JPH0622677B2 - Hydrogenation catalyst - Google Patents

Hydrogenation catalyst

Info

Publication number
JPH0622677B2
JPH0622677B2 JP2163620A JP16362090A JPH0622677B2 JP H0622677 B2 JPH0622677 B2 JP H0622677B2 JP 2163620 A JP2163620 A JP 2163620A JP 16362090 A JP16362090 A JP 16362090A JP H0622677 B2 JPH0622677 B2 JP H0622677B2
Authority
JP
Japan
Prior art keywords
catalyst
water
aluminum
copper
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2163620A
Other languages
Japanese (ja)
Other versions
JPH0459050A (en
Inventor
守生 松田
政光 堀尾
清 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2163620A priority Critical patent/JPH0622677B2/en
Priority to US07/708,709 priority patent/US5120700A/en
Priority to FR9107463A priority patent/FR2665090B1/en
Priority to MYPI91001104A priority patent/MY106379A/en
Priority to CN91104168A priority patent/CN1027235C/en
Priority to DE4120536A priority patent/DE4120536C2/en
Priority to BR919102621A priority patent/BR9102621A/en
Publication of JPH0459050A publication Critical patent/JPH0459050A/en
Priority to JP5278550A priority patent/JP2563751B2/en
Publication of JPH0622677B2 publication Critical patent/JPH0622677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高活性及び高選択性を有する銅−鉄−アルミニ
ウム−亜鉛原子からなり、脂肪酸エステルの水素化によ
るアルコールの製造に用いられる触媒に関する。
Description: TECHNICAL FIELD The present invention relates to a catalyst comprising a copper-iron-aluminum-zinc atom having high activity and high selectivity, which catalyst is used for producing alcohol by hydrogenation of fatty acid ester. .

〔従来の技術及び発明が解決しようとする課題〕[Problems to be Solved by Prior Art and Invention]

高級アルコールは高級脂肪酸メチルエステルを高温下、
高圧水素で還元することによって製造されている。
Higher alcohol is higher fatty acid methyl ester under high temperature,
It is produced by reduction with high pressure hydrogen.

従来より、この反応に用いられる触媒は銅−クロム酸化
物系触媒であり、通常銅−クロマイト触媒と呼ばれてい
る。その製法はインダストリアル・アンド・エンジニア
リング・ケミストリー第26巻、第878 頁(1936年)に記
載されているものから現在まで大きく進歩はしていな
い。
Conventionally, the catalyst used in this reaction is a copper-chromium oxide-based catalyst, and is usually called a copper-chromite catalyst. The manufacturing method has not been much improved from that described in Industrial and Engineering Chemistry Vol. 26, page 878 (1936).

この触媒は製造に際し、多量の6価クロムイオンが排出
されるという重大な欠点を有する。環境汚染防止のた
め、これらの重金属は適当な方法で捕集されるが、ここ
で生ずる重金属スラッジの最終的な処理法はまだ確立さ
れていない。
This catalyst has the serious drawback of producing large amounts of hexavalent chromium ions during manufacture. In order to prevent environmental pollution, these heavy metals are collected by an appropriate method, but the final treatment method of the heavy metal sludge generated here has not been established yet.

この問題を解決するために種々の方法で製造された銅−
鉄−アルミニウム触媒が提案されている(特開昭53−923
95号公報、特開昭55−8820号公報、特公昭58−50775号
公報)。
Copper produced by various methods to solve this problem
Iron-aluminum catalysts have been proposed (JP-A-53-923).
95, JP-A-55-8820, and JP-B-58-50775).

しかしながら、これらの触媒は活性、選択性、耐久性に
おいて従来の銅−クロマイト触媒に勝るものの、触媒製
造時に触媒沈澱スラリーから触媒を濾別する際の濾過速
度が遅く、大規模な濾過設備を必要とする欠点があった
り(特開昭53−92395 号公報、特開昭55−8820号公
報)、反応後、反応物を高圧より常圧に高圧バルブを通
して抜き出す時に触媒が著しく微粒化するため濾過が困
難となったり、さらに触媒沈澱剤として尿素を使用する
ため、これに起因する尿素排水、アンモニア排水処理に
大きな負荷がかかる等の製造工程上に問題があった(特
公昭58−50775号公報)。
However, although these catalysts are superior in activity, selectivity and durability to the conventional copper-chromite catalysts, the filtration rate is slow when the catalyst is separated from the catalyst-precipitated slurry during the production of the catalyst, which requires a large-scale filtration facility. However, there is a defect that the catalyst is remarkably atomized when the reaction product is withdrawn from a high pressure to a normal pressure through a high pressure valve after the reaction. However, since urea is used as a catalyst precipitant, there is a problem in the manufacturing process such as a large load on urea wastewater and ammonia wastewater treatment resulting from this (Japanese Patent Publication No. 58-50775). ).

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、環境汚染の問題を内在する銅−クロマイ
ト触媒にとってかわる無公害触媒の工業的製造方法を確
立すべく、上記触媒の微粒化抑制の問題及び触媒製造プ
ロセス合理化について鋭意検討した結果、水酸化アルミ
ニウム若しくは酸化アルミニウム又はこれらの混合物を
担体とし、沈澱剤として尿素の代わりにアルカリ金属又
はアルカリ土類金属の水酸化物或いは炭酸塩を使用する
ことにより、触媒の微粒化が抑制でき、活性、選択性、
耐久性及び濾過性が大幅に向上された触媒が得られるこ
とを見出し、本発明を完成するに至った。
As a result of intensive studies on the problem of suppressing the atomization of the catalyst and the rationalization of the catalyst production process, the inventors have established an industrial production method of a pollution-free catalyst which replaces the copper-chromite catalyst inherent in the problem of environmental pollution. , Aluminum hydroxide or aluminum oxide or a mixture thereof as a carrier, and by using a hydroxide or carbonate of an alkali metal or an alkaline earth metal instead of urea as a precipitant, atomization of the catalyst can be suppressed, Activity, selectivity,
The inventors have found that a catalyst having significantly improved durability and filterability can be obtained, and completed the present invention.

すなわち本発明は、水酸化アルミニウム若しくは酸化ア
ルミニウム又はその混合物を担体とし、Cu,Fe,Al及び
Znを含み、原子比(担体も含めた触媒全体の原子比)が
Cu/Fe/Al=1/ 0.4/2.5 / 0.5〜5.0 であり、且つ
Zn/Cu≦1.0 である脂肪酸エステルの水素化によるアル
コール製造用触媒を提供するものである。
That is, the present invention uses aluminum hydroxide or aluminum oxide or a mixture thereof as a carrier, and Cu, Fe, Al and
The atomic ratio (the atomic ratio of the entire catalyst including the carrier) including Zn is
Cu / Fe / Al = 1 / 0.4 / 2.5 / 0.5 to 5.0, and
The present invention provides a catalyst for alcohol production by hydrogenating a fatty acid ester having Zn / Cu ≦ 1.0.

本発明の銅−鉄−アルミニウム−亜鉛系触媒は、例え
ば、下記の第一工程、第二工程及び第三工程をこの順に
行なう製造方法によって製造される。
The copper-iron-aluminum-zinc catalyst of the present invention is produced, for example, by a production method in which the following first step, second step and third step are performed in this order.

