JPH0622743A - Mechanism for transporting cell - Google Patents

Mechanism for transporting cell

Info

Publication number
JPH0622743A
JPH0622743A JP24117691A JP24117691A JPH0622743A JP H0622743 A JPH0622743 A JP H0622743A JP 24117691 A JP24117691 A JP 24117691A JP 24117691 A JP24117691 A JP 24117691A JP H0622743 A JPH0622743 A JP H0622743A
Authority
JP
Japan
Prior art keywords
electrostrictive element
flat plate
cells
cell
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24117691A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
弘之 鈴木
Toshio Yasunaka
敏男 安中
Makoto Aoki
真 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP24117691A priority Critical patent/JPH0622743A/en
Publication of JPH0622743A publication Critical patent/JPH0622743A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Abstract

PURPOSE:To obtain a device having a mechanism capable of removing cells contained in an isolated state in a solution in a proper direction and collecting by setting a flat board to be driven by an electrostrictive element in a chamber, impressing an unsymmetrical waveshape voltage to the electrostrictive element to drive the flat board. CONSTITUTION:A flat board 13 to be driven by an electrostrictive element 11 is set in a chamber 9 to be charged with a solution containing cells and an unsymmetrical waveshape voltage is impressed to the electrostrictive element to drive the flat board. A control circuit 18 to regulate the driving circuit of the electrostrictive element subjects a picture signal of a video camera 16 to image processing and regulates the waveshape, period, amplitue, etc., of the driving circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単離して液相中に含ま
れ、容器底面に沈降している細胞を、容器底面の所定の
位置または希望する位置に移動させることにより、細胞
を個別にピックアップする等の操作を可能にする細胞移
動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention separates cells that are isolated and contained in a liquid phase and settled on the bottom surface of a container to a predetermined position or a desired position on the bottom surface of the container. The present invention relates to a cell transfer device that enables operations such as picking up to a cell.

【0002】[0002]

【従来の技術】所謂バイオテクノロジーの分野におい
て、細胞融合等による新品種の植物を育成する技術が開
発されてきた。この様な分野においては、液相中に単離
した状態の極めて微小の細胞を扱うことから、種々の技
術的困難が指摘されていた。従来、この様な細胞を扱う
手段として、図9に示す様なマイクロマニピュレータを
使用するものが知られている。
2. Description of the Related Art In the field of so-called biotechnology, techniques for growing new varieties of plants by cell fusion have been developed. In such a field, various technical difficulties have been pointed out because extremely minute cells isolated in a liquid phase are handled. Conventionally, as a means for handling such cells, one using a micromanipulator as shown in FIG. 9 is known.

【0003】図9において、顕微鏡の支軸1に支持され
た可動台2にシャーレ3を載置し、シャーレ3内に単離
した細胞を含む溶液4を入れ、支軸1の上部に設けられ
ている高倍率の光学系(図示せず)で細胞を視認する様
になっている。更に、顕微鏡の一端にマイクロマニピュ
レータ5が設けられ、操作機構6によってマイクロマニ
ピュレータ5を前後方向(長手方向)a、上下方向b、
左右方向cに移動可能であり、更に軸にそって任意の角
度θに回転できる様になっている。
In FIG. 9, a petri dish 3 is placed on a movable table 2 supported by a spindle 1 of a microscope, a solution 4 containing isolated cells is placed in the petri dish 3, and the petri dish 3 is provided above the spindle 1. The cells are visually recognized with a high-magnification optical system (not shown). Further, the micromanipulator 5 is provided at one end of the microscope, and the micromanipulator 5 is moved by the operating mechanism 6 in the front-back direction (longitudinal direction) a, the vertical direction b,
It is movable in the left-right direction c and can be further rotated along the axis by an arbitrary angle θ.

