JPH06225481A - Wireless type power supply apparatus for submerged electric machine - Google Patents
Wireless type power supply apparatus for submerged electric machineInfo
- Publication number
- JPH06225481A JPH06225481A JP50A JP801493A JPH06225481A JP H06225481 A JPH06225481 A JP H06225481A JP 50 A JP50 A JP 50A JP 801493 A JP801493 A JP 801493A JP H06225481 A JPH06225481 A JP H06225481A
- Authority
- JP
- Japan
- Prior art keywords
- water
- receiving antenna
- antenna
- power
- underwater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manipulator (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水中の電気機器に無線
方式で電力を供給する電力供給装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device for supplying electric power to underwater electric equipment by a wireless system.
【0002】[0002]
【従来の技術】近年、電波をエネルギの伝送に使用する
ことが盛んに提案されている。例えば、地球周回軌道の
太陽光発電プラント衛星から、マイクロ波で地上の受電
設備へ電力を供給する構想や、飛行中の小型飛行機に、
地上からマイクロ波で飛行動力源としての電力を供給す
る構想が提案されている。2. Description of the Related Art Recently, the use of radio waves for energy transmission has been actively proposed. For example, for the concept of supplying power from a solar power plant satellite in an orbit around the earth to a power receiving facility on the ground with a microwave, or for a small airplane in flight,
A concept of supplying electric power as a flight power source by microwaves from the ground has been proposed.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来の電波に
よるエネルギ伝送は宇宙空間や大気中での利用のみが考
えられ、水中での利用に関しては全く考慮されていな
い。これは、高周波電波は水中では伝播しないというこ
とが常識とされているためである。However, conventional energy transmission by radio waves is considered to be used only in outer space and the atmosphere, and is not considered at all when used in water. This is because it is common knowledge that high frequency radio waves do not propagate in water.
【0004】本発明の目的は、従来の常識の殻を破り、
水中の電気機器に対して無線方式で電力を供給すること
にある。The object of the present invention is to break the conventional common sense shell,
The purpose is to supply electric power to underwater electric devices by a wireless method.
【0005】[0005]
【課題を解決するための手段】本発明の特徴は、大気中
又は水中に配置した発信アンテナにメガヘルツ帯(10
6〜109Hz)の高周波電力を供給し、該アンテナから
発する高周波電波を、水中に配置した 受信アンテナで
受信し、該受信アンテナに接続した電気機器に電力を供
給するようにしたことである。A feature of the present invention is that a transmitting antenna placed in the atmosphere or in water has a megahertz band (10).
6 to 10 9 Hz) high frequency power is supplied, high frequency radio waves emitted from the antenna are received by a receiving antenna placed underwater, and power is supplied to an electric device connected to the receiving antenna. .
【0006】[0006]
【作用】メガヘルツ帯の高周波電波は、水中を伝播しな
いというのが、電波の専門家や実務家たちの従来の常識
通説であった。これは水中での電波の減衰率が高周波ほ
ど大きいからであり、このため潜水艦との間の水中通信
には低周波(20kHz以下)の電波のみが使用されて
きた。しかるに、本発明者はこの常識を覆す新事実を発
見した。[Function] It has been a common wisdom that radio wave experts and practitioners have assumed that high frequency radio waves in the megahertz band do not propagate in water. This is because the attenuation rate of radio waves in water is higher as the frequency is higher. Therefore, only radio waves of low frequency (20 kHz or less) have been used for underwater communication with submarines. However, the present inventor has discovered a new fact that overturns this common sense.
【0007】すなわち、本発明者は先の特許出願(特願
平2−316728号)で、有線方式で鋼管水路内のア
ンテナに150〜450MHzの高周波電源を供給する
ことにより、アンテナ周辺に振動磁界電界場を発生させ
たが、このとき、偶然にも、鋼管水路外に配置した超精
密高周波測定器が当該鋼管水路内に配置したアンテナか
らのものと思われる高周波電波を受信したことに気が付
いた。何度も繰り返し実験してみた結果、確かに鋼管水
路内のアンテナから高周波電波が出ていることが確認さ
れた。That is, the present inventor, in the previous patent application (Japanese Patent Application No. 2-316728), supplies a high-frequency power source of 150 to 450 MHz to the antenna in the steel pipe water channel by a wire system to generate an oscillating magnetic field around the antenna. An electric field was generated, but at this time, by chance, I noticed that the ultra-precision high-frequency measuring instrument placed outside the steel pipe channel received high-frequency radio waves that seemed to be from the antenna placed inside the steel pipe channel. . As a result of repeated experiments, it was confirmed that high-frequency radio waves were indeed emitted from the antenna in the steel pipe water channel.