(第一工程) 担体を水性媒体中に懸濁させ、その懸濁液中において水
溶性銅塩及び水溶性鉄塩とアルカリ物質とを反応させる
ことによって担体表面上に銅化合物及び鉄化合物を沈澱
させる工程。
(First step) The carrier is suspended in an aqueous medium, and the water-soluble copper salt and the water-soluble iron salt are reacted with the alkaline substance in the suspension to precipitate the copper compound and the iron compound on the surface of the carrier. The process of making.

(第二工程) 第一工程にて得られら懸濁液中にて (i)水溶性アルミニウム塩とアルカリ物質とを反応さ
せることによって、 又は、 (ii)水溶性アルミニウム塩及び水溶性銅塩若しくは水
溶性亜鉛塩又はこれらの混合物とアルカリ物質とを反応
させることによって、第一工程にて得られた懸濁液中に
存在する固体粒子表面上に下記(a)乃至(d)から選択され
る化合物を一回又は二回以上(二回以上の場合は順不同
に)沈澱させる工程。ただし、この場合、亜鉛化合物を
沈澱させる工程を少なくとも一回は行なう。
(Second step) In the suspension obtained in the first step, (i) by reacting a water-soluble aluminum salt with an alkaline substance, or (ii) a water-soluble aluminum salt and a water-soluble copper salt Alternatively, by reacting a water-soluble zinc salt or a mixture thereof with an alkaline substance, selected from the following (a) to (d) on the surface of solid particles present in the suspension obtained in the first step: The compound of claim 1, which is precipitated once or twice or more (in two or more times, in no particular order). However, in this case, the step of precipitating the zinc compound is performed at least once.

(a) アルミニウム化合物。(a) Aluminum compound.

(b) アルミニウム化合物及び銅化合物。(b) Aluminum compounds and copper compounds.

(c) アルミニウム化合物及び亜鉛化合物。(c) Aluminum compounds and zinc compounds.

(d) アルミニウム化合物、銅化合物及び亜鉛化合物。(d) Aluminum compounds, copper compounds and zinc compounds.

(第三工程) 第一工程及び第二工程にて得られた懸濁液より沈澱物を
取得し、水洗、乾燥及び焼成する工程。
(Third step) A step of obtaining a precipitate from the suspension obtained in the first step and the second step, washing with water, drying and firing.

本発明に係る銅−鉄−アルミニウム−亜鉛系触媒は、そ
の組成が原子比(担体も含めた触媒全体の原子比)でCu
/Fe/Al/Zn=1/ 0.4〜2.5 /0.5〜5.0であり、且つ
Zn/Cu≦1.0の範囲にあることが重要である。原子比が
これらの範囲外にあると得られる触媒の活性が銅−クロ
マイト触媒より小さくなると同時に水素化反応に使用し
た場合に副生成物が多くなる。
The copper-iron-aluminum-zinc-based catalyst according to the present invention has a composition whose atomic ratio (atomic ratio of the entire catalyst including the carrier) is Cu.
/Fe/Al/Zn=1/0.4-2.5/0.5-5.0, and
It is important to be in the range of Zn / Cu ≦ 1.0. When the atomic ratio is out of these ranges, the activity of the obtained catalyst becomes smaller than that of the copper-chromite catalyst and, at the same time, the amount of by-products increases when it is used in the hydrogenation reaction.

本発明の銅−鉄−アルミニウム−亜鉛系触媒の製造方法
の各工程について以下に説明する。
Each step of the method for producing a copper-iron-aluminum-zinc catalyst of the present invention will be described below.

第一工程 本発明の製造方法における第一工程は次のように行な
う。
First Step The first step in the manufacturing method of the present invention is performed as follows.

先ず、水溶性銅塩及び水溶性鉄塩を原子比でCu/Fe=1
/0.4〜2.5となるように水に溶解させ、この水溶液に水
酸化アルミニウム若しくは酸化アルミニウム又はこれら
の混合物を原子比でCu/Al=1/0.1〜3.0となるように
懸濁させる。この懸濁液を60〜120 ℃に加熱し、銅及び
鉄のイオンの全当量数に相当する量のアルカリ物質の水
溶液を加えて、銅化合物及び鉄化合物を水酸化アルミニ
ウム若しくは酸化アルミニウム又はこれらの混合物から
なる触媒担体表面上に沈澱させる。
First, the water-soluble copper salt and the water-soluble iron salt are Cu / Fe = 1 in atomic ratio.
It is dissolved in water so as to have a ratio of /0.4 to 2.5, and aluminum hydroxide or aluminum oxide or a mixture thereof is suspended in this aqueous solution so that the atomic ratio is Cu / Al = 1 / 0.1 to 3.0. This suspension is heated to 60 to 120 ° C, and an aqueous solution of an alkaline substance in an amount corresponding to the total equivalent number of copper and iron ions is added to the copper compound and the iron compound to form aluminum hydroxide or aluminum oxide or these The mixture is precipitated on the surface of a catalyst carrier.

本発明に用いられる水溶性銅塩としては、硫酸第二銅、
塩化第二銅、硝酸第二銅等が挙げられ、これらの混合物
を使用してもよい。
As the water-soluble copper salt used in the present invention, cupric sulfate,
Examples thereof include cupric chloride and cupric nitrate, and a mixture of these may be used.

本発明に用いられる水溶性鉄塩としては、塩化第一鉄、
硫酸第一鉄、硝酸第一鉄等が挙げられ、これらの混合物
を使用してもよいが、硫酸第一鉄を用いるのが経済面よ
り最適である。また第二鉄塩を併用することもできる
が、第二鉄塩を加え過ぎると触媒性能、特に触媒物性を
悪化させるので注意する必要がある。
The water-soluble iron salt used in the present invention, ferrous chloride,
Examples thereof include ferrous sulfate and ferrous nitrate, and a mixture of these may be used, but ferrous sulfate is optimally used from the economical aspect. It is also possible to use a ferric salt in combination, but care must be taken because excessive addition of the ferric salt deteriorates the catalyst performance, particularly the physical properties of the catalyst.

本発明に用いられるアルカリ物質としては例えばアルカ
リ金属又はアルカリ土類金属の水酸化物又は炭酸塩等が
挙げられる。懸濁液へのアルカリ物質の添加方法につい
ては特に制限はないが、操作性を考慮して通常これらの
アルカリ物質は水溶液にて添加される。
Examples of the alkaline substance used in the present invention include hydroxides or carbonates of alkali metals or alkaline earth metals. The method of adding the alkaline substance to the suspension is not particularly limited, but in consideration of operability, these alkaline substances are usually added in an aqueous solution.

アルカリ物質としてアルカリ金属又はアルカリ土類金属
の水酸化物を用いる場合、沈澱触媒の濾過性を損なわな
いためにもゆっくりと滴下することが望ましい。本発明
においてはアルカリ金属の炭酸塩を用いるのが最適であ
る。これらのアルカリ物質の濃度は任意に選べるが、触
媒の生産性を考慮した場合、高濃度の沈澱剤を用いるこ
ともできる。例えば炭酸ソーダ場合、20〜23%の濃度の
水溶液が適当である。
When an alkali metal or alkaline earth metal hydroxide is used as the alkaline substance, it is desirable to slowly add it in order not to impair the filterability of the precipitation catalyst. In the present invention, it is optimum to use an alkali metal carbonate. Although the concentrations of these alkaline substances can be arbitrarily selected, a high concentration of a precipitant can be used in view of the productivity of the catalyst. For example, in the case of sodium carbonate, an aqueous solution having a concentration of 20 to 23% is suitable.

