JPH06226569A - Manufacture of stainless steel belt having excellent surface quality - Google Patents

Manufacture of stainless steel belt having excellent surface quality

Info

Publication number
JPH06226569A
JPH06226569A JP5032869A JP3286993A JPH06226569A JP H06226569 A JPH06226569 A JP H06226569A JP 5032869 A JP5032869 A JP 5032869A JP 3286993 A JP3286993 A JP 3286993A JP H06226569 A JPH06226569 A JP H06226569A
Authority
JP
Japan
Prior art keywords
continuous casting
crack
stainless steel
grinding
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5032869A
Other languages
Japanese (ja)
Inventor
Yoshihiro Uematsu
美博 植松
Sadao Hirotsu
貞雄 廣津
Shigeto Hayashi
茂人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5032869A priority Critical patent/JPH06226569A/en
Publication of JPH06226569A publication Critical patent/JPH06226569A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To prevent generation of surface defect such as crack flaw or peeling flaw so as to manufacture a heat roll plate at high product yield, in heat rolling of stainless steel and the like of which surface quality is attached with importance. CONSTITUTION:When a stainless steel continuous casting piece is heat-rolled, the maximum crack length existing in the whole continuous casting piece is estimated from the measured value of the crack length on the surface (Z-face) of a sample cut out from the continuous casting piece by the use of an extreme value statiscal method, and the maximum crack depth of the continuous casting piece to be heat-rolled is predicted from the estimated maximum crack length. A grinding quantity of the surface of the continuous casting piece is decided based on the predicted maximum crack depth. After grinding the surface of the continuous casting piece by the grinding quantity, hot rolling is performed. Consequently, by grinding the surface layer containing defect by a necessary minimized quantity, the heat roll plate having no defect such as crack flaw or peeling flaw is obtained at high product yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面品質が特に重視さ
れるステンレス鋼連鋳片を、割れ疵,へゲ疵等の表面欠
陥を発生させることなく高い製品歩留りで熱間圧延する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hot rolling continuous cast stainless steel slabs, where surface quality is particularly important, with a high product yield without causing surface defects such as cracks and dents. .

【0002】[0002]

【従来の技術】ステンレス鋼を熱間圧延する際、ヤヘゲ
疵と呼ばれる山形状のへゲ疵が発生することがある。こ
の欠陥は、冷間圧延後も残存する。多くの場合、熱延鋼
帯では発見できない微細なヤヘゲ疵でも、冷間圧延され
た後では明確に認識される。ヘゲ疵等の表面欠陥は、特
に表面品質が重視されるステンレス鋼では致命的なもの
となる。表面欠陥のない鋼帯を得ようとすると歩留りが
低下し、大幅なコストアップを招く。また、注文サイズ
に合わずに不合格となる割合も大きくなる。欠陥発生の
メカニズムは、十分には解明されていないが、一般的に
は鋳造凝固時のオーステナイト粒界割れに起因している
と考えられている。すなわち、オーステナイト粒界に、
粒界割れを促進させる硫化物,酸化物等が生成し、鋳造
時に小さな割れを発生させるものと推測されている。ま
た、モールドバウダ−の噛み込み,介在物等の集積も原
因として掲げられている。
2. Description of the Related Art When stainless steel is hot-rolled, mountain-shaped dent defects, which are referred to as burrow defects, may occur. This defect remains even after cold rolling. In many cases, even fine baldness defects that cannot be found in hot-rolled steel strip are clearly recognized after cold rolling. Surface defects such as bald spots are fatal particularly in stainless steel where surface quality is important. If a steel strip having no surface defects is to be obtained, the yield will be reduced and the cost will be significantly increased. In addition, the proportion of rejects that do not match the order size also increases. Although the mechanism of defect generation has not been fully clarified, it is generally considered to be caused by austenite intergranular cracking during solidification by casting. That is, in the austenite grain boundary,
It is presumed that sulfides, oxides, etc. that promote intergranular cracks are generated and small cracks are generated during casting. In addition, the cause is also the biting of the mold bower and the accumulation of inclusions.