【0008】従来の常識に従えば、150〜450MH
zもある高周波電波は、とても水中を伝播するものでは
ない。しかるに、現実は、このような高周波電波でも水
中を伝播し、更に鋼管外へと出ていくのである。According to the conventional wisdom, 150-450 MH
High-frequency radio waves with z also do not propagate in water very much. However, in reality, even such high-frequency radio waves propagate in water and go out of the steel pipe.
【0009】本発明者は、この発見から、電波の伝播方
向を逆にすることも可能ではないかとのヒントから、電
波を鋼管外から鋼管内へと送り込めば、水路内のアンテ
ナに対して無線方式で高周波電力を供給することができ
るという新理論を着想したのである。From this finding, the present inventor hints that it is possible to reverse the propagation direction of the radio wave, and if the radio wave is sent from outside the steel pipe to inside the steel pipe, the antenna inside the water channel He came up with a new theory that radio frequency power can be supplied.
【0010】もっとも、高周波電波が水中でかなり減衰
されることは確かである。このため水路中の受信アンテ
ナに対して実用上十分な高周波電力を供給するには、水
路外の発信アンテナと水路内の受信アンテナとの距離を
所定の範囲内とし、発信アンテナに一定以上の高周波電
力を供給することが必要である。もちろん、水路内の受
信アンテナに増幅器などを付加して、エネルギー変換の
効率化を図ることも可能である。However, it is certain that high frequency radio waves are considerably attenuated in water. Therefore, in order to supply high-frequency power that is practically sufficient to the receiving antenna in the waterway, keep the distance between the transmitting antenna outside the waterway and the receiving antenna inside the waterway within a specified range, It is necessary to supply power. Of course, it is possible to add an amplifier or the like to the receiving antenna in the water channel to improve the efficiency of energy conversion.
【0011】[0011]
【実施例】以下に本発明に係る無線電力供給装置の一実
施例を図に基づき説明する。図1は本発明の基本構成を
概念的に示したもので、1は水底2に配置したパネル型
受信アンテナ、3は受信アンテナ1に隣接配置した水中
ポンプ、4は地上5に配置したパラボラ型発信アンテナ
5、6は発信アンテナ4に高周波電力を供給する発信機
6である。この発信機6はメガヘルツ帯の高周波電波
(106〜109Hzの範囲内)を発信するように構成さ
れている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a wireless power supply device according to the present invention will be described below with reference to the drawings. FIG. 1 conceptually shows the basic configuration of the present invention. Reference numeral 1 is a panel type receiving antenna arranged on the bottom 2 of water, 3 is an underwater pump arranged adjacent to the receiving antenna 1, and 4 is a parabolic type arranged on the ground 5. The transmitting antennas 5 and 6 are transmitters 6 that supply high-frequency power to the transmitting antenna 4. The transmitter 6 is configured to emit a high frequency radio wave in the megahertz band (within a range of 10 6 to 10 9 Hz).
【0012】発信アンテナ1及び受信アンテナ4は、パ
ネル型、パラボラ型の他に、アンテナの分野で知られた
極めて多種のアンテナ型式の中から、高いアンテナ利得
を得られて高周波電力の効率的な送受信に最適の型式を
選択することができる。The transmitting antenna 1 and the receiving antenna 4 are of panel type, parabolic type, and a great variety of antenna types known in the field of antennas. You can select the most suitable model for transmission and reception.
