophilic even when it is thick.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、疎水性のフッ素樹脂を
親水性のフッ素樹脂に改質する方法とその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for modifying a hydrophobic fluororesin into a hydrophilic fluororesin.

【0002】[0002]

【従来の技術】近年機能性材料の開発がさかんに行わ
れ、疎水性の樹脂を親水性に改質し、その樹脂自身の持
つ物理的な性質を維持しつつ、疎水性の欠点をカバーし
て親水性という新しい機能をもつ材料が得られつつあ
る。エチレン、ナイロンなどに関しては、例えば、「特
開平2−86413」にあるように親水性の樹脂に改質
がなされる。この方法では、水に疎水性ポリマー粒子を
浮かべ、紫外線レーザ及び超音波で親水性活性基をもて
せうる気化アルコールなどを疎水性ポリマー粒子に作用
させて改質がなされる。
2. Description of the Related Art In recent years, active development of functional materials has been carried out to modify a hydrophobic resin to be hydrophilic so as to maintain the physical properties of the resin itself and to cover the drawback of hydrophobicity. A material having a new function of hydrophilicity is being obtained. Regarding ethylene, nylon and the like, for example, a hydrophilic resin is modified as described in "JP-A-2-86413". In this method, hydrophobic polymer particles are floated on water, and vaporized alcohol capable of having a hydrophilic active group is acted on the hydrophobic polymer particles by an ultraviolet laser and ultrasonic waves for modification.

【0003】エチレン、ナイロンなどと比較して、フッ
素樹脂は、化学的に非常に安定であり、耐熱、耐薬品
性、電気絶縁性などの優れた特性を持っており、医用・
化学工業用などの分野で広く利用されている。その優れ
た特性から、中でも医療分野において医用高分子、特に
人工血管や医療センサへ応用する試みが盛んに提案され
ている。
Compared with ethylene, nylon and the like, fluororesins are chemically very stable and have excellent properties such as heat resistance, chemical resistance and electrical insulation properties, and are suitable for medical use.
Widely used in fields such as the chemical industry. Due to their excellent properties, attempts to apply them to medical polymers, particularly artificial blood vessels and medical sensors, have been actively proposed in the medical field.

【0004】しかし、フッ素樹脂は、一般に親水性が悪
く、人工血管などに応用するには表面に親水性を持たせ
る必要がある。この方法として、例えば、「平成4年度
レーザ学会学術講演会第12回年次大会予稿集p17
2,173;大越ら(東海大)」の方法がある。この方
法は、「硼酸(B(OH)3 )水溶液またはNH3 +B
2 6 水溶液にフッ素樹脂のフィルムを浮かべ、そのフ
ィルムの上からArFエキシマレーザの光(波長193
nm)を照射し、フッ素樹脂と水溶液との光化学反応に
よりをフィルムを親水化する」という方法である。
However, fluororesins are generally poor in hydrophilicity, and it is necessary to impart hydrophilicity to the surface for application to artificial blood vessels and the like. As this method, for example, “Proceedings of the 12th Annual Conference of the Laser Society of Japan 1992 Academic Conference p17”
2, 173; Ogoshi et al. (Tokai Univ.) ”. This method is based on "boric acid (B (OH) 3 ) aqueous solution or NH 3 + B
A fluororesin film was floated on 2 H 6 aqueous solution, and ArF excimer laser light (wavelength 193
(nm), and the film is made hydrophilic by a photochemical reaction between the fluororesin and the aqueous solution. "