【0003】特開昭55−92255号公報では、連鋳
スラブ表面に現れる表面疵や集積物を低減するため、上
向き浸漬ノズル及びNi電磁モールドを使用している。
また、特開昭58−141835号公報では、鋳造時の
オシレーションマークの最大深さと幅の比を制御して表
面性状の良好なスラブを製造することによって、スラブ
の表面手人れを実施しないで熱延する方法などが提案さ
れている。しかし、これらの方法では、工業的に安定し
て製造するには困難をともなうと共に、完全にヤヘゲ疵
を無くするに至っていない。
In Japanese Patent Laid-Open No. 55-92255, an upward dipping nozzle and a Ni electromagnetic mold are used in order to reduce surface flaws and accumulated matter appearing on the surface of the continuous cast slab.
Further, in Japanese Patent Laid-Open No. 58-141835, the surface depth of the slab is not manipulated by controlling the maximum depth-width ratio of the oscillation marks during casting to produce a slab having good surface properties. A method of hot rolling is proposed. However, with these methods, it is difficult to industrially produce them stably, and at the same time, the beard defects are not completely eliminated.

【0004】表面欠陥の発生がない熱延鋼帯を得るため
には、クラック,介在物等の欠陥がある連鋳スラブの表
層部を熱延前に研削除去することが要求される。連鋳ス
ラブ全体のクラックの深さを測定することは不可能なた
め、熱間圧延前の表面研削は、経験に基づいて、通常は
スラブ厚みの約2〜3%程度の研削量に設定している。
しかし、製造条件によってスラブ表面の割れ深さが異な
ることから、研削量が不足する場合があり、熱延後のヤ
へゲ疵を防止するには至っていない。また、欠陥発生を
抑制するために大きな研削量を設定することは、製品歩
留り低下の原因となる。
In order to obtain a hot-rolled steel strip free from surface defects, it is required to grind and remove the surface layer portion of the continuous cast slab having defects such as cracks and inclusions before hot rolling. Since it is impossible to measure the crack depth of the entire continuous cast slab, surface grinding before hot rolling is usually set to a grinding amount of about 2-3% of the slab thickness based on experience. ing.
However, since the crack depth of the slab surface varies depending on the manufacturing conditions, the amount of grinding may be insufficient, and it has not yet been possible to prevent the burr after the hot rolling. Further, setting a large grinding amount in order to suppress the occurrence of defects causes a reduction in product yield.

【0005】熱延後の表面疵を防止する方法として、特
開昭57−16153号公報では、δフェライト量を制
御することが提案されている。この方法においては、次
式で定まるδフェライトの計算値δcal を4.0%以下
にしている。 δcal =3(Cr+Mo+1.5Si+0.5Nb) −2.8(Ni+Mn/2+Cu/2)−84(C+N)−19.8 また、連鋳時の溶鋼加熱温度(スーパーヒート)ΔTと
Nの積に応じて熱間圧延時の加熱温度を調整する方法
(特開昭57−127506号公報)、特殊成分を添加
して熱間強度を向上させる方法等も知られている。
As a method for preventing surface defects after hot rolling, JP-A-57-16153 proposes to control the amount of δ ferrite. In this method, the calculated value δcal of δ ferrite determined by the following equation is set to 4.0% or less. δcal = 3 (Cr + Mo + 1.5Si + 0.5Nb) -2.8 (Ni + Mn / 2 + Cu / 2) -84 (C + N) -19.8 Further, depending on the product of molten steel heating temperature (superheat) ΔT and N during continuous casting. There is also known a method of adjusting the heating temperature during hot rolling (JP-A-57-127506), a method of adding a special component to improve hot strength, and the like.