【0004】マイクロマニピュレータ5の先端には、図
10に示す様に、火炎中でガラス管を高温加熱しながら
引っぱることで形成された極めて細いガラス細管7が取
り付けられており、ガラス細管7の終端部に吸引ポンプ
や注射器等の吸引手段が接続されている。そして、人間
が顕微鏡で適宜の細胞を見つけ、操作機構6の操作でガ
ラス管7の先端をその細胞に近づけると、該先端開口部
の負圧による吸引力で細胞を吸着することができ、こう
した操作によって細胞の採取・移動を行なっていた。
As shown in FIG. 10, an extremely thin glass thin tube 7 formed by pulling the glass tube while heating it in a flame at a high temperature is attached to the tip of the micromanipulator 5, and the end of the glass thin tube 7 is attached. A suction means such as a suction pump or a syringe is connected to the section. Then, when a person finds an appropriate cell with a microscope and brings the tip of the glass tube 7 close to the cell by operating the operating mechanism 6, the cell can be adsorbed by the suction force due to the negative pressure of the tip opening. The cells were collected and moved by the operation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この様
な従来の細胞移動装置にあっては、マイクロマニピュレ
ータの先端に取り付けられる細いガラス細管は、わずか
の衝撃で破損することから取扱いが煩雑であり、又、顕
微鏡を操作しながらマイクロマニピュレータの先端部分
を細胞に近づける等の操作は極めて高度の熟練を必要と
し、1回の採取操作を行なうのに長時間を要する等の問
題があった。
However, in such a conventional cell transfer device, the thin glass capillary attached to the tip of the micromanipulator is complicated because it is damaged by a slight impact. In addition, there is a problem that an operation such as bringing the tip portion of the micromanipulator close to the cell while operating the microscope requires extremely high skill, and it takes a long time to perform one sampling operation.

【0006】更に、この様な熟練を要する手作業である
ため、操作効率が悪くなるのに加えて、生命細胞の迅速
な処理と大量の試料を処理することが極めて困難となっ
ていた。更に、上記ガラス細管による吸引で細胞を吸着
・採取するため、吸引による物理的外力で細胞が破損し
易い等の問題もあった。
Further, since such manual work requires skill, the operation efficiency is deteriorated, and it is extremely difficult to process live cells rapidly and to process a large amount of sample. Further, since the cells are adsorbed and collected by suction using the glass thin tube, there is a problem that the cells are easily damaged by a physical external force caused by suction.

【0007】本発明はこの様な従来の問題点に鑑みて成
されたものであり、溶液中に単離した状態で含まれる細
胞を大量に適宜の方向へ移動・採取することのできる細
胞移動装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to move / collect a large amount of cells contained in a solution in an isolated state in a suitable direction. The purpose is to provide a device.

【0008】[0008]

【課題を解決するための手段】この様な目的を達成する
ために本発明は、電歪素子で駆動される平板をチャンバ
内に設け、電歪素子に非対称波形の電圧を印加して駆動
することで、平板の往方向への移動速度と復方向への移
動速度を異ならせることで、チャンバ内の溶液中に含ま
れる細胞を、任意の方向及び位置へ移動させる様にし
た。
In order to achieve such an object, the present invention provides a flat plate driven by an electrostrictive element in a chamber and drives the electrostrictive element by applying an asymmetric waveform voltage. Therefore, the cells contained in the solution in the chamber are moved in an arbitrary direction and position by making the moving speed of the plate in the forward direction different from the moving speed in the backward direction.

【0009】[0009]

【作用】この様な構成を有する本発明の細胞移動装置に
よれば、平板の往方向への移動速度と、復方向への移動
速度が異なるので、その速度差によって平板による細胞
の移動量の差を生じることとなり、次第に該差による方
向へ細胞を破損することなく移動させることができる。
According to the cell moving device of the present invention having such a structure, the moving speed of the flat plate in the forward direction and the moving speed in the backward direction are different, so that the moving amount of the cells by the flat plate depends on the speed difference. A difference is caused, and the cells can be gradually moved in the direction of the difference without damage.

【0010】[0010]

【実施例】以下、本発明による細胞移動装置の一実施例
を図面と共に説明する。図1は当該装置を上方から見た
場合の平面図、図2は図1のA−A線断面図、図3は図
1のB−B線断面を有する斜視図である。まず構成を述
べると、8は装置のケーシングであり、チャンバ9が一
体成形等によって形成されている。チャンバ9の一側端
には第1の電歪素子11が固着され、該一側端して直角
な他側端には第2の電歪素子12が固着されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the cell migration device according to the present invention will be described below with reference to the drawings. 1 is a plan view when the apparatus is viewed from above, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is a perspective view having a sectional view taken along the line BB of FIG. First, the configuration will be described. 8 is a casing of the apparatus, and a chamber 9 is formed by integral molding or the like. A first electrostrictive element 11 is fixed to one end of the chamber 9, and a second electrostrictive element 12 is fixed to the other end perpendicular to the one end.

