JPH06226722A - Casting mold and manufacture thereof - Google Patents

Casting mold and manufacture thereof

Info

Publication number
JPH06226722A
JPH06226722A JP1497993A JP1497993A JPH06226722A JP H06226722 A JPH06226722 A JP H06226722A JP 1497993 A JP1497993 A JP 1497993A JP 1497993 A JP1497993 A JP 1497993A JP H06226722 A JPH06226722 A JP H06226722A
Authority
JP
Japan
Prior art keywords
casting mold
porous body
silicon dioxide
porosity
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1497993A
Other languages
Japanese (ja)
Inventor
Kazuhiro Minagawa
和弘 皆川
Tadahisa Arahori
忠久 荒堀
Shigetoshi Hayashi
茂利 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1497993A priority Critical patent/JPH06226722A/en
Publication of JPH06226722A publication Critical patent/JPH06226722A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00939Uses not provided for elsewhere in C04B2111/00 for the fabrication of moulds or cores

Abstract

PURPOSE:To improve the thermal shock resistance of a casting mold by a method wherein high purity silicon dioxide porous body is heat-treated so as to control the porosity and pore diameter of the porous body to specified values. CONSTITUTION:A silicon dioxide porous body 12 consisting of a mold 10 is provided by VAD method in advance and then worked roughly into a roughly worked body 13, which is then heat-treated into a roughly worked body after heat treatment 14 and finally precision-work it into a casting mold 10. The resultant purity silicon dioxide porous body is made of minute particles having the average particle diameter of 0.01-10mum and controlled by heat treatment so as to realize the porosity of 30-70vol.%, the pore diameter of 1.0-30mum and high purity such as the impurity content of 1ppm or less. By heating the casting mold 10 made of the above-mentioned porous body at 1,100 deg.C, silicon dioxide particles are softened, resulting in producing partial sintering, enhancing the bonding force between particles and improving the strength of the casting mold. Accordingly, the excellent casting moldability and thermal shock resistance. Further, no metallic pollution and the like is recognized in cast moldings.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋳込成形型およびその
製造方法に関し、特に半導体製造用治具、例えばシリコ
ンウェハーの熱拡散処理等に使用されるプロセスチュー
ブ、ウェハーボート等の耐熱性治具に有用な高純度炭化
珪素質複合材料の成形に適した鋳込成形型およびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting mold and a method for manufacturing the same, and more particularly to a jig for semiconductor manufacturing, for example, a heat-resistant heat treatment for a process tube, a wafer boat, etc. used for thermal diffusion treatment of a silicon wafer. The present invention relates to a casting mold suitable for molding a high-purity silicon carbide composite material useful for a tool and a method for producing the same.

【0002】[0002]

【従来の技術】従来、例えばスラリーを型に鋳込んで成
形するセラミックス成形用の鋳込成形型としては石膏製
のものが用いられている。石膏型は製作が容易で、吸水
性が高く、比較的安価であるため広く利用されている。
しかし、石膏は硫酸カルシウムの水和物からできている
ため、例えば半導体用の高純度セラミックスなどのスラ
リーを流し込んだ際にCaが溶出しセラミックス成形体を
汚染するという問題があった。また、石膏は強度、耐摩
耗性が低く、耐久性が劣るといった問題もあった。
2. Description of the Related Art Conventionally, a plaster mold has been used as a casting mold for molding ceramics, for example, by casting slurry into a mold for molding. Gypsum molds are widely used because they are easy to manufacture, have high water absorption, and are relatively inexpensive.
However, since gypsum is made of a hydrate of calcium sulfate, there is a problem that Ca elutes and pollutes the ceramic molded body when pouring a slurry of, for example, high-purity ceramics for semiconductors. In addition, gypsum has a problem that strength and wear resistance are low and durability is poor.