【0006】[0006]

【発明が解決しようとする課題】δフェライトの計算値
δcal を4.0%以下に抑えようとする方法は、製造し
ようとする鋼の合金設計が制約され、多くの鋼種につい
て汎用性に欠ける。たとえば、機械的性質、耐食性を考
慮して合金設計されるステンレス鋼においてδcal を
4.0%以下に抑えることは、製造可能なステンレス鋼
の鋼種が限られる。また、ステンレス鋼溶製時に目標設
定成分に100%適中させることも困難である。ΔT及
びN量は、連続鋳造中に変化する。また、加熱炉操業で
は同時に複数のスラブを加熱することから、全スラブを
対象に熱間圧延時の加熱温度を制御することは容易でな
い。そのため、ΔTとNの積に応じて熱間圧延時の加熱
温度を調整する方法も、実操業上の困難を伴う。
The method for suppressing the calculated value δcal of δ ferrite to be 4.0% or less limits the alloy design of the steel to be manufactured and lacks versatility for many steel types. For example, in stainless steel alloy-designed in consideration of mechanical properties and corrosion resistance, suppressing δcal to 4.0% or less limits the types of stainless steel that can be manufactured. In addition, it is also difficult to make 100% suitable for the target setting component during the melting of stainless steel. The ΔT and N contents change during continuous casting. In addition, since a plurality of slabs are heated at the same time in the heating furnace operation, it is not easy to control the heating temperature during hot rolling for all the slabs. Therefore, the method of adjusting the heating temperature during hot rolling according to the product of ΔT and N also involves difficulties in actual operation.

【0007】特殊成分を添加することにより熱間強度を
向上させる方法では、たとえばTiが添加材として使用
される。しかし、Ti添加によって介在物が増加し、ス
トリンガ一疵が増加する。また、特殊成分は価格的にも
高価なため、コストアップが著しいなどの問題がある。
本発明は、このような問題を解消すべく案出されたもの
であり、従来経験的に設定していた研削量に代え、熱間
圧延に先立って統計的手法を用いて欠陥の大きさを予測
して研削量を定め、欠陥を含む表層部を特定研削量で除
去することにより、表面品質が特に重視されるステンレ
ス鋼連鋳片を熱間圧延するときに発生する割れ疵、へゲ
疵等の表面欠陥を防止し、製品歩留りの向上及び後工程
の負荷を低減し、優れた表面性状をもつステンレス鋼帯
を製造することを目的とする。
In the method of improving the hot strength by adding a special component, for example, Ti is used as an additive. However, inclusion of Ti increases the number of inclusions and thus increases the number of stringer defects. Further, since the special component is expensive in price, there is a problem that the cost is significantly increased.
The present invention has been devised in order to solve such a problem, in place of the amount of grinding conventionally set empirically, prior to hot rolling, a statistical method is used to determine the size of defects. By predicting and determining the grinding amount and removing the surface layer part containing defects with a specific grinding amount, cracks and hair defects that occur when hot rolling stainless steel continuous cast pieces where surface quality is particularly important It is an object of the present invention to prevent such surface defects as described above, improve the product yield and reduce the load of the post-process, and manufacture a stainless steel strip having excellent surface properties.

【0008】[0008]

【課題を解決するための手段】本発明のステンレス鋼帯
製造方法は、その目的を達成するため、ステンレス鋼連
鋳片の検査面における最大クラック長さから熱間圧延す
る連鋳片全体のクラックの最大深さを予測し、予測され
たクラックの最大深さに基づいて算出した研削量で連鋳
片表面を研削した後、前記連鋳片を熱間圧延することを
特徴とする。
In order to achieve the object, the method for producing a stainless steel strip according to the present invention has a crack of the entire continuous cast piece hot-rolled from the maximum crack length on the inspection surface of the stainless steel continuous cast piece. Is predicted, and the surface of the continuous cast piece is ground by the grinding amount calculated based on the predicted maximum depth of the crack, and then the continuous cast piece is hot-rolled.