第一工程に使用される担体としての水酸化アルミニウム
若しくは酸化アルミニウム又はこれらの混合物は反応槽
中で調製後、そのまま用いても良く、予め別途調製され
たものを用いても良い。これら担体は粒子径の比較的揃
ったものを用いるのが好ましい。担体の粒子径は平均粒
径にて 0.1〜500μm、好ましくは0.4〜50μmである。
平均粒径がこの範囲を下回るもの又は上回るものについ
ては触媒活性及び濾過性の両性能を本発明の所望とする
水準に同時に維持することができない。反応槽内で担体
を調製する方法として、担体として使用する量のアルミ
ニウム塩、例えば硫酸塩、硝酸塩、塩酸塩等をアルミニ
ウムイオンの当量数に相当する量以上のアルカリ金属の
水酸化物、例えば水酸化ナトリウム水溶液中に溶解させ
た後、或いは担体として使用する量のアルミン酸ソーダ
水溶液を調製した後、60℃以上の温度で希硫酸或いはア
ルミニウム塩の一部を水溶液にして滴下し、中和する方
法がある。この方法の場合、生成した沈澱を精製するこ
となく、このスラリー中に銅塩及び鉄塩を仕込むことに
より連続して第一工程を行なうことができる。ここで均
一な物性を持った担体を用いた場合、より性質の安定し
た触媒が製造できる。従って工業的スケールでの製造に
は均一な物性を有する担体の使用がより有利である。
Aluminum hydroxide or aluminum oxide or a mixture thereof as a carrier used in the first step may be used as it is after prepared in a reaction tank, or may be prepared separately in advance. It is preferable to use those carriers having relatively uniform particle diameters. The average particle size of the carrier is 0.1 to 500 μm, preferably 0.4 to 50 μm.
If the average particle size is below or above this range, both catalytic activity and filterability cannot be simultaneously maintained at the levels desired by the present invention. As a method for preparing a carrier in a reaction vessel, an amount of an aluminum salt used as a carrier, for example, a sulfate, a nitrate, a hydrochloride or the like of an alkali metal hydroxide in an amount equal to or more than the equivalent number of aluminum ions, such as water. After dissolving in an aqueous solution of sodium oxide, or after preparing an aqueous solution of sodium aluminate in an amount to be used as a carrier, dilute sulfuric acid or a part of aluminum salt is made into an aqueous solution at a temperature of 60 ° C or higher and added dropwise for neutralization. There is a way. In the case of this method, the first step can be continuously performed by charging a copper salt and an iron salt into this slurry without purifying the formed precipitate. When a carrier having uniform physical properties is used, a catalyst with more stable properties can be produced. Therefore, it is more advantageous to use a carrier having uniform physical properties for production on an industrial scale.

第二工程 本発明の製造方法における第二工程は次のように行な
う。
Second Step The second step in the manufacturing method of the present invention is performed as follows.

即ち、 (イ)水溶性アルミニウム塩(但しこの場合のAl量は第
一工程にて使用した水溶性銅塩に対して原子比でCu/Al
=1/0.1〜3.0、好ましくは1/0.5〜1.5となる量であ
る。)の水溶液に、更に、水素還元反応における活性及
び選択性を更に向上させるために、水溶性亜鉛塩、又は
水溶性銅塩及び水溶性亜鉛塩を前記水溶液に使用した水
溶性アルミニウム塩に対して原子比でAl/Cu=1/0〜
1、且つZn/Al≦0.5 となるように存在させた水溶液
と、 (ロ)(イ)に記載したアルミニウムイオン及び亜鉛イ
オンの合計の当量数、或いは水溶性銅塩を使用する場合
は、これらと銅イオンの合計の当量数に相当する量のア
ルカリ物質を滴下し、懸濁液の温度を60〜100 ℃に保持
しつつアルミニウム化合物及び亜鉛化合物、或いは必要
に応じてこれらと銅化合物を沈澱させることによって行
なう。懸濁液の温度がこの範囲以外で反応を行なった場
合、得られた触媒において所望の活性及び選択性が得ら
れない。
That is, (a) Water-soluble aluminum salt (however, the amount of Al in this case is Cu / Al in atomic ratio to the water-soluble copper salt used in the first step).
= 1 / 0.1 to 3.0, preferably 1 / 0.5 to 1.5. ) Aqueous solution, in order to further improve the activity and selectivity in the hydrogen reduction reaction, a water-soluble zinc salt, or a water-soluble copper salt and a water-soluble zinc salt to the water-soluble aluminum salt used in the aqueous solution Al / Cu = 1/0 in atomic ratio
1 and an aqueous solution that is present so that Zn / Al ≦ 0.5, and the total equivalent number of aluminum ions and zinc ions described in (b) (a), or when using a water-soluble copper salt, And an amount of an alkaline substance equivalent to the total number of copper ions are added dropwise, and the aluminum compound and zinc compound, or if necessary, the copper compound is precipitated while maintaining the suspension temperature at 60 to 100 ° C. By doing. When the reaction is carried out at a suspension temperature outside this range, the desired activity and selectivity of the resulting catalyst cannot be obtained.

上記(イ)に記載の水溶性アルミニウム塩としては、例
えば硫酸アルミニウム、塩化アルミニウム、硝酸アルミ
ニウム、各種みょうばんが挙げられるが、その中でも硫
酸アルミニウムが最適である。また、これらの混合物を
使用しても良い。
Examples of the water-soluble aluminum salt described in (a) above include aluminum sulfate, aluminum chloride, aluminum nitrate, and various alums, among which aluminum sulfate is most suitable. Moreover, you may use these mixtures.

上記に記載の水溶性銅塩の例としては第一工程に記載し
たものを挙げることができる。また、上記に記載の水溶
性亜鉛塩の例としては硫酸亜鉛、塩化亜鉛、硝酸亜鉛等
が挙げられるが、経済面より硫酸亜鉛が最適である。
Examples of the water-soluble copper salt described above include those described in the first step. Further, examples of the water-soluble zinc salt described above include zinc sulfate, zinc chloride, zinc nitrate, etc., but zinc sulfate is most preferable from the economical aspect.

上記の(ロ)に記載のアルカリ物質の例としては、同様
に第一工程に使用されるアルカリ物質が挙げられる。そ
の添加方法は操作性の点より水溶液にて加えるのが好ま
しい。その濃度は特に限定されないが、経済的な面より
20重量%程度の水溶液とすることが好ましい。
Examples of the alkaline substance described in (b) above include the alkaline substance used in the first step as well. The addition method is preferably an aqueous solution from the viewpoint of operability. The concentration is not particularly limited, but from the economical aspect
It is preferable to use an aqueous solution of about 20% by weight.

アルカリ物質の添加方法は懸濁液のpHの急激な変化を防
止するために(イ)に記載の水溶液と(ロ)に記載のア
ルカリ物質又はその水溶液とを同時に懸濁液へ添加する
ことが好ましい。
In order to prevent a sudden change in the pH of the suspension, the alkaline substance may be added to the suspension simultaneously with the aqueous solution described in (a) and the alkaline substance or its aqueous solution described in (b). preferable.