【0011】13はチャンバ9の底面に配置される平板
であり、一側端が第1の電歪素子11の一端に固着し、
該側端と直角な他の側端が第2の電歪素子12の一端に
固着している。即ち、平板13は、第1,第2の電歪素
子11,12を介してチャンバ9の側端に支持されてい
る。14は、第1の電歪素子11を駆動するための駆動
電圧V1を出力する駆動回路、15は第2の電歪素子1
2を駆動するための駆動電圧V2を出力する駆動回路で
ある。
Reference numeral 13 denotes a flat plate disposed on the bottom surface of the chamber 9, one end of which is fixed to one end of the first electrostrictive element 11,
The other side end perpendicular to the side end is fixed to one end of the second electrostrictive element 12. That is, the flat plate 13 is supported at the side end of the chamber 9 via the first and second electrostrictive elements 11 and 12. Reference numeral 14 is a drive circuit that outputs a drive voltage V1 for driving the first electrostrictive element 11, and 15 is a second electrostrictive element 1.
2 is a drive circuit that outputs a drive voltage V2 for driving 2.

【0012】16はチャンバ9上に設けられるビデオカ
メラであり、チャンバ9内を監視するためにある。17
はビデオカメラ16による撮影を最適露光に設定するた
めの照明灯である。18は、この装置全体の動作を制御
するための制御回路であり、ビデオカメラ16からの映
像信号AVを受信して、後述する細胞の移動処理情況を
監視したり、駆動回路14,15の動作を制御するため
の制御信号Sを出力する。尚、制御回路18は、マイク
ロプロセッサ等の演算手段を備え、プログラムによる自
動制御を行うようになっている。
Reference numeral 16 denotes a video camera provided on the chamber 9 for monitoring the inside of the chamber 9. 17
Is an illumination lamp for setting the optimum exposure for shooting by the video camera 16. Reference numeral 18 denotes a control circuit for controlling the operation of the entire apparatus, which receives a video signal AV from the video camera 16 to monitor the situation of cell migration processing described later and the operation of the drive circuits 14 and 15. And outputs a control signal S for controlling. The control circuit 18 is provided with arithmetic means such as a microprocessor and is adapted to perform automatic control by a program.

【0013】又、第1の電歪素子11は交播電圧V1が
供給されると、その交播電圧V1の周波数及び波形に応
じて平板13側(X方向)へ変形動作し、第2の電歪素
子12は交播電圧V2の周波数及び波形に応じて平板1
3側(Y方向)へ変形動作する。したがって、電圧V
1,V2の周波数及び波形を制御することによって、平
板13をX方向やY方向、あるいはその間の任意の方向
へ振動させることができる様になっている。
When the crossing voltage V1 is supplied to the first electrostrictive element 11, the first electrostrictive element 11 deforms toward the flat plate 13 side (X direction) according to the frequency and the waveform of the crossing voltage V1. The electrostrictive element 12 is a flat plate 1 according to the frequency and waveform of the crossing voltage V2.
It deforms to the 3 side (Y direction). Therefore, the voltage V
By controlling the frequencies and waveforms of 1 and V2, the flat plate 13 can be vibrated in the X direction, the Y direction, or any direction therebetween.

【0014】次にかかる構成のこの実施例の動作を説明
する。まず、チャンバ9内に、単離した細胞群を含む溶
液を入れる。そして、細胞群が平板13上に沈降したこ
とを確認して、装置を越動させる。図4は駆動回路14
から第1の電歪素子11に印加する電圧V1の波形を示
し、各周期Tnの前半の立ち上がり期間Anが短く、後
半の立ち下がり期間Bnが長い、非対称の三角形となっ
ており、周期Tn毎に連続してこの電圧V1が第1の電
歪素子11に印加する。
Next, the operation of this embodiment having such a configuration will be described. First, a solution containing the isolated cell group is placed in the chamber 9. Then, after confirming that the cell group has settled on the flat plate 13, the device is moved over. FIG. 4 shows the driving circuit 14
Shows a waveform of the voltage V1 applied to the first electrostrictive element 11, and has a short rising period An in the first half of each cycle Tn and a long falling period Bn in the second half, which is an asymmetrical triangle, and has a period Tn. This voltage V1 is continuously applied to the first electrostrictive element 11.