【0009】[0009]

【作 用】本発明者等は、連鋳スラブの表面(Z面)に
おける最大クラック長さの実測値とスラブ全体に存在す
るクラックの最大深さとの間に密接な関係があることを
実験的に見い出した。そこで、連鋳スラブの表面(Z
面)における最大クラック長さを実測し、実測値からス
ラブ全体に存在するクラックの最大深さを予測し、予測
値に対応する研削量でスラブをグラインダ,切削機等で
研削するとき、欠陥を含む表層部が除去される。このよ
うにして表面調整された連鋳片は、熱間圧延によって帯
材に圧延された状態で、割れ疵、へゲ疵等の表面欠陥が
ない高品質のものとなる。
[Operation] The inventors of the present invention have experimentally determined that there is a close relationship between the actual measurement value of the maximum crack length on the surface (Z plane) of the continuous casting slab and the maximum depth of cracks existing in the entire slab. Found in. Therefore, the surface of the continuous casting slab (Z
The maximum crack length on the surface) is measured, the maximum depth of cracks existing in the entire slab is predicted from the measured value, and when the slab is ground with a grinder, a cutting machine, etc. with a grinding amount corresponding to the predicted value, defects are detected. The containing surface layer portion is removed. The continuous cast piece whose surface has been adjusted in this manner has a high quality without surface defects such as cracks and dents in the state of being rolled into a strip by hot rolling.

【0010】スラブ等の連鋳片の表面(Z面)には、無
数のクラックや疵が存在している。この連鋳片からサン
プルを切り出し、連鋳片表面(Z面)における最大クラ
ック長さを実測する。クラック長さの測定は、検査部分
が重複しないようにn回繰返し行うことが好ましい。た
とえば、測定したn個のクラック長さを式(1)に示す
ように小さい順に並べ直し、集合lj(j=1〜n)とす
る。 l1 <l2 <l3 ・・・<lj ・・・<lmax ・・・・(1) 集合lj(j=1〜n)について、累積分布関数Fj(%)
又は基準化変数yj を計算する。 Fj(%) =j/(n+1)*100 ・・・・(2) yj =−ln [−ln(j/(n+1)] ・・・・(3)
Innumerable cracks and flaws are present on the surface (Z surface) of a continuous cast piece such as a slab. A sample is cut out from this continuous cast piece, and the maximum crack length on the surface (Z plane) of the continuous cast piece is measured. The measurement of the crack length is preferably repeated n times so that the inspection portions do not overlap. For example, the measured n crack lengths are rearranged in ascending order as shown in the equation (1) to form a set l j (j = 1 to n). l 1 <l 2 <l 3 ... <l j ... <l max ... (1) For set l j (j = 1 to n), cumulative distribution function F j (%)
Alternatively, the standardized variable y j is calculated. F j (%) = j / (n + 1) * 100 ···· (2) y j = -l n [-l n (j / (n + 1)] ···· (3)

【0011】累積分布関数Fj(%) 又は基準化変数yj
の何れによっても実測値lj から最大クラック長さを求
めることができる。ここでは、基準化変数yj を使用し
て最大クラック長さを推定する手法を説明する。最大ク
ラック長さと基準化変数yjとの関係から、最小二乗法
によって式(4)の最大クラック長さ分布直線が求めら
れる。なお、式(4)におけるa及びbは、検査サンプ
ルの実測により定まる定数である。 lj =ayj +b ・・・・(4) また、検査面積S0 と予測面積Sとの関係は、式(5)
で表される。 T= (S+S0)/S0 ・・・・(5) Tに対する予測面積率Fは、式(6)で表され、予測面
積率Fに対する基準化変数yは、式(7)で求められ
る。 F=(T−1/T) ・・・・(6) y=−ln(−ln ・F) ・・・・(7)
Cumulative distribution function F j (%) or standardized variable y j
In either case, the maximum crack length can be obtained from the measured value l j . Here, a method of estimating the maximum crack length using the standardized variables y j will be described. From the relationship between the maximum crack length and the standardized variable y j , the maximum crack length distribution straight line of the equation (4) is obtained by the least square method. In addition, a and b in the equation (4) are constants determined by actual measurement of the inspection sample. l j = ay j + b (4) Further, the relationship between the inspection area S 0 and the predicted area S is expressed by the equation (5).
It is represented by. T = (S + S 0 ) / S 0 (5) The predicted area ratio F for T is expressed by the formula (6), and the standardized variable y for the predicted area ratio F is calculated by the formula (7). . F = (T-1 / T ) ···· (6) y = -l n (-l n · F) ···· (7)