【0013】次に前記装置の作動につき説明する。発信
機6により生成された高周波電力が発信アンテナ4に供
給されると、発信アンテナ4から高周波電波が発信され
る。この高周波電波は空中を伝播し、さらに水面7から
水中8へと伝播し、水底2の受信アンテナ1により受信
され、この受信アンテナ1で電力が発生する。発生した
電力により水中ポンプ3が駆動され、吸入口9から取り
入れられた水が吐出管10を通して水面7より上方に押
し上げられる。水中ポンプ3は、大気中に配置する場合
に比べると、いわゆるエアー噛みが発生しないという利
点がある。また従来の水中ポンプの送電線を不要化でき
る利点がある。Next, the operation of the device will be described. When the high frequency power generated by the transmitter 6 is supplied to the transmitting antenna 4, the transmitting antenna 4 emits a high frequency radio wave. This high-frequency radio wave propagates through the air, further propagates from the water surface 7 to the underwater 8, is received by the receiving antenna 1 on the bottom 2 of the water, and electric power is generated at the receiving antenna 1. The generated electric power drives the submersible pump 3, and the water taken in through the suction port 9 is pushed up above the water surface 7 through the discharge pipe 10. The submersible pump 3 has an advantage that so-called air trapping does not occur as compared with the case where the submersible pump 3 is arranged in the atmosphere. There is also an advantage that the transmission line of the conventional submersible pump can be eliminated.
【0014】以上、本発明の一実施例につき説明した
が、本発明は前記実施例に限られず各種の変形が可能で
ある。例えば前記実施例では発信アンテナ4は大気中に
配置したが、水中に配置しても受信アンテナ1に対する
同様のエネルギ伝送が可能である。また水中の電気機器
は固定式のものの他、移動式のものも包含され、例えば
図2のように水底歩行又は水中泳動可能な水中ロボット
11の受信アンテナ1に無線方式で電力供給をすること
もできる。この場合、送電線がないのでロボット11の
移動能力が向上する。Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made. For example, although the transmitting antenna 4 is placed in the atmosphere in the above embodiment, the same energy transmission to the receiving antenna 1 is possible even if it is placed in water. Further, the underwater electric device includes not only a fixed type but also a movable type, and for example, as shown in FIG. 2, power can be supplied to the receiving antenna 1 of the underwater robot 11 capable of walking underwater or running in water by a wireless method. it can. In this case, since there is no power transmission line, the moving ability of the robot 11 is improved.
【0015】[0015]
【発明の効果】本発明は前記の如く、水中に配置した受
信アンテナに対して、大気中又は水中に配置した発信ア
ンテナから高周波電波を供給し、受信アンテナで生じた
電力を水中の電気機器に供給するようにしたので、電気
機器への送電線が不要になり、水中でのあらゆる電気機
器の配置及び利用が容易になる。As described above, the present invention supplies high-frequency radio waves to a receiving antenna arranged in water from a transmitting antenna arranged in the atmosphere or in water, and the electric power generated by the receiving antenna is supplied to electric equipment in the water. Since the electric power is supplied, the transmission line to the electric equipment is not required, and the arrangement and use of all the electric equipment underwater are facilitated.
【図面の簡単な説明】[Brief description of drawings]
【図1】 本発明の第1実施例に係る、水中ポンプに対
する無線方式電力供給装置の概念的側面図。FIG. 1 is a conceptual side view of a wireless power supply device for a submersible pump according to a first embodiment of the present invention.
【図2】 本発明の第2実施例に係る、水中ロボットに
対する無線方式電力供給装置の概念的側面図。FIG. 2 is a conceptual side view of a wireless power supply device for an underwater robot according to a second embodiment of the present invention.
1 受信アンテナ 2 水底 3 水中ポンプ 4 パラボラ型発信アンテナ 5 地上 6 発信機 7 水面 8 水中 9 吸入口 10 吐出管 11 水中ロボット 1 Receiving Antenna 2 Water Bottom 3 Submersible Pump 4 Parabolic Transmitter Antenna 5 Ground 6 Transmitter 7 Water Surface 8 Underwater 9 Suction Port 10 Discharge Pipe 11 Underwater Robot
Claims (2)
アンテナに接続された電気機器と、前記受信アンテナか
ら離間した大気中又は水中に配置された発信アンテナ
と、該発信アンテナにメガヘルツ帯の高周波電力を供給
する発信機とを具備した水中電気機器用の無線方式電力
供給装置。1. A receiving antenna arranged in water, an electric device connected to the receiving antenna, a transmitting antenna arranged in the atmosphere or in water separated from the receiving antenna, and a high frequency of a megahertz band in the transmitting antenna. A wireless power supply device for underwater electric equipment, comprising a transmitter for supplying electric power.