【0015】そして、第1の電歪素子11は、期間An
において高速に伸長することにより平板13をXの方向
へ高速に移動させ、期間Bnにおいて低速に縮少するこ
とにより平板13を逆方向へ低速で引き戻す動作を繰り
返す。この結果、平板13の底面に沈降している細胞群
は、期間Anにおける平板13の高速移動に追従するこ
とができないために、ほとんど元の位置にとどまること
となり、次の期間Bnにおいて、平板13が低速で戻る
と細胞群は平板13の底面との接触摩擦によって一緒に
移動する。そして、この動作を連続して行うことによ
り、細胞群を次第に第1の電歪素子11側へ移動させる
ことができる。
The first electrostrictive element 11 has a period An.
In, the flat plate 13 is moved at a high speed in the X direction at a high speed, and the flat plate 13 is pulled back in the opposite direction at a low speed by repeating the contraction at a low speed in the period Bn. As a result, the cell group settling on the bottom surface of the flat plate 13 is unable to follow the high-speed movement of the flat plate 13 in the period An, and thus stays at the original position, and in the next period Bn, the flat plate 13 is moved. When the cells return at a low speed, the cell groups move together due to contact friction with the bottom surface of the flat plate 13. Then, by continuously performing this operation, the cell group can be gradually moved to the first electrostrictive element 11 side.

【0016】図5は、電圧V1の他の波形を示す。この
波形の電圧V1を第1の電歪素子11に印加すると、図
4に示す波形の電圧V1とは逆の効果が得られる。即
ち、周期Tnの前半の期間Anでは電圧が低速で上昇
し、後半の期間Bnでは高速で降下する。したがって期
間Anでは平板13が低速で移動することにより細胞群
も同方向へ追従して移動し、期間Bnでは平板13が高
速で戻ることにより、細胞群は自身の慣性によって追従
できず、この繰り返し動作によって細胞群は次第に第1
の電歪素子11から離れる様に移動する。
FIG. 5 shows another waveform of the voltage V1. When the voltage V1 having this waveform is applied to the first electrostrictive element 11, an effect opposite to that of the voltage V1 having the waveform shown in FIG. 4 is obtained. That is, the voltage rises at a low speed in the first half period An of the cycle Tn, and drops at a high speed in the second half period Bn. Therefore, during the period An, the flat plate 13 moves at a low speed so that the cell group also follows and moves in the same direction, and during the period Bn, the flat plate 13 returns at a high speed, and the cell group cannot follow due to its own inertia. Due to the movement, the cell group gradually becomes the first
It moves away from the electrostrictive element 11.

【0017】尚、第1の電歪素子11のみの動作を述べ
たが、第2の電歪素子12にこれらの波形と同じ電圧V
2を印加することで同様の機能が発揮される。即ち、第
2の電歪素子12に図4に示す波形の電圧V2を印加す
れば、細胞群は次第に第2の電歪素子12側へ引き寄せ
ることができ、図5に示す波形の電圧V2を印加すれば
第2の電歪素子12から遠ざかる様に細胞群を移動させ
ることができる。
Although the operation of only the first electrostrictive element 11 has been described, the same voltage V as these waveforms is applied to the second electrostrictive element 12.
The same function is exhibited by applying 2. That is, when the voltage V2 having the waveform shown in FIG. 4 is applied to the second electrostrictive element 12, the cell group can be gradually attracted to the second electrostrictive element 12 side, and the voltage V2 having the waveform shown in FIG. When applied, the cell group can be moved away from the second electrostrictive element 12.

【0018】更に、第1,第2の電歪素子11,12に
同時に非対称波形の電圧V1,V2を印加することによ
り、X方向とY方向との間に任意方向へ細胞群を移動さ
せることができる。この様な移動方向の設定は、制御回
路18がビデオカメラ16の撮像で得られる映像信号A
Vを画像処理し、該処理結果に基づいて駆動回路14,
15の出力電圧V1,V2の波形の期間An,Bnと周
期Tn及び振幅を自動調節する。即ち、制御回路18
は、操作者が入力装置(図示せず)によって所望の細胞
の大きさや形状等を入力すると、このデータを内部に記
憶し、ビデオカメラ16からの映像信号AVから、指定
基準に該当する細胞の位置を識別する。そして、チャン
バ9の所定位置に移動して採取するために、細胞の位置
と該移動すべき位置との距離及び方向を検出し、その検
出した方向に向けて平板13を動作させ得る波形の電圧
V1,V2を第1,第2の電歪素子11,12に印加さ
せる。そして、上記映像信号の解析と平板13の移動制
御を繰り返しフィードバック制御することにより、指定
された細胞を所定位置へ移動させる。
Further, by simultaneously applying voltages V1 and V2 having asymmetric waveforms to the first and second electrostrictive elements 11 and 12, the cell group can be moved in an arbitrary direction between the X direction and the Y direction. You can The setting of such a moving direction is performed by the control circuit 18 by the video signal A obtained by the video camera 16 capturing an image.
V is subjected to image processing, and the drive circuit 14, based on the processing result,
The periods An and Bn of the waveforms of the 15 output voltages V1 and V2, the period Tn, and the amplitude are automatically adjusted. That is, the control circuit 18
When the operator inputs a desired cell size, shape, etc. with an input device (not shown), this data is stored inside, and from the video signal AV from the video camera 16, the cells corresponding to the specified standard are stored. Identify the location. Then, in order to move to a predetermined position of the chamber 9 and collect it, the distance and the direction between the position of the cell and the position to be moved are detected, and the voltage of the waveform capable of operating the flat plate 13 in the detected direction. V1 and V2 are applied to the first and second electrostrictive elements 11 and 12. Then, the designated cell is moved to a predetermined position by repeatedly performing feedback control of the analysis of the video signal and the movement control of the flat plate 13.