更に水溶性アルミニウム塩以外の水溶性塩を使用する場
合には第二工程を一段階又は二段階以上に分割して行な
うことができる。
When a water-soluble salt other than the water-soluble aluminum salt is used, the second step can be performed in one step or in two or more steps.

第二工程の実施態様の例を挙げれば次の通りである。た
だし、第二工程では、亜鉛化合物を沈澱させる工程が少
なくとも一回は行なわれるよう、下記の工程が選択され
る。
An example of the embodiment of the second step is as follows. However, in the second step, the following steps are selected so that the step of precipitating the zinc compound is performed at least once.

アルミニウム化合物のみを沈澱させる。 Only the aluminum compound is precipitated.

アルミニウム化合物と銅化合物とを同時に沈澱させ
る。
An aluminum compound and a copper compound are simultaneously precipitated.

アルミニウム化合物と亜鉛化合物とを同時に沈澱さ
せる。
An aluminum compound and a zinc compound are simultaneously precipitated.

第一段階でアルミニウム化合物と銅化合物とを同時
に沈澱させて、次いで第二段階でアルミニウム化合物と
亜鉛化合物とを同時に沈澱させる。
The aluminum compound and the copper compound are simultaneously precipitated in the first step, and then the aluminum compound and the zinc compound are simultaneously precipitated in the second step.

第一段階でアルミニウム化合物と銅化合物とを同時
に沈澱させて、次いで第二段階でアルミニウム化合物を
沈澱させる。
The aluminum compound and the copper compound are simultaneously precipitated in the first stage, and then the aluminum compound is precipitated in the second stage.

第一段階でアルミニウム化合物と亜鉛化合物とを同
時に沈澱させて、次いで第二段階でアルミニウム化合物
と銅化合物とを同時に沈澱させる。
The aluminum compound and the zinc compound are simultaneously precipitated in the first stage, and then the aluminum compound and the copper compound are simultaneously precipitated in the second stage.

第一段階でアルミニウム化合物と亜鉛化合物とを同
時に沈澱させて、次いで第二段階でアルミニウム化合物
を沈澱させる。
The aluminum compound and the zinc compound are simultaneously precipitated in the first stage, and then the aluminum compound is precipitated in the second stage.

アルミニウム化合物、銅化合物及び亜鉛化合物を同
時に沈澱させる。
The aluminum compound, copper compound and zinc compound are simultaneously precipitated.

これらの工程の組み合わせを複数回繰り返して行な
う。
The combination of these steps is repeated a plurality of times.

以上述べた方法にて得られた懸濁液についてpHを 7.0以
上に調節した後、0〜8時間熟成を行なう。
The pH of the suspension obtained by the above-mentioned method is adjusted to 7.0 or more, and then aging is performed for 0 to 8 hours.

第三工程 本発明の製造方法における第三工程は次のように行な
う。
Third Step The third step in the manufacturing method of the present invention is performed as follows.

第三工程では第二工程で得られた沈澱物を常法により分
離、水洗、乾燥し、乾燥物を100 ℃〜1200℃にて焼成す
る。この温度範囲以外で焼成を行なった場合には得られ
た触媒において本発明の所望とする水素還元活性及び選
択性は得られない。
In the third step, the precipitate obtained in the second step is separated, washed with water and dried by a conventional method, and the dried product is calcined at 100 ° C to 1200 ° C. When the calcination is carried out outside this temperature range, the hydrogen reduction activity and selectivity desired by the present invention cannot be obtained in the obtained catalyst.

水洗終了後、沈澱を常法により乾燥し、焼成する。焼成
温度は通常 100℃以上1200℃以下の範囲であり、好まし
くは 400℃以上 900℃以下である。焼成時間は特に制限
されないが、経済的には10時間以下が良い。焼成を終了
したものは粉砕することなく直ちにこれを触媒として使
用することができる。
After washing with water, the precipitate is dried by a conventional method and calcined. The firing temperature is usually in the range of 100 ° C to 1200 ° C, preferably 400 ° C to 900 ° C. The firing time is not particularly limited, but 10 hours or less is economically preferable. The product that has been calcined can be used as a catalyst immediately without crushing.

本発明の触媒は上記金属の組合せにより優れた活性、選
択性等の性能を有するものであるが、本発明の効果を損
なわない範囲で他の金属、例えば貴金属等を添加するこ
とも可能であり、何ら他の金属の併用を排除するもので
はない。
The catalyst of the present invention has excellent activity such as excellent activity and selectivity due to the combination of the above metals, but it is also possible to add other metals, for example, noble metals, etc. within a range that does not impair the effects of the present invention. , The combination of other metals is not excluded.

上記触媒を用いての高級脂肪族エステルの水素還元は、
温度130℃〜350℃、好ましくは180 〜300 ℃、水素圧10
〜300 kg/cm2、好ましくは 100〜250 kg/cm2で行われ
る。触媒の使用量は出発物質である高級脂肪族エステル
に対し、0.1〜20重量%、好ましくは 0.5〜10重量%の
範囲である。
Hydrogen reduction of higher aliphatic ester using the above catalyst,
Temperature 130 ℃ -350 ℃, preferably 180-300 ℃, hydrogen pressure 10
~300 kg / cm 2, preferably carried out at 100~250 kg / cm 2. The amount of the catalyst used is in the range of 0.1 to 20% by weight, preferably 0.5 to 10% by weight, based on the starting higher aliphatic ester.

本発明の触媒を用いて水素化される高級脂肪族エステル
としては、脂肪酸の炭素数が6以上でかつエステル基を
1個以上有するものが挙げられる。高級脂肪酸エステル
としては直鎖脂肪族エステル、分岐鎖脂肪酸エステルあ
るいは不飽和脂肪酸エステルのいずれを用いてもよく、
またこれらの混合物を用いてもよい。高級脂肪族エステ
ルを構成するところのアルコールは炭素数が1〜4の低
級アルコールが好ましく、特にメチルアルコールが好ま
しい。
Examples of the higher aliphatic ester that can be hydrogenated using the catalyst of the present invention include those in which the fatty acid has 6 or more carbon atoms and one or more ester groups. As the higher fatty acid ester, either a linear aliphatic ester, a branched fatty acid ester or an unsaturated fatty acid ester may be used,
Moreover, you may use these mixtures. The alcohol constituting the higher aliphatic ester is preferably a lower alcohol having 1 to 4 carbon atoms, and particularly preferably methyl alcohol.

高級脂肪族エステルの具体例としては、ヤシ油脂肪酸メ
チルエステル、パーム油脂肪酸メチルエステル、パーム
核油脂肪酸メチルエステル、ナタネ油脂肪酸メチルエス
テル、牛脂脂肪酸メチルエステル、魚油脂肪酸メチルエ
ステル、オレンジラフィー脂肪酸メチルエステル等が挙
げられる。
Specific examples of the higher aliphatic ester include coconut oil fatty acid methyl ester, palm oil fatty acid methyl ester, palm kernel oil fatty acid methyl ester, rapeseed oil fatty acid methyl ester, beef tallow fatty acid methyl ester, fish oil fatty acid methyl ester, orange raffy fatty acid methyl ester. Etc.