【0003】一方、圧力鋳込成形法などでは、硅砂等を
骨材として用いそれらを熱可塑性樹脂で固めた型が用い
られているが、樹脂は弾性体であるため寸法精度が悪い
という問題がある。また、樹脂にも金属不純物が含まれ
ており、それらが、得られるセラミックス成形体を汚染
する恐れもある。
On the other hand, in the pressure cast molding method and the like, a mold in which silica sand or the like is used as an aggregate and they are hardened with a thermoplastic resin is used, but since the resin is an elastic body, there is a problem that the dimensional accuracy is poor. is there. Further, the resin also contains metal impurities, which may contaminate the obtained ceramic molded body.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、成形
体を汚染することがなく、特に半導体製造用炭化珪素質
材料等の成形に有用な鋳込成形型およびその製造方法を
提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a casting mold which does not contaminate a molded body and is particularly useful for molding a silicon carbide material for semiconductor manufacturing, and a method for manufacturing the same. It is in.

【0005】[0005]

【課題を解決するための手段】本発明者らは、かかる目
的を達成するための手段として、純度に優れ、急熱・急
冷が可能な材料の開発が重要であるとの認識のもとに、
各種材料を検討した結果、通常、光バファイバーの製造
に用いられている高純度二酸化硅素のうち、特定の物性
を備えたものが特に有望であることを知り、さらに検討
を重ね、本発明に至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have recognized that it is important to develop a material having excellent purity and capable of rapid heating / cooling as a means for achieving the above object. ,
As a result of examining various materials, usually, among the high-purity silicon dioxide used in the production of optical fiber, it was found that those having specific physical properties are particularly promising, and further studies were conducted to the present invention. I arrived.

【0006】すなわち、本発明の要旨とするところは、
高純度二酸化珪素多孔体から成り、該多孔体の気孔率が
30〜70vol.%、気孔径が 1.0〜30μm であることを特徴
とする鋳込成形型である。
That is, the gist of the present invention is to
It is composed of a high-purity silicon dioxide porous body and has a porosity of
It is a casting mold characterized by 30 to 70 vol.% And a pore diameter of 1.0 to 30 μm.

【0007】さらに、本発明は、高純度二酸化珪素多孔
体を1100〜1400℃で熱処理することにより、該多孔体の
気孔率および気孔径を制御することを特徴とする上述の
特性を備えた鋳込成形型の製造方法である。
Furthermore, the present invention is characterized in that the high-purity silicon dioxide porous body is heat-treated at 1100 to 1400 ° C. to control the porosity and the pore diameter of the porous body, and the casting having the above-mentioned characteristics is obtained. It is a manufacturing method of a mold.

【0008】[0008]

【作用】次に、添付図面を参照してさらに本発明を説明
する。ここに、図1は本発明にかかる鋳込成形型の1例
を略式斜視図で示すものであり、図示例では分割型にな
っているが、成形型10を構成する多孔体12は予めVAD
法などによって形成されたものであって、所定形状に適
宜加工されて成形型10をなす。得られた成形型10は後述
する加熱処理することで気孔率および気孔径を調節され
てから、今度は炭化硅素スラリーなどの鋳込みに用いら
れるのである。
The present invention will be further described with reference to the accompanying drawings. FIG. 1 is a schematic perspective view showing an example of a casting mold according to the present invention. In the illustrated example, it is a split mold, but the porous body 12 constituting the mold 10 is VAD in advance.
Which is formed by a method or the like, and is appropriately processed into a predetermined shape to form the mold 10. The molding die 10 thus obtained is subjected to a heat treatment described later to adjust the porosity and the pore diameter, and then used for casting a silicon carbide slurry or the like.

【0009】図2は本発明にかかる鋳込成形型の製造工
程のフロー図であり、多孔体合成 (例:VAD法) 、
粗加工、熱処理、精密加工の各工程から成り、図中、多
孔体の形状も併せて示すが、符号11は四塩化珪素を酸化
させる酸水素バーナー、12は合成石英多孔体 (スート)
、13は粗加工体、14は熱処理後の粗加工体、10は精密
加工後に得られる鋳込成形型を示している。
FIG. 2 is a flow chart of the manufacturing process of the casting mold according to the present invention, in which a porous body is synthesized (example: VAD method),
It consists of each step of rough processing, heat treatment, and precision processing.In the figure, the shape of the porous body is also shown. Reference numeral 11 is an oxyhydrogen burner that oxidizes silicon tetrachloride, and 12 is a synthetic quartz porous body (soot).
, 13 is a rough processed body, 14 is a rough processed body after heat treatment, and 10 is a casting mold obtained after precision processing.