【0019】尚、制御回路18は、平板13の移動動作
方向を決定する上記電圧波形の期間AnとBnと、移動
量を設定するための電圧振幅に関する複数種類のデータ
を予め内蔵しており、上記映像信号処理の結果に基づい
て、これらの最適データを選択し、駆動回路14,15
に対して該データに対応する電圧V1,V2を発生させ
る様になっている。
The control circuit 18 previously contains a plurality of types of data relating to the voltage waveform periods An and Bn for determining the moving direction of the flat plate 13 and the voltage amplitude for setting the moving amount, Based on the result of the above video signal processing, these optimum data are selected, and the drive circuits 14 and 15 are selected.
, The voltages V1 and V2 corresponding to the data are generated.

【0020】この様にこの実施例によれば、指定した細
胞を自動的に所望の位置へ移させることができ、この所
望の位置に採取用チャンバ等の採取用手段を設置してお
くことで、確実に採取できる。又、溶液中で移動させる
ことができるので、細胞を破損することがない。又、従
来例で説明したマイクロマニピュレータを併用すること
ができ、従来は、マイクロマニピュレータを細胞側へ移
動させる様に操作しなければならず煩雑であったが、本
実施例の装置によって細胞をマニピュレータ側の所定位
置へ移動させた後、マニピュレータで採取することが可
能となり、確実かつ破損することなく細胞を採取でき
る。
As described above, according to this embodiment, the designated cells can be automatically moved to a desired position, and a collecting means such as a collecting chamber is installed at the desired position. , Can be collected reliably. Further, since it can be moved in the solution, the cells are not damaged. Further, the micromanipulator described in the conventional example can be used in combination, and conventionally, the micromanipulator had to be operated so as to move to the cell side, which was complicated, but the device of the present example was used for manipulating cells. After moving to a predetermined position on the side, it becomes possible to collect with a manipulator, and cells can be collected reliably and without damage.

【0021】これらは、効果の一例であるが、細胞を所
望の位置へ自動的且つ非接触で移動させることによる効
果は、極めて大きく、既存の装置との組合せや、各種の
応用に供することが可能である。次に他の実施例を、図
6と共に説明する。尚、図6において図1〜図3と同一
部分を同一符号で示す。この実施例では底面部に、細胞
の直径よりも浅い長溝20を形成した平板19を第1,
第2電歪素子11,12に取り付けたものである。そし
て、先の実施例と同様の制御手段によって第1,第2の
電歪素子11,12の印加電圧V1,V2を制御する様
になっている。
These are examples of the effects, but the effect of automatically and non-contactingly moving the cells to a desired position is extremely large, and can be used in combination with existing devices and various applications. It is possible. Next, another embodiment will be described with reference to FIG. In FIG. 6, the same parts as those in FIGS. 1 to 3 are indicated by the same reference numerals. In this embodiment, the flat plate 19 having a long groove 20 shallower than the cell diameter is formed on the bottom surface.
It is attached to the second electrostrictive elements 11 and 12. Then, the control means similar to those of the previous embodiment controls the applied voltages V1 and V2 of the first and second electrostrictive elements 11 and 12.