【0005】図5はこのメカニズムを示したものであ
る。ArFエキシマレーザの光を照射すると、その光子
エネルギー(147kcal/mol )はフッ素樹脂のC−F
共有結合のエネルギー(128kcal/mol )よりも大き
いことから、この共有結合を切断させる(図5
(a))。切断して解離したF原子は分子鎖の炭素Cと
再結合しやすいのであるが、硼素Bの方が炭素Cよりも
F原子と結合しやすいため、切断して解離したF原子は
硼素Bと結合する(図5(b))。そして、分子鎖の炭
素Cには水溶液(B(OH)3)の分解で生じた水酸基
が結合してフッ素樹脂を親水化するものと考えられる
(図5(c))。
FIG. 5 shows this mechanism. When irradiated with light from an ArF excimer laser, its photon energy (147 kcal / mol) is C-F of fluororesin.
Since the energy of covalent bond is larger than 128 kcal / mol, this covalent bond is broken (Fig. 5).
(A)). The F atom dissociated and dissociated is likely to be recombined with the carbon C of the molecular chain. However, since boron B is more likely to be combined with the F atom than carbon C, the F atom dissociated and dissociated as boron B It binds (FIG.5 (b)). Then, it is considered that the hydroxyl group generated by the decomposition of the aqueous solution (B (OH) 3 ) is bonded to the carbon C of the molecular chain to hydrophilize the fluororesin (FIG. 5 (c)).

【0006】[0006]

【発明が解決しようとする課題】上述のフッ素樹脂を親
水化する方法では、まず、フィルムの上からレーザの光
を照射するため、フッ素樹脂が厚いものであればレーザ
の光が吸収されて親水化するのが難しいものになる。こ
れに対して水溶液の側からレーザの光を照射しても、水
溶液は光の透過率が悪いのでレーザの光は吸収され、や
はり親水化するのが難しい。また、水溶液は微視的には
濃度分布のバラツキがあり、これによって改質面にむら
がでることになる。
In the above-mentioned method for hydrophilizing a fluororesin, the laser light is first radiated from above the film. Therefore, if the fluororesin is thick, the laser light is absorbed to make it hydrophilic. It will be difficult to convert. On the other hand, even when the laser light is irradiated from the side of the aqueous solution, the aqueous solution has a poor light transmittance, so that the laser light is absorbed and it is difficult to make the surface hydrophilic. Further, the aqueous solution microscopically has a variation in concentration distribution, which causes unevenness on the modified surface.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明のフッ素樹脂の表面改質方法は、フッ素樹脂
を高純度の水に接触させ、フッ素樹脂と水との接触面の
所望の部分に紫外線を照射してフッ素樹脂の所望の部分
を親水化する。
In order to solve the above-mentioned problems, the surface modification method of the fluororesin of the present invention is to bring the fluororesin into contact with high-purity water to obtain a desired contact surface between the fluororesin and water. The desired portion of the fluororesin is hydrophilized by irradiating the portion with ultraviolet rays.

【0008】ここで、フッ素樹脂は、ETFE樹脂、F
EP樹脂、PFA樹脂、PTFE樹脂のいずれかであっ
てもよい。
Here, the fluororesin is ETFE resin, F
It may be any one of EP resin, PFA resin and PTFE resin.

【0009】また、高純度の水は、100MΩ・cm以
上であってもよい。
The high-purity water may be 100 MΩ · cm or more.

【0010】紫外線は、波長193nmのArFエキシ
マレーザからの光であってもよい。
The ultraviolet light may be light from an ArF excimer laser having a wavelength of 193 nm.

【0011】また、本発明のフッ素樹脂の表面改質装置
は、紫外線光源と、フッ素樹脂とこれに接触させる高純
度の水とを入れるための容器と、紫外線光源からの光を
フッ素樹脂と前記水との接触面の所望の部分に照射する
光学的手段とを有する。
Further, the apparatus for modifying a surface of a fluororesin of the present invention comprises an ultraviolet light source, a container for containing the fluororesin and high-purity water to be brought into contact therewith, and a light from the ultraviolet light source to the fluororesin. And an optical means for irradiating a desired portion of the contact surface with water.

【0012】[0012]

【作用】本発明のフッ素樹脂の表面改質方法及び装置で
は、紫外線によりフッ素樹脂のと水とがこれらの接触面
においてつぎのような光化学反応をし、これによって親
水化するものと考えられる。
In the method and apparatus for modifying the surface of a fluororesin of the present invention, it is considered that the photoresin of the fluororesin and water undergo the following photochemical reaction at the contact surface between them by ultraviolet rays, thereby hydrophilizing.