【0012】式(7)で求めた予測面積率Fに対する基
準化変数yの値を式(4)に代入することにより、最大
クラック長さが得られる。一方、連鋳片表面のクラック
長さとクラック深さとの関係は、表面を段削りして長さ
と深さとの関係を求める表面切削法,連鋳片表面(Z
面)の長さと同一クラックのC断面を切断しクラック深
さを測定するC断面切削法,連鋳片のクラックを切り出
し引張り試験機で引張り破断した後にクラック長さとク
ラック深さを測定するクラック切出し法,超音波顕微鏡
法,X線透過試験法等によって求めることができる。得
られたクラック長さとクラック深さとの関係に、式
(4)で得られたクラック長さを代入することにより、
圧延しようとする連鋳片の最大クラック深さが予測され
る。
The maximum crack length can be obtained by substituting the value of the standardized variable y for the predicted area ratio F obtained by the equation (7) into the equation (4). On the other hand, regarding the relationship between the crack length and the crack depth on the surface of the continuous cast piece, the surface cutting method for obtaining the relationship between the length and the depth by stepping the surface, the surface of the continuous cast piece (Z
C-section cutting method for cutting the C-section of the same crack as the length of the surface) and measuring the crack depth, crack-cutting for measuring the crack length and crack depth after cutting the crack of the continuous cast slab and tensile rupturing with a tensile tester Method, ultrasonic microscopy, X-ray transmission test, etc. By substituting the crack length obtained by the equation (4) into the obtained crack length and crack depth,
The maximum crack depth of the continuous cast piece to be rolled is predicted.

【0013】予測された最大クラック深さの値に5−1
0%程度を加算した研削量で、グラインダー,研削機等
によって連鋳片の表面(Z面)を研削手入れする。この
ようにして、本発明においては、スラブ等の連鋳片から
サンプルを切り出し、連鋳片表面(Z面)における最大
クラック長さを実測する。実測値に基づき、熱間圧延す
る連鋳片全体に存在するクラックの最大長さを極値統計
法によって推定し、推定された最大クラック長さからス
ラブ全体の最大クラック深さを予測する。この予測に
は、予め求めているクラック長さとクラック深さの関係
が利用される。予測されたクラック深さに基づき、熱間
圧延される連鋳片の研削量が決定される。連鋳片は、決
定された研削量で研削された後、熱間圧延される。得ら
れた熱延板、及びこの熱延板の冷延によって製造された
冷延板は、表面疵等の欠陥がない鋼帯になる。
The predicted maximum crack depth value is 5-1
The surface (Z surface) of the continuous cast piece is ground and trimmed with a grinder, a grinder, etc., with an amount of grinding added about 0%. Thus, in the present invention, a sample is cut out from a continuous cast piece such as a slab and the maximum crack length on the surface (Z plane) of the continuous cast piece is measured. Based on the measured value, the maximum length of cracks existing in the entire hot-rolled continuous cast piece is estimated by the extreme value statistical method, and the maximum crack depth of the entire slab is predicted from the estimated maximum crack length. For this prediction, the relationship between the crack length and the crack depth obtained in advance is used. Based on the predicted crack depth, the grinding amount of the continuously cast slab to be hot rolled is determined. The continuous cast piece is hot-rolled after being ground by the determined grinding amount. The obtained hot-rolled sheet and the cold-rolled sheet produced by cold-rolling the hot-rolled sheet are steel strips having no defects such as surface defects.