〔実施例〕〔Example〕

以下実施例により本発明を説明するが、本発明はこれら
の実施例に限定されるものではない。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

製造例1 還流冷却器を有する反応器に、水(300g)、CuSO4・5H
2O(48g)、FeSO4・7H2O(59g)及び水酸化アルミニウム
(商品名ハイジライトH-32,17.63g)を入れ、撹拌し
ながら温度を96℃に上昇させた。温度を95℃±2℃に保
ちながら一時間保持した。
Production Example 1 Water (300 g), CuSO 4 .5H was added to a reactor having a reflux condenser.
2 O (48 g), FeSO 4 .7H 2 O (59 g) and aluminum hydroxide (trade name Hydilite H-32, 17.63 g) were added, and the temperature was raised to 96 ° C. with stirring. The temperature was kept at 95 ° C ± 2 ° C and kept for 1 hour.

次いでこの温度を保ちながら、Na2CO3(44.8g)を水(1
50g)に溶解させた溶液を約80分かけて滴下する。反応
において最初青緑色の沈澱が徐々に褐色に変化し、最終
的に黒色となる。滴下終了後のpHは8.95であった。
Next, while maintaining this temperature, Na 2 CO 3 (44.8 g) was added to water (1
The solution dissolved in 50 g) is added dropwise over about 80 minutes. In the reaction, an initially blue-green precipitate gradually turns brown and finally becomes black. The pH after the dropping was 8.95.

温度を95℃±2℃に保ちながら、CuSO4・5H2O(4.8g)及
びAl2(SO4)3・16H2O(46.8g)を水(109.2g)に溶解させた
溶液と、Na2CO3(27.6g)を水(98.2g)に溶解させた溶液
を同時に滴下した。
While maintaining the temperature at 95 ℃ ± 2 ℃, CuSO 4 · 5H 2 O (4.8g) and Al 2 (SO 4 ) 3 · 16H 2 O (46.8g) dissolved in water (109.2g), A solution of Na 2 CO 3 (27.6 g) dissolved in water (98.2 g) was added dropwise at the same time.

金属塩の水溶液は60分、アルカリ物質の水溶液は30分か
けて滴下した。アルカリ物質の水溶液滴下後のpHは8.7
1、金属塩水溶液滴下後のpHは8.00であった。
The aqueous solution of the metal salt was added dropwise over 60 minutes, and the aqueous solution of the alkaline substance was added over 30 minutes. PH is 8.7 after dropping alkaline solution in water.
1. The pH after dropping the metal salt aqueous solution was 8.00.

これにZnSO4・5H2O(3.0g)及びAl5(SO4)3・16H2O(23.4
g)を水(53.5g)に溶解させた溶液を30分かけて滴下
した。この時のpHは4.10であった。
ZnSO 4 5H 2 O (3.0 g) and Al 5 (SO 4 ) 3 16H 2 O (23.4
A solution prepared by dissolving g) in water (53.5 g) was added dropwise over 30 minutes. The pH at this time was 4.10.

次いでNa2CO3(15.4g)を水(54.9g)に溶解させた溶
液を30分かけて滴下した。更に10%NaOH水溶液を滴下し
pHを10.5に調整した。pHを10.5に保ちながら一時間熟成
を行なった。
Then, a solution of Na 2 CO 3 (15.4 g) dissolved in water (54.9 g) was added dropwise over 30 minutes. Then add 10% NaOH aqueous solution dropwise.
The pH was adjusted to 10.5. Aging was carried out for 1 hour while maintaining the pH at 10.5.

熟成終了後、反応物を吸引濾過した。濾過は極めて容易
であり、瀘液は無色であった。沈澱を毎回450 mlの水で
3回洗った後、常法により乾燥した。乾燥終了物を軽く
粉砕し750 ℃で一時間空気中で焼成し、所望の触媒を得
た。
After completion of the aging, the reaction product was filtered by suction. Filtration was extremely easy and the filtrate was colorless. The precipitate was washed 3 times with 450 ml of water each time and then dried by a conventional method. The dried product was lightly crushed and calcined in air at 750 ° C. for 1 hour to obtain the desired catalyst.

この触媒のCu/Fe/Al/Znの原子比は1/1/2.16/0.
05であった。
The Cu / Fe / Al / Zn atomic ratio of this catalyst is 1/1 / 2.16 / 0.
It was 05.

製造例2,3 水酸化アルミニウム(商品名ハイジライトH-32)を5.86
又は35.2g使用する以外は製造例1と同様の操作をして
触媒を得た。
Production Examples 2 and 3 5.86 Aluminum hydroxide (trade name Heidilite H-32)
Alternatively, a catalyst was obtained in the same manner as in Production Example 1 except that 35.2 g was used.

製造例4 還流冷却器を有する反応器に、水(300g)、CuSO4・5H
2O(48g)、FeSO4・7H2O(59g)及び水酸化アルミニウム
(商品名ハイジライトH-32,17.63g)を入れ、撹拌し
ながら温度を96℃に上昇させた。温度を95℃±2℃に保
ちながら、Na2CO3(44.8g)を水(150g)に溶解させた
溶液を約80分かけて滴下する。反応において最初青緑色
の沈澱が徐々に褐色に変化し、最終的に黒色となる。滴
化終了後のpHは8.95であった。
Production Example 4 In a reactor having a reflux condenser, water (300 g), CuSO 4 .5H
2 O (48 g), FeSO 4 .7H 2 O (59 g) and aluminum hydroxide (trade name Hydilite H-32, 17.63 g) were added, and the temperature was raised to 96 ° C. with stirring. A solution of Na 2 CO 3 (44.8 g) in water (150 g) was added dropwise over about 80 minutes while maintaining the temperature at 95 ° C ± 2 ° C. In the reaction, an initially blue-green precipitate gradually turns brown and finally becomes black. The pH after the dripping was 8.95.

温度を95℃±2℃に保ちながら、ZnSO4・5H2O(3.0g)及
びAl2(SO4)3・16H2O(46.8g)を水(109.2g)に溶解させ
た溶液と、Na2CO3(26.5g)を水(94.0g)に溶解させた
溶液を同時に滴化した。金属塩の水溶液は60分、アルカ
リ物質の水溶液は30分かけて滴下した。アルカリ物質の
水溶液滴下後のpHは8.71、金属塩水溶液滴下後のpHは8.
00であった。
A solution in which ZnSO 4 5H 2 O (3.0 g) and Al 2 (SO 4 ) 3 / 16H 2 O (46.8 g) were dissolved in water (109.2 g) while maintaining the temperature at 95 ° C ± 2 ° C. A solution of Na 2 CO 3 (26.5 g) in water (94.0 g) was simultaneously added dropwise. The aqueous solution of the metal salt was added dropwise over 60 minutes, and the aqueous solution of the alkaline substance was added over 30 minutes. The pH after dropping the aqueous solution of the alkaline substance is 8.71, and the pH after dropping the aqueous solution of the metal salt is 8.
It was 00.

これにCuSO4・5H2O(4.8g)及びAl2(SO4)3・16H2O(23.4
g)を水(53.5g)に溶解させた溶液を30分かけて滴下
した。この時のpHは4.10であった。
CuSO 4・ 5H 2 O (4.8g) and Al 2 (SO 4 ) 3・ 16H 2 O (23.4
A solution prepared by dissolving g) in water (53.5 g) was added dropwise over 30 minutes. The pH at this time was 4.10.