【0022】この実施例によれば、平板19を進退移動
させると、長溝20の彫設されている方向α(αとXの
成す角度をθとする)に沿って細胞が移動しやすくな
り、更に、長溝20の深さに応じた大きさの細胞が長溝
20に沿って集まりやすくなる。この結果、指定した細
胞の選択精度が向上し、特に長溝20の末端部の位置に
細胞を移動させる場合に確実な制御を実現することがで
きる。
According to this embodiment, when the flat plate 19 is moved back and forth, the cells easily move along the direction α in which the long groove 20 is engraved (the angle between α and X is θ). Furthermore, cells having a size corresponding to the depth of the long groove 20 are likely to collect along the long groove 20. As a result, the accuracy of selecting the designated cells is improved, and reliable control can be realized particularly when the cells are moved to the position of the end portion of the long groove 20.

【0023】又、長溝20の彫設方向αを各種設定した
複数種類の平板19を着脱可能に設けることにより、第
1,第2の電歪素子11,12に印加する電圧V1,V
2の制御をより簡素することができ、制御手段の負担を
低減することができる。次に更に他の実施例を図7と共
に説明する。尚、図7において、図1〜図3と同一部分
は同一符号で示している。この実施例は、平板23の底
面に、広い面積の溝部21と所定方向に延びるスリット
状の細溝部22から成る溝部が形成され、それぞれの溝
部21,22と共に細胞の直径よりも浅く彫設されてい
る。そして、駆動回路から印加された非対称波形の電圧
V1,V2によって第1,第2の電歪素子11,12を
駆動し、平板23を進退移動させることにより、細胞を
移動させる。
Further, by providing detachably a plurality of types of flat plates 19 in which the engraving direction α of the long groove 20 is variously set, the voltages V1 and V applied to the first and second electrostrictive elements 11 and 12 are provided.
The control of No. 2 can be further simplified, and the load on the control means can be reduced. Next, still another embodiment will be described with reference to FIG. In FIG. 7, the same parts as those in FIGS. 1 to 3 are indicated by the same reference numerals. In this embodiment, a groove portion having a wide area groove portion 21 and a slit-like narrow groove portion 22 extending in a predetermined direction is formed on the bottom surface of a flat plate 23, and is carved with the respective groove portions 21 and 22 to be shallower than the cell diameter. ing. Then, the first and second electrostrictive elements 11 and 12 are driven by the asymmetrical waveform voltages V1 and V2 applied from the drive circuit, and the flat plate 23 is moved back and forth to move the cells.

【0024】この実施例によれば、複数の細胞が溝部2
1内に集まり、更に、幅の狭い溝部22で整列されて溝
部22を通過するので、細胞を整列させながら移動させ
ることができ、個々の細胞の採取・観察する等の精密な
操作を実現することができる。次に更に他の実施例を図
8と共に説明する。
According to this embodiment, a plurality of cells are formed in the groove portion 2.
Since the cells gather in 1 and are aligned in the narrow groove portion 22 and pass through the groove portion 22, cells can be moved while being aligned, and precise operations such as collecting and observing individual cells are realized. be able to. Next, still another embodiment will be described with reference to FIG.

【0025】この実施例は、図1〜図3に示した第1の
実施例の変形例であり、これらの図と同一部分には同一
符号で示している。第1の実施例との相違点を述べる
と、チャンバ9の開口側に格子状の羽根部材24を固定
して設けてある。又、羽根部材24は平板13とは所定
の間隔だけ離して設けられており、第1,第2の電歪素
子11,12の動作によって平板13が水平方向に移動
しても常にチャンバ9内で静止する。
This embodiment is a modification of the first embodiment shown in FIGS. 1 to 3, and the same parts as those in the drawings are designated by the same reference numerals. The difference from the first embodiment is that a lattice-shaped blade member 24 is fixedly provided on the opening side of the chamber 9. Further, the blade member 24 is provided so as to be separated from the flat plate 13 by a predetermined distance, so that even if the flat plate 13 is moved in the horizontal direction by the operation of the first and second electrostrictive elements 11 and 12, it is always in the chamber 9. To stand still.

