JPH0622572B2 - Biological zirconia implant material - Google Patents

Biological zirconia implant material

Info

Publication number
JPH0622572B2
JPH0622572B2 JP62195349A JP19534987A JPH0622572B2 JP H0622572 B2 JPH0622572 B2 JP H0622572B2 JP 62195349 A JP62195349 A JP 62195349A JP 19534987 A JP19534987 A JP 19534987A JP H0622572 B2 JPH0622572 B2 JP H0622572B2
Authority
JP
Japan
Prior art keywords
implant material
zirconia
mol
biological
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62195349A
Other languages
Japanese (ja)
Other versions
JPS6440058A (en
Inventor
昌晃 服部
和夫 近藤
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP62195349A priority Critical patent/JPH0622572B2/en
Publication of JPS6440058A publication Critical patent/JPS6440058A/en
Publication of JPH0622572B2 publication Critical patent/JPH0622572B2/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16339688&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0622572(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、歯科、整形外科等の医療技術に用いられる生体用インプラント材に関する。 BACKGROUND OF THE INVENTION (FIELD OF THE INVENTION) The present invention, dental, relates biomedical implant material used in medical technology orthopedic like.

(従来の技術) 従来、医療用インプラント材はステンレス、チタン合金などの耐腐食性に富んだ金属の他に、金属イオン溶出のないアルミナセラミツクスが多用されている。 The (prior art) prior medical implant material stainless steel, other metals rich in corrosion resistance, such as titanium alloys, no metal ion elution alumina ceramic try is frequently used. さらに近年、アルミナセラミツクス同様金属イオン溶出がなく、 More recently, alumina ceramic try without similarly metal ion elution,
しかも高強度、高靭性を持つ部分安定化ジルコニアが生体用インプラント材として試用されつつある。 Moreover high strength, becoming partially stabilized zirconia having high toughness is tried as a biological implant material.

(発明が解決しようとする問題点) しかしながら、上記従来のものにおいては、ステンレス、チタン合金などの場合、長期間体内に埋設された時、体液の影響により部分的に腐食が進行してしまつたり、埋設部位の形状に合わせて加工する技術が大変困難なため、その加工コストが上昇し、また、部分安定化ジルコニアの場合、長期間の体内埋設により表面の正方晶ZrO が漸次単斜晶ZrO に転移してしまい、この転移がある程度以上進行すると強度の劣化を招く。 (To be Solved by the Invention Problems) However, in those of the prior art, stainless steel, when such a titanium alloy, when a long period of time embedded in the body, partially corroded by the influence of body fluid progresses apology or, for a technique for processing in accordance with the shape of the buried region is very difficult, the processing cost is increased and also, if the partial stabilized zirconia, tetragonal ZrO 2 is gradually monoclinic surfaces by long term body buried will spread to crystal ZrO 2, leading to deterioration in strength when this transition progresses beyond a certain. そこで、この発明は上記従来のものの持つ欠点を改善するものであり、生体用インプラント材として優れた性質をもつ、部分安定化ジルコニアを使用することができるようにしたものである。 Accordingly, the invention is to remedy the drawbacks possessed by those of the prior, has excellent properties as a biomedical implant material, in which to be able to use partially stabilized zirconia.

(問題点を解決するための手段) そのために、Y を2mol%以上6mol%未満含有し、共沈法又は加水分解法等によつて得られる、Y For (means for solving the problems) As the Y 2 O 3 and contains less than 2 mol% than 6 mol%, the resulting Te cowpea to coprecipitation or hydrolysis method, Y
の分散性の良好な部分安定化ジルコニアの微粉末を成形焼結した焼結体の粒径が0.8μm以下である生体用ジルコニアインプラント材を提供するものである。 The particle size of the sintered body formed sintered fine powder of having good dispersibility partially stabilized zirconia 2 O 3 is intended to provide a biological zirconia implant material is 0.8μm or less.
更に、Al 及び又はTiNをジルコニアの150 Further, Al 2 O 3 and or 150 of TiN zirconia
%以下加えて、成形焼結し、結晶粒径0.8μm以下とした生体用ジルコニアインプラント材を提供するものである。 % In addition less, molded sintered, there is provided a biomedical zirconia implant material in which the following grain size 0.8 [mu] m.

(作用) 以上の構成を備えるので、体内中において長期間さらされても、表面のZrO の結晶状態の変化を防ぐことができ、強度の劣化も防ぐこともできるものである。 Since having the configuration described above (action), even prolonged exposure during the body, it is possible to prevent a change in the crystalline state of ZrO 2 surface, in which it is possible to prevent deterioration of strength.