次いでNa2CO3(16.4g)を水(58.2g)に溶解させた溶
液を30分かけて滴下した。
Then, a solution of Na 2 CO 3 (16.4 g) dissolved in water (58.2 g) was added dropwise over 30 minutes.

以後製造例1と同様の操作をして触媒を得た。Thereafter, the same operation as in Production Example 1 was carried out to obtain a catalyst.

製造例5〜10 Cu/Fe/Al/Znの原子比を表−1に示す比率に種々変え
た以外は製造例1と同様にして触媒を得た。
Production Examples 5 to 10 Catalysts were obtained in the same manner as in Production Example 1 except that the atomic ratio of Cu / Fe / Al / Zn was changed to the ratio shown in Table-1.

比較製造例1〜3 Cu/Fe/Al/Znの原子比を表−1に示す比率に変えた以
外は製造例1と同様にして触媒を得た。
Comparative Production Examples 1 to 3 Catalysts were obtained in the same manner as in Production Example 1 except that the atomic ratio of Cu / Fe / Al / Zn was changed to the ratio shown in Table-1.

製造例11 水酸化アルミニウム(商品名ハイジライトH-32の代わり
にH-32を 350℃で約一時間焼成して得られたベーマイト
(AlO・OH)を13.72g使用した以外は製造例1と同様にし
て触媒を得た。
Production Example 11 Aluminum hydroxide (boehmite obtained by firing H-32 at 350 ° C for about 1 hour instead of Hydilite H-32
A catalyst was obtained in the same manner as in Production Example 1 except that 13.72 g of (AlO.OH) was used.

製造例12 水酸化アルミニウム(商品名ハイジライトH-32の代わり
にH-32を 600℃で約一時間焼成して得られた酸化アルミ
ニウム(Al2O3)を14.53g使用した以外は製造例1と同様
にして触媒を得た。
Production Example 12 Aluminum hydroxide (Production Example except that 14.53 g of aluminum oxide (Al 2 O 3 ) obtained by firing H-32 at 600 ° C. for about 1 hour instead of Hydilite H-32 was used. A catalyst was obtained in the same manner as in 1.

製造例13 水(200g)にAl2(SO4)3・16H2O(44g)及びNaOH(28.6g)
をそれぞれ溶解させた。
Production Example 13 Al 2 (SO 4 ) 3 · 16H 2 O (44 g) and NaOH (28.6 g) in water (200 g)
Were dissolved.

この溶液を還流冷却器を有する反応器に入れ、溶液の温
度を100 ℃に上昇させた。温度を100 ℃に保ちながら、
Al2(SO4)3・16H2O(26.0g)を水(75.8g)に溶解させた
溶液を約2時間かけて滴下する。
The solution was placed in a reactor with a reflux condenser and the temperature of the solution was raised to 100 ° C. While keeping the temperature at 100 ℃,
A solution of Al 2 (SO 4 ) 3 · 16H 2 O (26.0 g) dissolved in water (75.8 g) was added dropwise over about 2 hours.

次いで、CuSO4・5H2O(48g)、Fe2SO4・7H2O(59g)をそ
れぞれ水(150g)に溶解させた溶液を約30分で滴下す
る。
Then, a solution of CuSO 4 .5H 2 O (48 g) and Fe 2 SO 4 .7H 2 O (59 g) dissolved in water (150 g) is added dropwise in about 30 minutes.

反応器の温度を95±2℃に保ちながら一時間保持し、以
後製造例1と同様の操作を行い触媒を得た。
The temperature of the reactor was kept at 95 ± 2 ° C. for 1 hour, and then the same operation as in Production Example 1 was carried out to obtain a catalyst.

比較製造例4 還流冷却器を有する反応器に、水(400g)、CuSO4・5H
2O(37.0g)、Fe2SO4・7H2O(41.3g)、Al2(SO4)3・16H2O
(98.3g)及びZnSO4・5H2O(2.1g)を入れ、撹拌しながら
温度を96℃に上昇させた。温度を95℃±2℃に保ちなが
ら、1時間保持した。
Comparative Production Example 4 Water (400 g), CuSO 4 .5H was added to a reactor having a reflux condenser.
2 O (37.0 g), Fe 2 SO 4 / 7H 2 O (41.3 g), Al 2 (SO 4 ) 3 / 16H 2 O
(98.3 g) and ZnSO 4 .5H 2 O (2.1 g) were added, and the temperature was raised to 96 ° C. with stirring. The temperature was kept at 95 ° C ± 2 ° C and kept for 1 hour.

次いでこの温度を保ちながらNa2CO3(88.8g)を水(315
g)に溶解させた溶液を約80分かけて滴下する。反応に
おいて最初青緑色の沈澱が徐々に褐色に変化し、最終的
に黒色となる。
Next, while maintaining this temperature, Na 2 CO 3 (88.8 g) was added to water (315
The solution dissolved in g) is added dropwise over about 80 minutes. In the reaction, an initially blue-green precipitate gradually turns brown and finally becomes black.

更に10%NaOH水溶液を滴下しpHを10.5に調整した。Further, 10% NaOH aqueous solution was added dropwise to adjust the pH to 10.5.

以後製造例1と同様の操作をして触媒を得た。Thereafter, the same operation as in Production Example 1 was carried out to obtain a catalyst.

比較製造例5 還流冷却器を有する反応器に、水(210g)、CuSO4・5H
2O(33.6g)及びFe2SO4・7H2O(41.3g)を入れ、撹拌しな
がら温度を96℃に上昇させた。温度を95±2℃に保ちな
がら、一時間保持した。
Comparative Production Example 5 Water (210 g), CuSO 4 .5H was added to a reactor having a reflux condenser.
2 O (33.6 g) and Fe 2 SO 4 .7H 2 O (41.3 g) were added, and the temperature was raised to 96 ° C. with stirring. The temperature was kept at 95 ± 2 ° C., and kept for 1 hour.

次いでこの温度を保ちながら、NaCO3(31.4g)を水(10
5g)に溶解させた溶液を約80分かけて滴下する。反応に
おいて最初青緑色の沈澱が徐々に褐色に変化し、最終的
に黒色となる。
Next, while maintaining this temperature, NaCO 3 (31.4 g) was added to water (10
The solution dissolved in 5 g) is added dropwise over about 80 minutes. In the reaction, an initially blue-green precipitate gradually turns brown and finally becomes black.

温度を95±2℃に保ちながら、この懸濁液中へCuSO4・5
H2O(3.4g)及びAl2(SO4)3・16H2O(65.5g)を水(153
g)に溶解させた溶解と、Na2CO3(53.2g)を水(189g)
に溶解させた溶液を同時に滴下した。
While keeping the temperature at 95 ± 2 ℃, add CuSO 4・ 5 into this suspension.
H 2 O (3.4 g) and Al 2 (SO 4 ) 3 · 16H 2 O (65.5 g) were added to water (153 g).
g) and dissolved Na 2 CO 3 (53.2 g) in water (189 g)
The solution dissolved in was added dropwise at the same time.