【0013】まず、フッ素樹脂の弗素−炭素の共有結合
が紫外線により切断され、解離した弗素は炭素よりも結
合しやすい水(H2 O)の水素原子と結合する。これに
よってできた水酸基が共有結合がきれた炭素に結合し、
フッ素樹脂の高分子鎖の炭素にこのように、水との反応
であり、この高純度の水は均一の組成でフッ素樹脂と接
触していることから、フッ素樹脂を親水化するのにむら
が少ないものになる。
First, the fluorine-carbon covalent bond of the fluororesin is cleaved by ultraviolet rays, and the dissociated fluorine bonds with the hydrogen atom of water (H 2 O), which is easier to bond than carbon. The hydroxyl group formed by this bond to the covalently broken carbon,
The carbon of the polymer chain of the fluororesin is thus a reaction with water, and since this high-purity water is in contact with the fluororesin with a uniform composition, there is unevenness in hydrophilizing the fluororesin. Will be less.

【0014】また、高純度の水は光の透過率が良いの
で、高純度の水を通して紫外線を照射することが可能
で、フッ素樹脂が厚いものであっても表面を親水化する
ことができる。
Further, since high-purity water has a high light transmittance, it is possible to irradiate ultraviolet rays through the high-purity water, and even if the fluororesin is thick, the surface can be made hydrophilic.

【0015】[0015]

【実施例】本発明の実施例を図面を参照して説明する。
図1は、フッ素樹脂の表面改質を行うための装置の概略
をしめしたものである。この装置は、紫外線光源として
ArFエキシマレーザ(波長193nm)160と、フ
ッ素樹脂110に接触させる高純度の水120を入れる
ための容器130とを有する。また、全反射ミラー15
0及びレンズ140で構成される光学系を有し、この光
学系によってArFエキシマレーザ160からの光をフ
ッ素樹脂110と水120との接触面に導くとともに、
全反射ミラー150及びレンズ140の位置を調節する
ことによって接触面の所望の部分に照射するようになっ
ている。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of an apparatus for modifying the surface of a fluororesin. This apparatus has an ArF excimer laser (wavelength 193 nm) 160 as an ultraviolet light source, and a container 130 for containing high-purity water 120 to be brought into contact with the fluororesin 110. In addition, the total reflection mirror 15
0 and a lens 140, the optical system guides the light from the ArF excimer laser 160 to the contact surface between the fluororesin 110 and the water 120.
A desired portion of the contact surface is illuminated by adjusting the positions of the total reflection mirror 150 and the lens 140.

【0016】容器130内の水120にフッ素樹脂11
0を浮かべ、ArFエキシマレーザ160からの紫外光
をフッ素樹脂110と水120との接触面に照射する。
これによってフッ素樹脂110の表面が親水化される。
ETFE樹脂(化学式1)、FEP樹脂(化学式2)、
PFA樹脂(化学式3)、PTFE樹脂(化学式4)と
いったフッ素樹脂について行った結果、おなじように親
水化が確認された。
Fluororesin 11 is added to water 120 in container 130.
0 is floated, and ultraviolet light from the ArF excimer laser 160 is applied to the contact surface between the fluororesin 110 and the water 120.
This makes the surface of the fluororesin 110 hydrophilic.
ETFE resin (chemical formula 1), FEP resin (chemical formula 2),
As a result of conducting the fluororesin such as PFA resin (Chemical formula 3) and PTFE resin (Chemical formula 4), it was confirmed that hydrophilicity was the same.