【0010】本発明によれば、鋳込成形型を構成する二
酸化珪素多孔体は、一般的には、気相法による超高純度
な二酸化珪素 (合成石英ガラス) の製造法として、MOCV
D 法、VAD 法等のスート法と総称される技術が光ファイ
バー製造などの目的で開発、実用化されているが、本発
明にあってもこの方法により高純度二酸化硅素を製造
し、所定形状に成形すればよい。
According to the present invention, the porous silicon dioxide body constituting the casting mold is generally manufactured by MOCV as a method for producing ultrahigh-purity silicon dioxide (synthetic quartz glass) by a vapor phase method.
Techniques generally called soot method such as D method and VAD method have been developed and put to practical use for the purpose of manufacturing optical fibers, but even in the present invention, high purity silicon dioxide is manufactured by this method and formed into a predetermined shape. It may be molded.

【0011】例えばVAD 法にあっては四塩化珪素などの
珪素塩化物を気化させ、酸水素火炎中等で酸化させるこ
とにより、二酸化珪素粒子を合成し堆積させる。本発明
にあっても実質上同様な操作でもって鋳込成形型を製造
すればよい。
For example, in the VAD method, silicon chloride particles such as silicon tetrachloride are vaporized and oxidized in an oxyhydrogen flame or the like to synthesize and deposit silicon dioxide particles. In the present invention, the casting mold may be manufactured by substantially the same operation.

【0012】このようにして得られた多孔質合成石英ガ
ラスは、平均粒径0.01〜10μm の二酸化珪素微粒子で形
成され、気孔率40〜80%、気孔径は2〜30μm であり、
不純物含有量の合計が1ppm 以下と高純度である。
The porous synthetic quartz glass thus obtained is formed of silicon dioxide fine particles having an average particle diameter of 0.01 to 10 μm, a porosity of 40 to 80% and a pore diameter of 2 to 30 μm.
Highly pure with a total impurity content of 1 ppm or less.

【0013】したがって、本発明にあっては、このよう
にして得られた多孔質合成石英ガラスを熱処理などによ
り気孔率、気孔径を調整し、所定の形状に加工すること
により鋳込成形型とする。
Therefore, according to the present invention, the porous synthetic quartz glass thus obtained is subjected to heat treatment or the like to adjust the porosity and the pore diameter and processed into a predetermined shape to form a casting mold. To do.

【0014】本発明によれば鋳込成形型は高純度な二酸
化珪素多孔体から構成され、例えば、Siウェハー等の熱
処理に用いられる高純度炭化珪素質材料の成形に用いる
と、ウェハーを汚染する金属不純物等が混入する問題が
なくなる。
According to the present invention, the casting mold is composed of a high-purity silicon dioxide porous body, and when used for molding a high-purity silicon carbide material used for heat treatment such as a Si wafer, it contaminates the wafer. There is no problem of mixing metal impurities.

【0015】本発明によれば鋳込成形型の気孔率は30〜
70vol.%である。気孔率が70vol.%を越えると鋳込型の
強度が低く、必要な形状に加工できない。また、30vol.
%未満では十分な吸水性が得られず、鋳込成形が困難と
なる。
According to the present invention, the porosity of the casting mold is 30 to
It is 70 vol.%. When the porosity exceeds 70 vol.%, The strength of the casting mold is low and it cannot be processed into the required shape. Also, 30 vol.
If it is less than%, sufficient water absorption cannot be obtained, and cast molding becomes difficult.

【0016】多孔質合成石英ガラスの気孔径は1.0 〜30
μm である。30μm を越えるとスラリー中のセラミック
ス粒子が多孔体内部に浸入し所定の形状の成形体が得ら
れず、離型性も悪化する。また、1.0 μm 未満では水分
の拡散速度が低下し、乾燥に時間がかかる。尚、鋳込成
形型の気孔径は、好ましくは5〜30μm である。
The pore diameter of the porous synthetic quartz glass is 1.0 to 30.
μm. If it exceeds 30 μm, the ceramic particles in the slurry will penetrate into the inside of the porous body and a molded product having a predetermined shape cannot be obtained, and the releasability will deteriorate. On the other hand, if it is less than 1.0 μm, the diffusion rate of water decreases and it takes a long time to dry. The pore diameter of the casting mold is preferably 5 to 30 μm.