次いで、これにZnSO4・5H2O(2.1g)及びAl2(SO4)3・16
H2O(33g)を水(74.9g)に溶解させた溶解と、Na2CO3
(18.8g)を水(66g)に溶解させた溶液を同時に滴下し
た。
Then ZnSO 4 .5H 2 O (2.1 g) and Al 2 (SO 4 ) 3・ 16
H 2 O (33 g) dissolved in water (74.9 g) and Na 2 CO 3
A solution prepared by dissolving (18.8 g) in water (66 g) was added dropwise at the same time.

1時間熟成を行なった後、その後は製造例1と同様の操
作を行い触媒を得た。
After aging for 1 hour, the same operation as in Production Example 1 was performed to obtain a catalyst.

製造例14〜17 焼成温度を 450℃、 600℃、 900℃及び1050℃とした以
外は製造例1と同様にして触媒を得た。
Production Examples 14 to 17 Catalysts were obtained in the same manner as in Production Example 1 except that the firing temperature was 450 ° C, 600 ° C, 900 ° C and 1050 ° C.

試験例 ヤシ油脂肪酸メチルエステル(以下MEと称する)150g
に各製造例及び比較製造例で得られた触媒を3.75g加
え、500mlのオートクレーブ中で、水素圧250 kg/cm2
反応温度275 ℃、水素を5/minで流し、反応を4時
間行わせた。
Test example 150 g of coconut oil fatty acid methyl ester (hereinafter referred to as ME)
3.75 g of the catalyst obtained in each Production Example and Comparative Production Example was added to a 500 ml autoclave, and the hydrogen pressure was 250 kg / cm 2 ,
The reaction temperature was 275 ° C., hydrogen was flowed at 5 / min, and the reaction was carried out for 4 hours.

反応途中30、60、90、120、180、240分にサンプリング
を行いケン化価を測定した。
During the reaction, the saponification value was measured by sampling at 30, 60, 90, 120, 180 and 240 minutes.

原料MEのケン化価をSVo、 t分時のサンプリングにおけ
るの反応物のケン化価をSVt、275℃、250 kg/cm2にお
ける平衡ケン化価をSVe とし、この値から1次反応速度
定数k(×103/min)を、 k=(1/t)ln(SV0−SVe/(SVt−SVe) により求めた。この時の反応のkは7.2×103であった
(以下の試験例においては×103は省略する。)。
The saponification number of the raw material ME is SV o , the saponification number of the reaction product at the time of t minutes is SV t , and the equilibrium saponification number at 250 kg / cm 2 at 275 ° C. is SV e. The reaction rate constant k (× 10 3 / min) was calculated by k = (1 / t) ln (SV 0 −SV e / (SV t −SV e ), where k of the reaction was 7.2 × 10 3 Met
(× 10 3 is omitted in the following test examples).

反応終了後、反応液を冷却し、オートクレーブを開放し
て反応液を抜き出し、加圧濾過により触媒を除去した。
得られた反応物の組成をガスクロマトグラフィーにより
分析した。
After the completion of the reaction, the reaction solution was cooled, the autoclave was opened to withdraw the reaction solution, and the catalyst was removed by pressure filtration.
The composition of the obtained reaction product was analyzed by gas chromatography.

次いで、濾過速度を測定するために、ME 150gに触媒を
7.50g加え、500 mlのオートクレーブ中で、水素圧250
kg/cm2、反応温度275 ℃で反応を1時間行なった後、
冷却せずに 200kg/cm2に減圧した状態で高圧バルブを
通して全量をサンプリングした。
Then 150 g of ME was catalyzed to measure the filtration rate.
Add 7.50 g and hydrogen pressure 250 in 500 ml autoclave.
After carrying out the reaction for 1 hour at kg / cm 2 and a reaction temperature of 275 ° C.,
The entire amount was sampled through a high-pressure valve in a state where the pressure was reduced to 200 kg / cm 2 without cooling.

この抜き出したスラリー(58g)を秤量し、ドデシルア
ルコールで 255gに希釈した後、内径3cmの外部加熱式
温度コントロールのついた加圧濾過機を使用し、一定条
件(濾過圧力3kg/cm2、濾過温度50℃)で濾過を行
い、単位時間当たりの濾過速度定数F(m3/m2−Hr)を
求めた。
The extracted slurry (58 g) was weighed and diluted with dodecyl alcohol to 255 g, and then a pressure filter with an internal heating temperature control of 3 cm inner diameter was used under constant conditions (filtering pressure 3 kg / cm 2 , filtration). Filtration was performed at a temperature of 50 ° C.), and a filtration rate constant F (m 3 / m 2 −Hr) per unit time was obtained.

これらの結果を表−1に示す。The results are shown in Table-1.

〔発明の効果〕 本発明によれば、極めて高活性及び高選択性を有する銅
−鉄−アルミニウム−亜鉛系触媒が得られ、かかる触媒
を使用すれば非常に高純度の高級アルコールが極めて容
易に得られる。
EFFECTS OF THE INVENTION According to the present invention, a copper-iron-aluminum-zinc-based catalyst having extremely high activity and high selectivity can be obtained, and by using such a catalyst, a very high purity higher alcohol can be very easily obtained. can get.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水酸化アルミニウム若しくは酸化アルミニ
ウム又はその混合物を担体とし、Cu,Fe,Al及びZnを含
み、原子比(担体も含めた触媒全体の原子比)がCu/Fe
/Al=1/ 0.4〜2.5 /0.5〜5.0であり、且つZn/Cu≦
1.0 である脂肪酸エステルの水素化によるアルコール製
造用触媒。
1. A carrier comprising aluminum hydroxide or aluminum oxide or a mixture thereof, containing Cu, Fe, Al and Zn, and having an atomic ratio (atomic ratio of the entire catalyst including the carrier) of Cu / Fe.
/Al=1/0.4 to 2.5 / 0.5 to 5.0 and Zn / Cu ≦
Catalyst for alcohol production by hydrogenation of fatty acid ester which is 1.0.
JP2163620A 1990-06-21 1990-06-21 Hydrogenation catalyst Expired - Lifetime JPH0622677B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2163620A JPH0622677B2 (en) 1990-06-21 1990-06-21 Hydrogenation catalyst
US07/708,709 US5120700A (en) 1990-06-21 1991-05-31 Process for producing hydrogenation catalyst
FR9107463A FR2665090B1 (en) 1990-06-21 1991-06-18 HYDROGENATION CATALYST AND PREPARATION METHOD THEREOF.
MYPI91001104A MY106379A (en) 1990-06-21 1991-06-19 Hydrogenation catalyst and process for producing the same.
CN91104168A CN1027235C (en) 1990-06-21 1991-06-20 Hydrogenation catalyst and process for producing same
DE4120536A DE4120536C2 (en) 1990-06-21 1991-06-21 Hydrogenation catalyst and process for its preparation
BR919102621A BR9102621A (en) 1990-06-21 1991-06-21 HYDROGENATION CATALYST AND PROCESS FOR ITS PRODUCTION
JP5278550A JP2563751B2 (en) 1990-06-21 1993-11-08 Method for producing hydrogenation catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2163620A JPH0622677B2 (en) 1990-06-21 1990-06-21 Hydrogenation catalyst
JP5278550A JP2563751B2 (en) 1990-06-21 1993-11-08 Method for producing hydrogenation catalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5278550A Division JP2563751B2 (en) 1990-06-21 1993-11-08 Method for producing hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JPH0459050A JPH0459050A (en) 1992-02-25
JPH0622677B2 true JPH0622677B2 (en) 1994-03-30