【0017】[0017]

【化1】 [Chemical 1]

【0018】[0018]

【化2】 [Chemical 2]

【0019】[0019]

【化3】 [Chemical 3]

【0020】[0020]

【化4】 [Chemical 4]

【0021】図2は、推定される親水化メカニズムを示
したものである。フッ素樹脂110のC−F共有結合の
エネルギーが128kcal/mol であるのに対し、ArF
エキシマレーザ160の光子エネルギーは147kcal/
mol であることから、ArFエキシマレーザ160の光
を照射すると、フッ素樹脂のC−F共有結合を切断させ
る(図2(a))。切断して解離したF原子は、電気陰
性度が大きく、分子鎖の炭素Cと再結合しやすい。しか
し、水(H2 O)の水素原子の方が炭素CよりもF原子
と結合しやすいため、このH原子(水素)がF原子を引
き抜くことになる(図2(b))。そして、引き抜かれ
た後の分子鎖の炭素Cには、水(H2 O)の分解で生じ
た水酸基がF原子のかわりに置換する(図2(c))。
こうして選択的にフッ素樹脂110の光が照射された部
分を親水性に改質するものと考えられる。
FIG. 2 shows a putative hydrophilization mechanism. The fluorocarbon resin 110 has a C—F covalent bond energy of 128 kcal / mol, while ArF
The photon energy of the excimer laser 160 is 147 kcal /
Since it is mol, when the light of the ArF excimer laser 160 is irradiated, the C—F covalent bond of the fluororesin is broken (FIG. 2A). The F atom dissociated by dissociation has a large electronegativity and is likely to be recombined with carbon C of the molecular chain. However, since the hydrogen atom of water (H 2 O) is more likely to bond with the F atom than carbon C, this H atom (hydrogen) pulls out the F atom (FIG. 2 (b)). Then, in the carbon C of the molecular chain after being pulled out, the hydroxyl group generated by the decomposition of water (H 2 O) is substituted for the F atom (FIG. 2 (c)).
Thus, it is considered that the portion of the fluororesin 110 irradiated with light is selectively modified to be hydrophilic.

【0022】図3は、ArFエキシマレーザ160から
フッ素樹脂110の表面への照射エネルギー密度(mJ/
cm2 )に対する照射後の表面の接触角の関係を示したも
のである(水120の比抵抗130MΩ・cm、PTFE
樹脂について実験を行った結果。なお、他のものも同じ
結果が得られた)。ArFエキシマレーザ160の繰り
返し周波数30Hz,照射したパルス数5000パルス
とした。
FIG. 3 shows the irradiation energy density (mJ / m 2) from the ArF excimer laser 160 to the surface of the fluororesin 110.
It shows the relationship of the contact angle of the surface after irradiation with respect to cm 2 (specific resistance of water 120: 130 MΩ · cm, PTFE
Results of experiments on resin. The same results were obtained for the others.) The repetition frequency of the ArF excimer laser 160 was 30 Hz, and the number of irradiated pulses was 5000 pulses.

【0023】また、図4は、水120の比抵抗(MΩ・
cm)に対する照射後の表面の接触角の関係を示したもの
である(照射エネルギー40mJ/cm3 、PTFE樹脂に
ついて他の条件を図3と同じにして実験を行った結果。
なお、他のものも同じ結果が得られた)。
Further, FIG. 4 shows the specific resistance of the water 120 (MΩ ·
3 shows the relationship between the contact angle of the surface after irradiation with respect to (cm) (irradiation energy of 40 mJ / cm 3 and other conditions of the PTFE resin, the same as in FIG. 3).
The same results were obtained for the others.)

【0024】この結果から明らかなように照射エネルギ
ー密度30mJ/cm2 以上で接触角がほぼ0度になり、十
分に親水性に改質することが可能である。また、水12
0は比抵抗100MΩ・cm以上の高純度のものであれば
接触角がほぼ0度になり、フッ素樹脂110を親水性に
改質するのに十分である。この比抵抗を下回る純度の水
では接触角に変化は見られず、不純物が親水化するのを
阻害しているものと考えられる。
As is clear from this result, the contact angle becomes almost 0 ° at the irradiation energy density of 30 mJ / cm 2 or more, and it is possible to sufficiently modify the hydrophilic property. Also, water 12
If 0 is a high-purity material having a specific resistance of 100 MΩ · cm or more, the contact angle becomes almost 0 degree, which is sufficient to modify the fluororesin 110 to be hydrophilic. No change in the contact angle was observed with water having a purity below this specific resistance, which is considered to prevent the impurities from becoming hydrophilic.