【0026】そして、羽根部材24の下端部分の一部又
は全体が細胞を含む溶液で浸る様にし、第1,第2の電
歪素子11,12を上記同様の駆動回路からの非対称波
形の電圧で駆動し、平板13を水平方向へ進退移動させ
る。この実施例によれば、平板13の進退移動や第1,
第2の電歪素子11,12の振動による溶液の振動や攪
拌等の流れを羽根部材24がじゃまして減衰させるの
で、溶液の流れに従って細胞が勝手に移動するのを防止
することができる。この結果、細胞の移動制御の精度を
向上させることができる。尚、羽根部材24の形状・構
造はこれに限るものではなく、溶液の流れを阻止する効
果があれば、他の形状・構造であってもよい。
Then, a part or the whole of the lower end portion of the vane member 24 is soaked in the solution containing cells, and the first and second electrostrictive elements 11 and 12 are applied with an asymmetrical voltage from the drive circuit similar to the above. Drive to move the flat plate 13 forward and backward in the horizontal direction. According to this embodiment, the flat plate 13 moves back and forth,
Since the blade member 24 obstructs and attenuates the flow of the solution vibration and the agitation caused by the vibration of the second electrostrictive elements 11 and 12, it is possible to prevent the cells from arbitrarily moving according to the solution flow. As a result, the accuracy of cell migration control can be improved. The shape / structure of the blade member 24 is not limited to this, and any other shape / structure may be used as long as it has the effect of blocking the flow of the solution.

【0027】[0027]

【発明の効果】以上説明した様に本発明の細胞移動装置
によれば、電歪素子で駆動される平板をチャンバ内に設
け、電歪素子に非対称波形の電圧を印加して駆動するこ
とで、平板の進退速度を異ならせる様にしたのでチャン
バ内に入れた細胞を含む溶液中の該細胞を進退速度差の
方向へ移動集積させることができ、自動的且つ非接触で
細胞の採取や観察、その他各種の処理を実現できる。
As described above, according to the cell migration device of the present invention, a flat plate driven by an electrostrictive element is provided in a chamber, and a voltage having an asymmetric waveform is applied to the electrostrictive element to drive the plate. Since the plate advance / retreat speeds are made different, the cells in the solution containing the cells placed in the chamber can be moved and accumulated in the direction of the advance / retreat speed difference, and the cells can be collected and observed automatically and in a non-contact manner. , And other various processes can be realized.

【0028】又、平板に溝部を設けることで、細胞を整
列させて移動することが可能となり、種々の細胞処理に
おいて優れた効果を発揮する。
Further, by providing the flat plate with the groove portion, the cells can be aligned and moved, and an excellent effect is exhibited in various cell treatments.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の構造を説明するための平面図で
ある。
FIG. 1 is a plan view for explaining the structure of a first embodiment.

【図2】図1の部分縦断面図である。FIG. 2 is a partial vertical cross-sectional view of FIG.

【図3】図1の更に他の部分の部分縦断面図である。FIG. 3 is a partial vertical sectional view of still another portion of FIG.

【図4】電歪素子に印加する印加電圧の波形を示す波形
図である。
FIG. 4 is a waveform diagram showing a waveform of an applied voltage applied to the electrostrictive element.

【図5】電歪素子に印加する印加電圧の他の波形を示す
波形図である。
FIG. 5 is a waveform diagram showing another waveform of the applied voltage applied to the electrostrictive element.

【図6】第2の実施例の構造を示す部分縦断面図であ
る。
FIG. 6 is a partial vertical cross-sectional view showing the structure of the second embodiment.

【図7】第3の実施例の構造を示す部分縦断面図であ
る。
FIG. 7 is a partial vertical cross-sectional view showing the structure of the third embodiment.

【図8】図4の実施例の構造を示す部分縦断面図であ
る。
FIG. 8 is a partial vertical cross-sectional view showing the structure of the embodiment of FIG.

【図9】従来の細胞操作手段の構造を示す説明図であ
る。
FIG. 9 is an explanatory view showing the structure of a conventional cell manipulating means.

【図10】図9中のガラス細管の構造及び機能を説明す
るための部分断面図である。
10 is a partial cross-sectional view for explaining the structure and function of the glass capillary in FIG.

【添号の説明】[Explanation of suffix]