Family

ID=26489008

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2163620A Expired - Lifetime JPH0622677B2 (en) 1990-06-21 1990-06-21 Hydrogenation catalyst
JP5278550A Expired - Lifetime JP2563751B2 (en) 1990-06-21 1993-11-08 Method for producing hydrogenation catalyst

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5278550A Expired - Lifetime JP2563751B2 (en) 1990-06-21 1993-11-08 Method for producing hydrogenation catalyst

Country Status (6)

Country Link
US (1) US5120700A (en)
JP (2) JPH0622677B2 (en)
CN (1) CN1027235C (en)
BR (1) BR9102621A (en)
DE (1) DE4120536C2 (en)
FR (1) FR2665090B1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734867B2 (en) * 1991-10-09 1995-04-19 花王株式会社 Hydrogenation catalyst and method for producing the same
US5334779A (en) * 1993-06-01 1994-08-02 Eastman Kodak Company Catalyst compositions and the use thereof in the hydrogenation of carboxylic acid esters
US5463143A (en) * 1994-11-07 1995-10-31 Shell Oil Company Process for the direct hydrogenation of wax esters
US5475159A (en) * 1994-11-07 1995-12-12 Shell Oil Company Process for the direct hydrogenation of methyl esters
US5475160A (en) * 1994-11-07 1995-12-12 Shell Oil Company Process for the direct hydrogenation of triglycerides
US5536889A (en) * 1995-09-29 1996-07-16 Shell Oil Company Process for the two-stage hydrogenation of methyl esters
US5763353A (en) 1996-02-15 1998-06-09 Kao Corporation Hydrogenation catalyst precursor, hydrogenation catalyst and production process for alcohols
DE10160487A1 (en) * 2001-12-08 2003-06-12 Sued Chemie Ag Production of copper-zinc-aluminum catalyst, e.g. for methanol synthesis, involves two-stage precipitation from metal salt solution with alkali, using a different copper to zinc atom ratio in each stage
US6580000B1 (en) 2002-06-06 2003-06-17 Ak Research Company Process for the manufacture of alkoxysilanes and alkoxy orthosilicates
DE102004033554A1 (en) * 2004-07-09 2006-02-16 Basf Ag Catalyst and process for the hydrogenation of carbonyl compounds
JP5334462B2 (en) 2007-06-11 2013-11-06 花王株式会社 Production method of fatty acid ester
US7964114B2 (en) * 2007-12-17 2011-06-21 Sud-Chemie Inc. Iron-based water gas shift catalyst
KR20110070792A (en) * 2009-12-18 2011-06-24 에스케이케미칼주식회사 Multimetal catalyst and method for preparation of aromatic alcohol using the same
CN102476056B (en) * 2012-02-28 2012-12-26 浙江嘉化能源化工股份有限公司 Catalyst used in fatty alcohol production with fatty acid methyl ester catalyzed hydrogenation technology, preparation method thereof, and application thereof
US9193655B2 (en) 2012-09-03 2015-11-24 Kuraray Co., Ltd. Method for producing 7-octenal
EP2893976B1 (en) 2012-09-03 2019-03-20 Kuraray Co., Ltd. Copper-based catalyst precursor, method for manufacturing same, and hydrogenation method
KR101589953B1 (en) * 2014-10-29 2016-01-29 한국원자력연구원 Method for removal of aluminum by precipitation and filtration in fission molybdenum production process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250111A (en) * 1976-07-12 1981-02-10 Nalco Chemical Company Mixed catalyst for the hydrolysis of nitriles to amides
JPS5944896B2 (en) * 1977-01-25 1984-11-01 花王株式会社 Production method of copper-iron-aluminum catalyst
JPS595013B2 (en) * 1978-07-03 1984-02-02 花王株式会社 Method for producing copper-iron-aluminum catalyst
JPS5850775B2 (en) * 1979-03-30 1983-11-12 花王株式会社 Production method of copper-iron-aluminum catalyst
EP0175558A1 (en) * 1984-09-17 1986-03-26 EASTMAN KODAK COMPANY (a New Jersey corporation) Process for the vapor phase hydrogenation of carboxylic acids to esters and alcohols
JPH01180842A (en) * 1988-01-13 1989-07-18 Kao Corp Production of alcohol
CA2026275C (en) * 1989-10-17 2000-12-05 Deepak S. Thakur Hydrogenation catalyst, process for preparing and process of using said catalyst

Also Published As

Publication number Publication date
CN1027235C (en) 1995-01-04
DE4120536A1 (en) 1992-01-02
CN1057407A (en) 1992-01-01
DE4120536C2 (en) 2003-05-08
FR2665090A1 (en) 1992-01-31
JP2563751B2 (en) 1996-12-18
BR9102621A (en) 1992-01-21
JPH0459050A (en) 1992-02-25
US5120700A (en) 1992-06-09
JPH06226100A (en) 1994-08-16
FR2665090B1 (en) 1995-03-10

Similar Documents

Publication Publication Date Title
JP2563751B2 (en) Method for producing hydrogenation catalyst
KR100453095B1 (en) Preparation and use of non-chrome catalysts for cu/cr catalyst applications
US5243095A (en) Hydrogenation catalyst, process for preparing and process for using said catalyst
JPH0336571B2 (en)
EP0064241A1 (en) Process for producing ethylene glycol and/or glycolic acid ester, catalyst composition used therefor, and process for the production of this composition
US4278567A (en) Process for preparation of copper-iron-aluminum hydrogenation catalyst
JPH0596169A (en) Catalyst for hydrogenation and its production
JP3184567B2 (en) Hydrogenation catalyst and method for producing the same
JPH05168928A (en) Catalyst for dehydrogenation reaction, production thereof and production of carbonyl compound using the catalyst
JP3272386B2 (en) Alcohol production catalyst and method for producing the same
JPH0673633B2 (en) Method for producing copper-iron-aluminum catalyst
JPH0734866B2 (en) Catalyst for reducing carbonyl compound, method for producing the catalyst, and method for producing alcohol using the catalyst
JPH01180842A (en) Production of alcohol
JPS63152333A (en) Partially hydrogenating method
JP3317718B2 (en) Catalyst for producing amino compound, method for producing the catalyst, and method for producing amino compound using the catalyst
JP3317719B2 (en) Catalyst for hydrogenating carbon-carbon unsaturated bonds, method for producing the catalyst, and method for hydrogenating carbon-carbon unsaturated bonds using the catalyst
RU2091294C1 (en) Method for production of para-hydrogen, catalyst for its realization and method for production of catalyst
JPH0613093B2 (en) Method for producing copper-iron-aluminum catalyst
JPH05168930A (en) Catalyst for producing tertiary amine, production of the catalyst and production of tertiary amine using the catalyst
CN114702086A (en) Water body purification material for drinking water
CN117865821A (en) Synthesis method of diglycolamine
CN116899559A (en) Bimetallic carbon black supported catalyst and application thereof
JPH0459752A (en) Production of acrylamide
CN112517013A (en) Cu-based catalyst and method for preparing gamma-valerolactone and delta-cyclopentanolactone by using same
JPH07206737A (en) Method for producing alcohol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 17