【0017】前記合成石英ガラス多孔体は、平均粒径0.
01〜10μm の二酸化珪素微粒子で形成され、気孔率40〜
80%、気孔径は1〜30μm である。この多孔体を1100〜
1400℃で加熱すると、二酸化珪素粒子が軟化し部分焼結
が生じ、二酸化珪素粒子間の結合力が高まり、多孔体の
強度が向上する。また、多孔体の収縮が進行して気孔率
が低下し、最終的には緻密な石英ガラスとなるが、熱処
理の温度、時間等を調整することにより多孔体の気孔率
および気孔径を制御することが可能である。
The synthetic quartz glass porous body has an average particle size of 0.
It is made of 01-10 μm silicon dioxide particles and has a porosity of 40-
80%, pore size is 1 to 30 μm. This porous body 1100 ~
When heated at 1400 ° C., the silicon dioxide particles are softened to cause partial sintering, the bonding force between the silicon dioxide particles is increased, and the strength of the porous body is improved. Further, the shrinkage of the porous body progresses to reduce the porosity, and finally the fine quartz glass is formed. However, the porosity and the pore diameter of the porous body are controlled by adjusting the temperature, time, etc. of the heat treatment. It is possible.

【0018】図3に本発明において用いるような高純度
二酸化硅素の気孔率の処理温度および処理時間依存性を
示した。処理温度が1100℃未満では多孔体の収縮はほと
んど進行しないため、処理時間が非常に長くなり現実的
ではない。また、1400℃超では急速に収縮が進行するた
め、昇降温速度を大きくする必要があることと石英多孔
体の温度分布が拡大するため、制御が困難で実用的では
ない。
FIG. 3 shows the processing temperature and processing time dependence of the porosity of high-purity silicon dioxide used in the present invention. If the treatment temperature is lower than 1100 ° C, the shrinkage of the porous body hardly progresses, and the treatment time becomes extremely long, which is not realistic. Further, when the temperature exceeds 1400 ° C., the shrinkage rapidly progresses, so that it is necessary to increase the temperature raising / lowering rate and the temperature distribution of the porous silica expands, which makes control difficult and is not practical.

【0019】また、石英ガラスは熱膨張率が非常に小さ
いため、急熱・急冷を行なっても亀裂などが生じるおそ
れがない。従って、鋳込成形型の乾燥等の作業は100 ℃
以上の温度で容易に行なうことができる。
Further, since the coefficient of thermal expansion of quartz glass is very small, there is no risk of cracks or the like even if it is subjected to rapid heating / quenching. Therefore, the work such as drying the casting mold should be done at 100 ° C.
It can be easily performed at the above temperature.

【0020】このように本発明によれば、純度に優れる
ため成形体を汚染することがなく、また急冷・急熱に耐
えることから特に半導体製造用炭化珪素質材料等の成形
に有用な鋳込成形型を得ることができる。
As described above, according to the present invention, since the molded body is excellent in purity and does not contaminate the molded body and can withstand rapid cooling and rapid heat, it is particularly useful for molding silicon carbide based materials for semiconductor production. A mold can be obtained.

【0021】[0021]

【実施例】以下に、本発明を実施例によって具体的に説
明する。 (実施例1)図2に示す工程図にしたがって、VAD 法によ
り合成した、かさ密度が約 0.4g/cm3 、比表面積が約12
m2/g、平均粒子径が約0.2 μm の合成石英ガラス多孔質
体を粗加工後1200℃で1時間熱処理し、ダイヤモンドミ
ルによって所定の形状に精密加工して鋳込成形型を得
た。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 According to the process chart shown in FIG. 2, the bulk density was about 0.4 g / cm 3 and the specific surface area was about 12 synthesized by the VAD method.
A synthetic quartz glass porous body having m 2 / g and an average particle size of about 0.2 μm was roughly processed, heat-treated at 1200 ° C. for 1 hour, and precisely processed into a predetermined shape by a diamond mill to obtain a casting mold.

【0022】次に、不純物含有量が1ppm 以下である高
純度炭化珪素粉末をスラリー化し、鋳込成形を行なっ
た。表1に得られた鋳込成形型の密度および気孔率なら
びに耐熱衝撃性、鋳込成形性を、表2に鋳込成形を行な
った成形体の金属不純物濃度を示した。
Next, a high-purity silicon carbide powder having an impurity content of 1 ppm or less was slurried and cast-molded. Table 1 shows the density, porosity, thermal shock resistance, and cast formability of the obtained casting mold, and Table 2 shows the metal impurity concentration of the cast body obtained by the cast molding.