(実施例) この発明を図に示す実施例により更に説明する。 (Example) further illustrated by examples showing the present invention in FIG. (1) (1)
は、この発明の実施例である人工股関節であり、この人工股関節(1)はソケツトに回動自在に遊嵌される骨頭球 Honeatamadama is an artificial hip joint is an embodiment of the present invention, the artificial hip joint (1) is loosely fitted rotatably sockets
(2)と、人工股関節として固持できるように、体内に埋設される支持部(3)から構成される。 And (2), so that it can persist as an artificial hip joint, and a supporting portion which is embedded in the body (3). この骨頭球(2)は、 The bone head ball (2),
を2mol%以上6mol%未満含有する、共沈法又は加水分解法で得られた微粉末原料を用いた、平均粒径を0.8μm以下とした焼結体である。 Y 2 O 3 and contains less than 2 mol% than 6 mol%, with fine powder raw material obtained by coprecipitation or hydrolysis method, the average particle diameter of a sintered body was 0.8μm or less. このため、この人工股関節(1)を体内に埋設、遊嵌することによつて体液にさらされても、骨頭球(2)の表面の結晶が正方晶ZrO から単斜晶ZrO に変化することが最小限に防げるため、相転移によつて生じる強度の劣化を防ぐことができる。 Therefore, changing the hip prosthesis (1) buried in the body, even when exposed to by connexion body fluid to loosely from crystal tetragonal ZrO 2 in the surface of Honeatamadama (2) to the monoclinic ZrO 2 since it can be prevented to a minimum, it is possible to prevent the strength degradation of the resulting Te cowpea phase transition. また上述した部分安定化ジルコニア微粉末に対して、Al やTiNを150重量%以下添加したもので、同様の骨頭球(2)を製作したものでも十分に強度の劣化を抑制できる。 The relative partially stabilized zirconia powder as described above, which was the as Al 2 O 3 and TiN was added 150 wt% or less, even those fabricated similar condyle ball (2) can suppress the deterioration of sufficient strength. こうして、A:Y Thus, A: Y 2
量2.6mol%の共沈YSZ(Y 部分安定化ジルコニア)原料を使用し、その焼結体粒径0.8μ Using O 3 amount 2.6 mol% of co-precipitation YSZ (Y 2 O 3 partially stabilized zirconia) materials, the sintered body grain size 0.8μ
mとしたもの、B:Y 量2.6mol%の共沈Y those with m, B: Y 2 O 3 amount 2.6 mol% of co-precipitation Y
SZ原料にAl を50重量%添加した原料を粒径0.8μmに焼結したもの、C:Y 量2.6mo SZ material to that by sintering a raw material of Al 2 O 3 was added 50 wt% in the particle size 0.8μm, C: Y 2 O 3 amount 2.6mo
l%、Y ・ZrO 単味原料混合、粒径0.8μ l%, Y 2 O 3 · ZrO 2 plain raw mix, particle size 0.8μ
mとしたもの、D:Y 量2.6mol%、の共沈YSZ原料、粒径1.5μmとしたもの、E:Y those with m, D: Y 2 O 3 amount 2.6 mol%, the co-precipitation YSZ material, those having a particle diameter of 1.5μm, E: Y 2 O 3
量1.9mol%、共沈原料、焼結体粒径0.8μmとしたもの、以上AからEの5種類の骨頭球を37℃生理的食塩水及び乳酸リンゲル液に浸漬する耐腐食性実験を実施、700日間浸漬し、定期的に表面をX線検査したところ、A、Bにおいては試料表面部の結晶相の変化が20%以下であり、経時的に飽和状態を示した。 The amount 1.9 mol%, the coprecipitated material, which was sintered body grain size 0.8 [mu] m, the corrosion resistance experiment of immersing from A to five femoral head sphere 37 ° C. saline and Ringer's lactate solution E above implementation, soaked 700 days, where the regular surface was examined X-ray, a, not more than 20% change in the crystal phase of the sample surface portion in B, over time show saturation. C、D C, D
とEは、その変化量が40%を超え、さらに増大する傾向を示していた。 And E is the amount of change exceeds 40%, showed a tendency to further increase. さらに、上記AからEの試料に対して抗折強度試験を施した結果、AとBを除いて、劣化が見られたのに対して、AとBは、当初の強度を保持し、その効果が十分に認められた。 Furthermore, the result subjected to bending strength test on samples of E from the A, except for the A and B, whereas degradation was seen, A and B, retains the original strength, the effect was observed enough. なお(4)は埋設過剰を防止する鍔部である。 Note (4) is a flange portion for preventing the embedded excessive.

(発明の効果) 以上のとおり、生体用ジルコニアインプラント材の結晶相の転移を抑制することで、その相転移によつて生ずる強度の劣化を防ぎ、長期間人体内に埋設しても、十分に機能を発揮できる優れた効果をもつものである。 As described above (Effect of the Invention), by suppressing the metastasis of a crystalline phase of the biological zirconia implant material to prevent deterioration of strength occur through cowpea its phase transition, be embedded in a long period of time in the human body, sufficiently those having an excellent effect it can function.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

第1図は、この発明の部分的断面斜視図である。 Figure 1 is a partial cross-sectional perspective view of the present invention. 1……人工股関節、2……骨頭球、3……支持部。 1 ...... artificial hip joint, 2 ...... Honeatamadama, 3 ...... support.