8 ;ケーシング 9 ;チャンバ 11;第1の電歪素子 12;第2の電歪素子 13,19,23;平板 14,15;駆動回路 16;ビデオカメラ 18;制御回路 20,21,22;溝部 24;羽根部材 8; Casing 9; Chamber 11; First electrostrictive element 12; Second electrostrictive element 13, 19, 23; Flat plate 14, 15; Drive circuit 16; Video camera 18; Control circuit 20, 21, 22; Groove part 24; blade member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単離した細胞を含む溶液中の該細胞を任意
の位置へ移動させる細胞移動装置において、前記溶液を
入れるチャンバと該チャンバ内の一側に設けられた電歪
素子と、該電歪素子の一端に固着されてチャンバ内に収
容される平板と、該電歪素子に非対称波形の電圧を印加
することにより電歪素子の伸長速度と収縮速度を異なら
せて、上記平板の往方向の移動速度と復移動速度を異な
らせて往復移動させる駆動回路を備え、該平板の往方向
と復方向の移動速度の差によって、細胞を任意の方向及
び位置へ移動させることを特徴とする細胞移動装置。
1. A cell moving device for moving cells in a solution containing isolated cells to an arbitrary position, a chamber for containing the solution, and an electrostrictive element provided on one side of the chamber, A flat plate fixed to one end of the electrostrictive element and housed in the chamber, and an extension and contraction rate of the electrostrictive element are made different by applying a voltage having an asymmetric waveform to the electrostrictive element. A driving circuit for reciprocating the moving speed in one direction and the backward moving speed is different, and the cell is moved to an arbitrary direction and position by a difference in moving speed between the forward direction and the backward direction of the flat plate. Cell transfer device.
【請求項2】 前記平板の側面に溝部を形成したことを
特徴とする請求項1の細胞移動装置。
2. The cell migration device according to claim 1, wherein a groove is formed on a side surface of the flat plate.
【請求項3】前記チャンバ内の前記平板と離れた位置に
溶液の流れを阻止するじゃま部材を内在したことを特徴
とする請求項1または請求項2のいずれか一項記載の細
胞移動装置。
3. The cell migration device according to claim 1, further comprising a baffle member that blocks the flow of the solution at a position apart from the flat plate in the chamber.
JP24117691A 1991-09-20 1991-09-20 Mechanism for transporting cell Pending JPH0622743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24117691A JPH0622743A (en) 1991-09-20 1991-09-20 Mechanism for transporting cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24117691A JPH0622743A (en) 1991-09-20 1991-09-20 Mechanism for transporting cell

Publications (1)

Publication Number Publication Date
JPH0622743A true JPH0622743A (en) 1994-02-01

Family

ID=17070375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24117691A Pending JPH0622743A (en) 1991-09-20 1991-09-20 Mechanism for transporting cell

Country Status (1)

Country Link
JP (1) JPH0622743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818825A (en) * 1986-11-11 1989-04-04 Hitachi, Ltd. Insulating spacers for use in gas-insulated electric apparatus
US9550362B2 (en) 2010-07-08 2017-01-24 Seiko Epson Corporation Mist collection device, liquid ejecting apparatus, and method for controlling mist collection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818825A (en) * 1986-11-11 1989-04-04 Hitachi, Ltd. Insulating spacers for use in gas-insulated electric apparatus
US9550362B2 (en) 2010-07-08 2017-01-24 Seiko Epson Corporation Mist collection device, liquid ejecting apparatus, and method for controlling mist collection device

Similar Documents

Publication Publication Date Title
JP3736278B2 (en) How to observe biochemical substances
JPS628013Y2 (en)
EP1564575B1 (en) Micromanipulation system operating within the field of view of a microscope
US10564090B2 (en) System and method for retrieving and analyzing particles
JP3636683B2 (en) Laser microdissection method and apparatus
US4392450A (en) Device for spreading monolayered films
WO2019176093A1 (en) Cell picking device
JPH0622743A (en) Mechanism for transporting cell
JP2005534941A (en) Support device for biological specimens that can be cut using laser microdissection
JPH0690770A (en) Very small apparatus for micromanipulator
JP2512387B2 (en) Cell sorting method and cell collection method
CN102607880B (en) Piezoelectric micro-dissection system, dissection depth positioning method and dissection method
JP4660772B2 (en) Specimen motion control apparatus, specimen motion parameter acquisition method, and specimen motion control method
US20060177812A1 (en) Method and device for manipulating samples
JPH07218397A (en) Automatically dispensing apparatus
EP0047189A1 (en) Device for spreading monolayered films
US11266991B2 (en) Device for insertion into an imaging system
US4367914A (en) Microscope equipped with a micro manipulator
CN110191756B (en) System and method for recovering and analyzing particles
Inoue et al. Dexterous micromanipulation supporting cell and tissue engineering
JP3766498B2 (en) Scanning cell measuring apparatus and cell measuring method
CN1221657C (en) Apparatus and method for controlling movement of specimen, and step for processing specimen
JP3033233B2 (en) Micro manipulator
JP6859861B2 (en) Manipulation system and how to drive the manipulation system
JPH08280375A (en) Micromanipulator