【0014】[0014]

【実施例】表1に組成を示したオーステナイト系ステン
レス鋼SUS430Nを通常の大気溶解炉で溶製し、連
鋳スラブに鋳造した。
Example Austenitic stainless steel SUS430N having the composition shown in Table 1 was melted in a normal atmospheric melting furnace and cast into a continuous cast slab.

【表1】 [Table 1]

【0015】スラブの表面(Z面)7m2 ごとにZ面の
面積が0.02m2 のサンプルを切り出した。サンプル
を更に30個の小片に分割し、それぞれの表面(Z面)
におけるクラック長さを顕微鏡で測定した。そして、各
小片における最大クラック長さを求め、クラック長さの
小さい順に並べ替え、それぞれlj (j=1〜30)と
した。表2は、並べ替えたクラック長さを示す。
A sample having an area of the Z plane of 0.02 m 2 was cut out for each 7 m 2 of the surface (Z plane) of the slab. The sample is further divided into 30 pieces and each surface (Z plane)
The crack length was measured with a microscope. Then, the maximum crack length in each small piece was obtained, and the pieces were rearranged in the ascending order of the crack length to be l j (j = 1 to 30). Table 2 shows the rearranged crack lengths.

【表2】 [Table 2]

【0016】更に、j(j=1〜30)について、式
(2)に従って基準化変数yj を計算した。また、最大
クラック長さlj と基準化変数yj から式(8)の最大
クラック長さ分布直線が求められた。 yj =0.826lj −0.921 ・・・・(8) 次いで、サンプルの検査面積 (S0 =0.02m2)か
ら、スラブ全体の予測しようとする面積 (S=7m2)に
おける最大クラック長さを予測する。予測しようとする
面積 (S=7m2)の予測面積率Fは、式(4)及び式
(5)からF=0.99715となる。この予測しよう
とする面積率を基準化するとき、式(6)が使用され
る。すなわち、検査面積及び予測面積からyj が決ま
り、検査面積 (S0 =0.02m2)から予測面積 (S=
7m2)を予測し基準化すると5.86となる。得られた
j の値を式(8)の最大クラック長さ分布直線に代入
すると、最大クラック長さ5.979mmが求められ
る。
Further, for j (j = 1 to 30), the standardized variable y j was calculated according to the equation (2). Further, the maximum crack length distribution straight line of the equation (8) was obtained from the maximum crack length l j and the standardized variable y j . y j = 0.826l j −0.921 (8) Next, in the area to be predicted (S = 7 m 2 ) of the entire slab from the inspection area (S 0 = 0.02 m 2 ) of the sample. Predict the maximum crack length. The predicted area ratio F of the area to be predicted (S = 7 m 2 ) is F = 0.99715 from the expressions (4) and (5). Equation (6) is used when normalizing the area ratio to be predicted. That is, y j is determined from the inspection area and the predicted area, and the predicted area (S == 0 ) is calculated from the inspection area (S 0 = 0.02 m 2 ).
7m 2 ) is predicted and standardized to be 5.86. Substituting the obtained value of y j into the maximum crack length distribution straight line of the formula (8), the maximum crack length of 5.979 mm is obtained.