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】Y を2mol%以上6mol%未満含み、共沈法又は加水解法で得られる、Y の分散性の良好な部分安定化ジルコニアの微粉末を成形焼結した平均焼結体粒径0.8μm以下である生体用ジルコニアインプラント材。 1. A Y 2 O 3 and containing less than 2 mol% than 6 mol%, obtained by coprecipitation or hydrolysis solution was molded sintered fine powder of having good dispersibility partially stabilized zirconia Y 2 O 3 the average sintered grain size biological zirconia implant material is 0.8μm or less.
  2. 【請求項2】上記部分安定化ジルコニア微粉末に、Al To wherein said partially stabilized zirconia fine powder, Al
    及び又はTiNを、150重量%以下添加したものを成形焼結した特許請求の範囲第1項記載の生体用ジルコニアインプラント材。 The 2 O 3 and or TiN, molded sintered claims biomedical zirconia implant material ranging first claim of the material obtained by adding 150 wt% or less.
JP62195349A 1987-08-06 1987-08-06 Biological zirconia implant material Expired - Lifetime JPH0622572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62195349A JPH0622572B2 (en) 1987-08-06 1987-08-06 Biological zirconia implant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62195349A JPH0622572B2 (en) 1987-08-06 1987-08-06 Biological zirconia implant material

Publications (2)

Publication Number Publication Date
JPS6440058A JPS6440058A (en) 1989-02-10
JPH0622572B2 true JPH0622572B2 (en) 1994-03-30

Family

ID=16339688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62195349A Expired - Lifetime JPH0622572B2 (en) 1987-08-06 1987-08-06 Biological zirconia implant material

Country Status (1)

Country Link
JP (1) JPH0622572B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2229963A2 (en) 2003-10-30 2010-09-22 Kyocera Corporation Biomedical member and method for producing the same
EP2240116B1 (en) 2008-01-28 2015-07-01 Biomet 3I, LLC Implant surface with increased hydrophilicity

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644691B1 (en) * 1989-03-23 1991-11-15 Desmarquest Ceramiques Tech Femoral prosthesis using a ceramic ball of small diameter
GB9015890D0 (en) * 1990-07-19 1990-09-05 Tioxide Group Services Ltd Process for forming ceramics
JP3234701B2 (en) * 1993-12-24 2001-12-04 株式会社ボッシュオートモーティブシステム Ultrasonic detection device
JP2000016863A (en) 1998-06-30 2000-01-18 Kyocera Corp Alumina ceramic biosubstance
EP3109336B1 (en) * 2014-02-21 2019-08-14 Maruemu Works Co., Ltd Dental member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ORTHOPAEDIC CERAMIC IMPLANTS=1986 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2229963A2 (en) 2003-10-30 2010-09-22 Kyocera Corporation Biomedical member and method for producing the same
EP2240116B1 (en) 2008-01-28 2015-07-01 Biomet 3I, LLC Implant surface with increased hydrophilicity

Also Published As

Publication number Publication date
JPS6440058A (en) 1989-02-10

Similar Documents

Publication Publication Date Title
Maniatopoulos et al. Threaded versus porous‐surfaced designs for implant stabilization in bone‐endodontic implant model
US6312473B1 (en) Orthopedic implant system
EP0560279B1 (en) Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
Mändl et al. Improving the biocompatibility of medical implants with plasma immersion ion implantation
JP2578419B2 (en) Ceramics treated metal implants
Silva et al. Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications
US4293302A (en) Tooth implants
Ask et al. Preparation and surface spectroscopic characterization of oxide films on Ti6Al4V
US7632575B2 (en) Laser based metal deposition (LBMD) of implant structures
US5077132A (en) Biocompatible composite material and a method for producing the same
EP0640353A2 (en) Surface and near surface hardened medical implants
Albrektsson et al. The interface zone of inorganic implantsIn vivo: Titanium implants in bone
Kuphasuk et al. Electrochemical corrosion of titanium and titanium-based alloys
US6168633B1 (en) Composite surface composition for an implant structure
US7070623B2 (en) Method of surface oxidizing zirconium and zirconium alloys and resulting product
CA2629600C (en) Deposition of discrete nanoparticles on an implant surface
EP0608997A1 (en) Endoprostheses for tissue protection
US5330826A (en) Preparation of ceramic-metal coatings
US7582117B2 (en) Method of surface oxidizing zirconium and zirconium alloys and resulting product
Okazaki A new Ti–15Zr–4Nb–4Ta alloy for medical applications
EP1409036B1 (en) Prosthetic devices employing oxidized zirconium surfaces contacting surfaces of cross-linked polyethylene
US20110208304A1 (en) Laser Based Metal Deposition LBMD of Antimicrobials to Implant Surfaces
US20090010981A1 (en) Antimicrobial material for implanting in bones
JP2006511272A (en) Bidirectional hip prosthesis device using diffusion hardened surface
CA1253269A (en) Dental aluminate cement composition