【0023】(実施例2)実施例1と同様にしてに VAD法
により合成した、かさ密度が約0.4g/cm3、比表面積が約
12m2/g、平均粒子径が約0.2 μm の合成石英ガラス多孔
質体を粗加工後1400℃で30分間熱処理し、ダイヤモンド
ミルによって所定の形状に精密加工して鋳込成形型を得
た。
Example 2 Synthesized by the VAD method in the same manner as in Example 1, the bulk density is about 0.4 g / cm 3 , and the specific surface area is about.
A synthetic quartz glass porous body having a particle size of 12 m 2 / g and an average particle size of about 0.2 μm was rough-processed, heat-treated at 1400 ° C. for 30 minutes, and precisely processed into a predetermined shape by a diamond mill to obtain a casting mold.

【0024】次に、不純物含有量が1ppm 以下である高
純度炭化珪素粉末をスラリー化し、鋳込成形を行なっ
た。表1に得られた鋳込成形型の密度および気孔率なら
びに耐熱衝撃性、鋳込成形性を、表2に鋳込成形を行な
った成形体の金属不純物濃度を示した。
Next, a high-purity silicon carbide powder having an impurity content of 1 ppm or less was slurried and cast-molded. Table 1 shows the density, porosity, thermal shock resistance, and cast formability of the obtained casting mold, and Table 2 shows the metal impurity concentration of the cast body obtained by the cast molding.

【0025】(比較例1)図2に示す工程図にしたがっ
て、 VAD法により合成した、かさ密度が約0.4 g/cm2
比表面積が約12m2/g、平均粒子径が約0.2 μm の合成石
英ガラス多孔質体を粗加工後、本例では1450℃で20分間
熱処理し、ダイヤモンドミルによって所定の形状に精密
加工して鋳込成形型を得た。
Comparative Example 1 A bulk density of about 0.4 g / cm 2 , which was synthesized by the VAD method according to the process chart shown in FIG.
After roughly processing a synthetic quartz glass porous body with a specific surface area of about 12 m 2 / g and an average particle size of about 0.2 μm, in this example it is heat-treated at 1450 ° C. for 20 minutes and then precision-processed into a predetermined shape with a diamond mill. A casting mold was obtained.

【0026】次に、不純物含有量が1ppm 以下である高
純度炭化珪素粉末をスラリー化し、鋳込成形を行なっ
た。表1に得られた鋳込成形型の密度および気孔率なら
びに耐熱衝撃性、鋳込成形性を、表2に鋳込成形を行な
った成形体の金属不純物濃度を示した。
Next, a high-purity silicon carbide powder having an impurity content of 1 ppm or less was slurried and cast-molded. Table 1 shows the density, porosity, thermal shock resistance, and cast formability of the obtained casting mold, and Table 2 shows the metal impurity concentration of the cast body obtained by the cast molding.

【0027】(比較例2)不純物含有量が1ppm 以下であ
る高純度炭化珪素粉末をスラリー化し、通常の石膏型を
用いて鋳込成形を行なった。表1に鋳込成形型の密度お
よび気孔率ならびに耐熱衝撃性、鋳込成形性を、表2に
鋳込成形を行なった成形体の金属不純物濃度を示した。
(Comparative Example 2) A high-purity silicon carbide powder having an impurity content of 1 ppm or less was slurried and cast-molded using an ordinary plaster mold. Table 1 shows the density and porosity of the casting mold, the thermal shock resistance, and the casting formability, and Table 2 shows the metal impurity concentration of the cast body.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】ここに、耐熱衝撃性は、200 ℃に加熱し、
水中に投入する試験による割れの有無をもって判断し、
また鋳込成形性は一昼夜放置し、離型する時、割れやは
がれを見る試験によって判断される特性である。これら
の結果からも分かるように、本発明によれば、鋳込成形
性および耐熱衝撃性のいずれにも優れており、また鋳込
成形体の金属不純物の汚染は全く見られない。
Here, the thermal shock resistance is as follows:
Judging by the presence or absence of cracks in the test of putting in water,
The cast formability is a property judged by a test for cracking or peeling when the mold is left for a whole day and night and then released from the mold. As can be seen from these results, according to the present invention, both the cast moldability and the thermal shock resistance are excellent, and no contamination of the cast molded product with metal impurities is observed.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明によ
れば、純度に優れ、成形体を汚染することがなく、しか
も急熱・急冷が可能な、特に半導体製造用炭化珪素質材
料等の成形に有用な鋳込成形型を得ることができる。
As described above in detail, according to the present invention, a silicon carbide-based material for semiconductor manufacturing, which has excellent purity, does not contaminate a molded body, and can be rapidly heated and cooled, is particularly useful. A casting mold useful for molding can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる鋳込成形型の1例を示す略式斜
視図である。
FIG. 1 is a schematic perspective view showing an example of a casting mold according to the present invention.