【0017】サンプルのクラックを切り出し引張り試験
機で引張り破断した後、クラック長さ及びクラック深さ
を調査したところ、両者の間に図1に示す関係が成立し
ていた。図1から、スラブ表面のクラック長さy(m
m)は、スラブのC断面における最大クラック深さd
(mm)との間に式(9)の関係があることが判った。 d=1.049y ・・・・(9) 式(9)を使用して最大クラック長さから最大クラック
深さを予測することにより、連鋳スラブの表面7m2
最大深さ6.27mmのクラックが存在することが予測
された。そこで、この最大深さ6.27mmのクラック
が研削除去されるように、研削量7.0mmで連鋳スラ
ブの表面をグラインダによって研削した。研削後の連鋳
スラブを熱間圧延し、得られた熱延板の表面におけるヤ
ヘゲ疵の発生状況を調査した。調査結果を、表3に示
す。表3において、スラブ1が計算例の場合に相当し、
従来法では研削量を一定値6.0mmに設定した。
After the cracks in the sample were cut out and tensilely broken by a tensile tester, the crack length and crack depth were investigated, and the relationship shown in FIG. 1 was established between them. From Fig. 1, the crack length y (m
m) is the maximum crack depth d in the C cross section of the slab
It has been found that there is a relation of (9) with (mm). d = 1.049y (9) By predicting the maximum crack depth from the maximum crack length using the formula (9), the maximum depth of 6.27 mm can be measured on the surface 7 m 2 of the continuous casting slab. The presence of cracks was predicted. Therefore, the surface of the continuous cast slab was ground by a grinder with a grinding amount of 7.0 mm so that the crack having the maximum depth of 6.27 mm was ground and removed. The continuous cast slab after grinding was hot-rolled, and the state of occurrence of bald spot defects on the surface of the obtained hot-rolled sheet was investigated. The results of the investigation are shown in Table 3. In Table 3, slab 1 corresponds to the calculation example,
In the conventional method, the grinding amount was set to a constant value of 6.0 mm.

【表3】 [Table 3]

【0018】表3から明らかなように、本発明に従って
研削された連鋳スラブを圧延することにより製造された
熱延板には、ヤヘゲ疵の発生は検出されなかった。ま
た、製品歩留りも、80〜85%と安定していた。これ
に対し、研削量を6.0mmの一定値に保って研削した
連鋳スラブから得られた熱延板では、ヤヘゲ疵の発生と
共に製品歩留りが大幅に低下した。
As is clear from Table 3, the occurrence of burnt spots was not detected in the hot-rolled sheet produced by rolling the continuous cast slab ground according to the present invention. The product yield was also stable at 80 to 85%. On the other hand, in the hot-rolled sheet obtained from the continuous casting slab that was ground while keeping the grinding amount at a constant value of 6.0 mm, the yield of the product was significantly decreased along with the occurrence of bald defects.

【0019】[0019]

【発明の効果】以上に説明したように、本発明によると
き、従来の経験に基づいて研削量を決定する方法に比較
し、より具体的に研削量を決定することができる。その
ため、余分な切削を必要とすることなく、切削歩留りが
向上すると共に、熱延板,鋼帯,更には冷延鋼板や鋼帯
におけるヤヘゲ疵の発生が防止される。また、製造方法
自体も従来と格別に相違するものではなく、余分な費用
負担を必要とするものではない。このようにして、優れ
た表面性状をもつステンレス鋼帯を安価に製造すること
が可能となる。
As described above, according to the present invention, the grinding amount can be more specifically determined as compared with the method of determining the grinding amount based on the conventional experience. Therefore, the cutting yield is improved without the need for extra cutting, and the occurrence of burn marks on the hot-rolled sheet, the steel strip, and further the cold-rolled steel sheet and the steel strip is prevented. Further, the manufacturing method itself is not significantly different from the conventional one, and no extra cost is required. In this way, it becomes possible to inexpensively manufacture a stainless steel strip having excellent surface properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ステンレス鋼SUS304Nのクラック長さ
とクラック深さとの関係を示すグラフ
FIG. 1 is a graph showing the relationship between crack length and crack depth of stainless steel SUS304N.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼連鋳片の検査面における最
大クラック長さから熱間圧延する連鋳片全体のクラック
の最大深さを予測し、予測されたクラックの最大深さに
基づいて算出した研削量で連鋳片表面を研削した後、前
記連鋳片を熱間圧延することを特徴とする優れた表面性
状をもつステンレス鋼帯の製造方法。
1. The maximum depth of cracks in the entire hot-rolled continuous cast piece is predicted from the maximum crack length on the inspection surface of the stainless steel continuous cast piece, and is calculated based on the predicted maximum depth of cracks. A method for producing a stainless steel strip having excellent surface properties, comprising grinding the surface of a continuous cast slab with a grinding amount and then hot rolling the continuous cast slab.
JP5032869A 1993-01-28 1993-01-28 Manufacture of stainless steel belt having excellent surface quality Withdrawn JPH06226569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5032869A JPH06226569A (en) 1993-01-28 1993-01-28 Manufacture of stainless steel belt having excellent surface quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5032869A JPH06226569A (en) 1993-01-28 1993-01-28 Manufacture of stainless steel belt having excellent surface quality