【0025】このように、比抵抗100MΩ・cm以上の
高純度の水を用いて接触角がほぼ0度になるようなフッ
素樹脂110の親水性改質の効果が得られた。また、従
来例のような水溶液を用いないため、水溶液の濃度分布
に起因する親水性改質の不均一性がないので均一な親水
性の改質面が得られた。
In this way, the effect of hydrophilic modification of the fluororesin 110 such that the contact angle becomes almost 0 degree was obtained by using high-purity water having a specific resistance of 100 MΩ · cm or more. Further, since an aqueous solution as in the conventional example is not used, there is no non-uniformity of hydrophilic modification due to the concentration distribution of the aqueous solution, so that a uniform hydrophilic modified surface was obtained.

【0026】上述のようにC−F共有結合を切断して親
水性に改質するものであるから、上記の樹脂に限られ
ず、C−F共有結合を有するフッ素樹脂に同様の効果が
あるものと考えられる。
As described above, the C-F covalent bond is cleaved to modify it to be hydrophilic, so that the fluororesin having the C-F covalent bond is not limited to the above resins and has the same effect. it is conceivable that.

【0027】本発明は前述の実施例に限らず様々な変形
が可能である。
The present invention is not limited to the above-described embodiment, but various modifications can be made.

【0028】例えば、図1では、フッ素樹脂110の側
からArFエキシマレーザ160からの光を照射する例
を示したが、容器130の一部を光を透過し得るように
して水120の側からArFエキシマレーザ160から
の光を照射するようにしても良い。この場合、水120
は高純度のものであるから光の吸収が少なく、同じよう
に親水化をなし得る。
For example, FIG. 1 shows an example in which the light from the ArF excimer laser 160 is irradiated from the side of the fluororesin 110, but a part of the container 130 can be made to transmit the light from the side of the water 120. Light from the ArF excimer laser 160 may be emitted. In this case, water 120
Since it has a high degree of purity, it absorbs little light and can be made hydrophilic in the same manner.

【0029】また、図2から明らかなようにC−F共有
結合を切断する程度のエネルギーを与えれば良いので、
ArFエキシマレーザ160にかえてF2 エキシマレー
ザ(波長157nm)などより波長の短いものをも用い
得る。
Further, as is clear from FIG. 2, it suffices to apply energy to such an extent that the C—F covalent bond is broken.
Instead of the ArF excimer laser 160, an F 2 excimer laser (wavelength 157 nm) or the like having a shorter wavelength may be used.

【0030】さらに、水120を攪拌するような手段
(例えば攪拌機など)を設けるようにしても良い。
Further, a means for stirring the water 120 (for example, a stirrer or the like) may be provided.

【0031】[0031]

【発明の効果】以上の通り本発明のフッ素樹脂の表面改
質方法及び装置によれば、むらを少なくフッ素樹脂を親
水化することができ、また、高純度の水は光の透過率が
良いので、高純度の水を通して紫外線を照射することが
可能で、フッ素樹脂が厚いものであっても表面を親水化
することができる。
As described above, according to the method and apparatus for surface modification of a fluororesin of the present invention, the fluororesin can be made hydrophilic with less unevenness, and high-purity water has a good light transmittance. Therefore, it is possible to irradiate ultraviolet rays through high-purity water, and even if the fluororesin is thick, the surface can be made hydrophilic.

【図面の簡単な説明】[Brief description of drawings]

【図1】フッ素樹脂の表面改質を行うための装置の構成
例の概略図。
FIG. 1 is a schematic diagram of a configuration example of an apparatus for surface-modifying a fluororesin.