【図2】本発明にかかる鋳込成形型の製造工程図であ
る。
FIG. 2 is a manufacturing process diagram of a casting mold according to the present invention.

【図3】鋳込成形型( 高純度二酸化珪素多孔体) の気孔
率の処理温度、時間依存性を示すグラフである。
FIG. 3 is a graph showing the processing temperature and time dependence of the porosity of a casting mold (high-purity silicon dioxide porous body).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高純度二酸化珪素多孔体から成り、該多
孔体の気孔率が30〜70vol.%、気孔径が 1.0〜30μmで
あることを特徴とする鋳込成形型。
1. A casting mold comprising a high-purity silicon dioxide porous body having a porosity of 30 to 70 vol.% And a pore diameter of 1.0 to 30 μm.
【請求項2】 高純度二酸化珪素多孔体を1100〜1400℃
で熱処理することにより、該多孔体の気孔率および気孔
径を制御することを特徴とする請求項1記載の鋳込成形
型の製造方法。
2. A high-purity silicon dioxide porous body at 1100-1400 ° C.
The method for producing a casting mold according to claim 1, wherein the porosity and the pore diameter of the porous body are controlled by heat-treating at 2.
JP1497993A 1993-02-01 1993-02-01 Casting mold and manufacture thereof Withdrawn JPH06226722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1497993A JPH06226722A (en) 1993-02-01 1993-02-01 Casting mold and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1497993A JPH06226722A (en) 1993-02-01 1993-02-01 Casting mold and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06226722A true JPH06226722A (en) 1994-08-16

Family

ID=11876095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1497993A Withdrawn JPH06226722A (en) 1993-02-01 1993-02-01 Casting mold and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06226722A (en)

Similar Documents

Publication Publication Date Title
JP3763420B2 (en) Molded article having high content of silicon dioxide and method for producing the same
US4040849A (en) Polycrystalline silicon articles by sintering
KR0138018B1 (en) Manufacture of silicon nitride system ceramics part
US5866062A (en) Process for producing shaped bodies of silicon dioxide
JP2542402B2 (en) Materials resistant to metal and salt melts, their production and their use
JP2008208021A (en) METHOD FOR SINTERING FUSED SILICA TO PRODUCE SHAPED BODY COMPRISING CRYSTALLINE SiO2
US4836965A (en) Method of producing heat treating furnace member
JPH07300324A (en) Production of heat-resistant synthetic quartz glass
JP2535768B2 (en) High heat resistant composite material
JPH11310423A (en) Synthetic quartz glass and its production
JPH06226722A (en) Casting mold and manufacture thereof
EP0767761B1 (en) Sintered quartz glass products and methods for making same
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP2004224580A (en) Mold for molding quartz glass, and its manufacturing method
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
WO1995008519A2 (en) Coarse reaction bonded silicon nitride
JP2007238419A (en) Opaque sintered compact
JPH0568433B2 (en)
JP2000239065A (en) Light-transmissible corrosionproof material and its production
JPH1171177A (en) Recrystallized silicon carbide sintered compact with both high electrical resistance and thermal conductivity and its production
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JP4243437B2 (en) Method for producing metal-ceramic composite material having a pore-less surface
JPH03265585A (en) Reinforced ceramics and its production
US3786124A (en) Method of sintering fused silica ceramic for strengthening it
JPH0151452B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404