Publications (1)

Publication Number Publication Date
JPH06226569A true JPH06226569A (en) 1994-08-16

Family

ID=12370875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5032869A Withdrawn JPH06226569A (en) 1993-01-28 1993-01-28 Manufacture of stainless steel belt having excellent surface quality

Country Status (1)

Country Link
JP (1) JPH06226569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016566A1 (en) * 2003-08-13 2005-02-24 Jfe Steel Corporation Method of manufacturing steel strip or surface-treated steel strip
CN111085871A (en) * 2020-01-10 2020-05-01 曾永宏 Automatic cutting, polishing and arc punching device for automobile guard bar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016566A1 (en) * 2003-08-13 2005-02-24 Jfe Steel Corporation Method of manufacturing steel strip or surface-treated steel strip
CN1311235C (en) * 2003-08-13 2007-04-18 杰富意钢铁株式会社 Method of manufacturing steel strip or surface-treated steel strip
CN111085871A (en) * 2020-01-10 2020-05-01 曾永宏 Automatic cutting, polishing and arc punching device for automobile guard bar

Similar Documents

Publication Publication Date Title
US8220525B2 (en) Method for predicting surface quality of thin slab hot rolled coil and method for producing thin slab hot rolled coil using the same
JPH06226569A (en) Manufacture of stainless steel belt having excellent surface quality
Sychkov et al. The transformation of defects in continuous-cast semifinished products into surface defects on rolled products
JP3596290B2 (en) Steel continuous casting method
JP6611288B1 (en) Ti-containing Fe-Ni-Cr alloy excellent in slit cut surface quality and manufacturing method thereof
KR20170003669A (en) Method for continuous casting of steel
JP2006272385A (en) Thick steel plate cutting method
KR20170068645A (en) Method for manufacturing steel plate
JP5831118B2 (en) Method and apparatus for continuous casting of steel
JP4545130B2 (en) Steel plate manufacturing method
JP3555446B2 (en) Thick steel plate with excellent laser cutting ability
KR100397295B1 (en) Reduction of surface sliver defects in 304 series stainless steel castings
JP2000271712A (en) Judging method of surface defect evaluation on cast slab in continuous casting process
JP2006021218A (en) Method for determining amount of scarfing for ingot
JPH08281305A (en) Manufacture of cr-ni base stainless steel without generating surface defect in hot rolling
JP5130973B2 (en) Slab continuous casting method
JPH1112652A (en) Production of austentic stainless steel plate having uniform gloss surface
JP3494136B2 (en) Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate
JP3358134B2 (en) Method for evaluating inclusions in wires
JP3356100B2 (en) Continuous casting method
JPH10263770A (en) Method for repairing scarfing of slab
JP4202818B2 (en) Bi steel continuous casting method
JP3423815B2 (en) Method for producing ferritic stainless steel to prevent surface flaws from occurring during hot rolling
JP2773813B2 (en) Alloy manufacturing method
JP3775178B2 (en) Thin steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404