【図2】本発明のフッ素樹脂の表面改質において推定さ
れる親水化メカニズムを示した図。
FIG. 2 is a diagram showing a hydrophilization mechanism presumed in the surface modification of the fluororesin of the present invention.

【図3】照射エネルギー密度に対する照射後の表面の接
触角の関係のグラフ。
FIG. 3 is a graph of the relationship between the irradiation energy density and the contact angle of the surface after irradiation.

【図4】比抵抗に対する照射後の表面の接触角の関係の
グラフ。
FIG. 4 is a graph showing the relationship between the contact angle of the surface after irradiation and the specific resistance.

【図5】従来例のフッ素樹脂の表面改質における親水化
メカニズムを示した図。
FIG. 5 is a diagram showing a hydrophilization mechanism in surface modification of a fluororesin of a conventional example.

【符号の説明】[Explanation of symbols]

110…フッ素樹脂、120…水、130容器、140
…レンズ、150…全反射ミラー、160…ArFエキ
シマレーザ。
110 ... Fluororesin, 120 ... Water, 130 Container, 140
... lens, 150 ... total reflection mirror, 160 ... ArF excimer laser.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フッ素樹脂を高純度の水に接触させ、前
記フッ素樹脂と前記水との接触面の所望の部分に紫外線
を照射して前記フッ素樹脂の所望の部分を親水化するフ
ッ素樹脂の表面改質方法。
1. A fluororesin which brings a fluororesin into contact with high-purity water and irradiates a desired portion of the contact surface between the fluororesin and the water with ultraviolet rays to hydrophilize the desired portion of the fluororesin. Surface modification method.
【請求項2】 前記フッ素樹脂は、ETFE樹脂、FE
P樹脂、PFA樹脂、PTFE樹脂のいずれかであるこ
とを特徴とする請求項1記載のフッ素樹脂の表面改質方
法。
2. The fluororesin is ETFE resin, FE
The method for modifying the surface of a fluororesin according to claim 1, wherein the method is a P resin, a PFA resin, or a PTFE resin.
【請求項3】 前記水は、100MΩ・cm以上である
ことを特徴とする請求項1記載のフッ素樹脂の表面改質
方法。
3. The surface modification method for a fluororesin according to claim 1, wherein the water content is 100 MΩ · cm or more.
【請求項4】 前記紫外線は、波長193nmのArF
エキシマレーザからの光であることを特徴とする請求項
1記載のフッ素樹脂の表面改質方法。
4. The ultraviolet light is ArF having a wavelength of 193 nm.
The surface modification method for a fluororesin according to claim 1, wherein the light is from an excimer laser.
【請求項5】 紫外線光源と、 フッ素樹脂とこれに接触させる高純度の水とを入れるた
めの容器と、 前記紫外線光源からの光を前記フッ素樹脂と前記水との
接触面の所望の部分に照射する光学的手段とを有するフ
ッ素樹脂の表面改質装置。
5. An ultraviolet light source, a container for containing a fluororesin and high-purity water to be brought into contact therewith, and light from the ultraviolet light source to a desired portion of a contact surface between the fluororesin and the water. An apparatus for modifying the surface of a fluororesin having an optical means for irradiating.
JP2038493A 1993-02-08 1993-02-08 Process and apparatus for surface modification of fluororesin Pending JPH06228343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038493A JPH06228343A (en) 1993-02-08 1993-02-08 Process and apparatus for surface modification of fluororesin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038493A JPH06228343A (en) 1993-02-08 1993-02-08 Process and apparatus for surface modification of fluororesin

Publications (1)

Publication Number Publication Date
JPH06228343A true JPH06228343A (en) 1994-08-16

Family

ID=12025544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038493A Pending JPH06228343A (en) 1993-02-08 1993-02-08 Process and apparatus for surface modification of fluororesin

Country Status (1)

Country Link
JP (1) JPH06228343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1083444A1 (en) * 1999-09-08 2001-03-14 Nikon Corporation An optical element, a method for manufacturing the same, and an optical apparatus using the same
WO2013087300A1 (en) * 2011-12-16 2013-06-20 Carl Zeiss Smt Gmbh Optical arrangement and optical element for immersion lithography
WO2022196580A1 (en) 2021-03-16 2022-09-22 積水化学工業株式会社 Surface modification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226534A (en) * 1984-04-24 1985-11-11 Shin Etsu Chem Co Ltd Surface-modified synthetic resin molded article
JPH0362831A (en) * 1989-08-01 1991-03-18 Agency Of Ind Science & Technol Surface-processing of polymer molded article with laser
JPH05306346A (en) * 1992-04-28 1993-11-19 Gunze Ltd Hydrophilic fluoro resin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226534A (en) * 1984-04-24 1985-11-11 Shin Etsu Chem Co Ltd Surface-modified synthetic resin molded article
JPH0362831A (en) * 1989-08-01 1991-03-18 Agency Of Ind Science & Technol Surface-processing of polymer molded article with laser
JPH05306346A (en) * 1992-04-28 1993-11-19 Gunze Ltd Hydrophilic fluoro resin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1083444A1 (en) * 1999-09-08 2001-03-14 Nikon Corporation An optical element, a method for manufacturing the same, and an optical apparatus using the same
US6495202B1 (en) 1999-09-08 2002-12-17 Nikon Corporation Method for manufacturing an optical element containing fluoride in at least its surface portions
WO2013087300A1 (en) * 2011-12-16 2013-06-20 Carl Zeiss Smt Gmbh Optical arrangement and optical element for immersion lithography
WO2022196580A1 (en) 2021-03-16 2022-09-22 積水化学工業株式会社 Surface modification method
KR20230157402A (en) 2021-03-16 2023-11-16 세키스이가가쿠 고교가부시키가이샤 Surface modification method

Similar Documents

Publication Publication Date Title
US5098618A (en) Surface modification of plastic substrates
US5051312A (en) Modification of polymer surfaces
US6117497A (en) Solid surface modification method and apparatus
Hozumi et al. Spatially defined surface modification of poly (methyl methacrylate) using 172 nm vacuum ultraviolet light
EP0833850B1 (en) Surface modification of polymers and carbon-based materials
JP2612404B2 (en) Method and apparatus for surface modification of fluororesin
JPH06192452A (en) Surface modification of fluoropolymer molding by using ultraviolet laser
Praschak et al. PET surface modifications by treatment with monochromatic excimer UV lamps.
ES2069051T3 (en) PROCESS TO HYDROXYLATE HYDROPHOBIC POLYMER SURFACES.
EP0673751A2 (en) Process for modifying surface of fluororesin product
Ichijima et al. Surface modification of poly (methyl methacrylate) by graft copolymerization
JPH06228343A (en) Process and apparatus for surface modification of fluororesin
US4853253A (en) Method of activating surface of shaped body formed of synthetic organic polymer
US6689426B1 (en) Solid surface modification method and apparatus
JP5337997B2 (en) Method for photochemical modification of solid material surface
JPH08259716A (en) Method for modifying surface of fluoropolymer by irradiation with light with aliphatic amine
Okoshi et al. Selective surface modification of a fluorocarbon resin into hydrophilic material using an excimer laser
Sato et al. Protein adsorption on PTFE surface modified by ArF excimer laser treatment
Mirzadeh et al. CO2-pulsed laser induced surface grafting of acrylamide onto ethylene-propylene-rubber (EPR)—I
Gumpenberger et al. Modification of expanded polytetrafluoroethylene by UV irradiation in reactive and inert atmosphere
JPH05306346A (en) Hydrophilic fluoro resin film
Yamaguchi et al. Micromachining of crosslinked PTFE by direct photo‐etching using synchrotron radiation
JP2612404C (en)
JP2935084B2 (en) Hydrophilic fluorinated resin molded product
JP4787976B2 (en) Method for photochemical modification of solid material surface