トに、無線方式で電力供給をする請求項1記載の装置。2. An apparatus according to claim 1, wherein power is supplied to an underwater robot capable of walking on the bottom of the water or running underwater in a wireless manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50A JPH06225481A (en) | 1993-01-21 | 1993-01-21 | Wireless type power supply apparatus for submerged electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50A JPH06225481A (en) | 1993-01-21 | 1993-01-21 | Wireless type power supply apparatus for submerged electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06225481A true JPH06225481A (en) | 1994-08-12 |
Family
ID=11681497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50A Withdrawn JPH06225481A (en) | 1993-01-21 | 1993-01-21 | Wireless type power supply apparatus for submerged electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06225481A (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016096374A (en) * | 2014-11-12 | 2016-05-26 | 日立Geニュークリア・エナジー株式会社 | Communication system and communication method |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
-
1993
- 1993-01-21 JP JP50A patent/JPH06225481A/en not_active Withdrawn
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10998604B2 (en) | 2014-09-10 | 2021-05-04 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10224589B2 (en) | 2014-09-10 | 2019-03-05 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10355480B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10153638B2 (en) | 2014-09-11 | 2018-12-11 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10381843B2 (en) | 2014-09-11 | 2019-08-13 | Cpg Technologies, Llc | Hierarchical power distribution |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US10355481B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10320200B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10320045B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10193353B2 (en) | 2014-09-11 | 2019-01-29 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US10135298B2 (en) | 2014-09-11 | 2018-11-20 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10177571B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
JP2016096374A (en) * | 2014-11-12 | 2016-05-26 | 日立Geニュークリア・エナジー株式会社 | Communication system and communication method |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10467876B2 (en) | 2015-09-08 | 2019-11-05 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10320233B2 (en) | 2015-09-08 | 2019-06-11 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10132845B2 (en) | 2015-09-08 | 2018-11-20 | Cpg Technologies, Llc | Measuring and reporting power received from guided surface waves |
US9882606B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10536037B2 (en) | 2015-09-09 | 2020-01-14 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10148132B2 (en) | 2015-09-09 | 2018-12-04 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US10516303B2 (en) | 2015-09-09 | 2019-12-24 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10425126B2 (en) | 2015-09-09 | 2019-09-24 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10333316B2 (en) | 2015-09-09 | 2019-06-25 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10601099B2 (en) | 2015-09-10 | 2020-03-24 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US10326190B2 (en) | 2015-09-11 | 2019-06-18 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US10355333B2 (en) | 2015-09-11 | 2019-07-16 | Cpg Technologies, Llc | Global electrical power multiplication |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06225481A (en) | Wireless type power supply apparatus for submerged electric machine | |
US6492951B1 (en) | Plasma antenna | |
US2711514A (en) | Wave guide modulation system | |
ES8706340A1 (en) | Wave powered generator | |
US10601125B2 (en) | Electrically short antennas with enhanced radiation resistance | |
US6169520B1 (en) | Plasma antenna with currents generated by opposed photon beams | |
US20110199227A1 (en) | System for underwater communications comprising fluid modifying means | |
RU2733085C1 (en) | Method of communication of underwater vehicle with aircraft | |
US11962366B2 (en) | Signal multiplexer for sonar | |
US4177468A (en) | Inflatable cavity-backed annular slot transmitting antenna | |
WO2003011649A1 (en) | On-vehicle device network system and power supply control apparatus | |
CN118355174A (en) | Underwater cleaning robot | |
US2786132A (en) | Power transmission | |
US3866231A (en) | Satellite transmitter of ULF electromagnetic waves | |
RU117724U1 (en) | SUBMARINE ANTENNA FEDERATION SYSTEM | |
Erukhimov et al. | Investigations of the interaction between high-power radio waves and the ionospheric plasma at low latitudes(Issledovaniia vzaimodeistviia moshchnogo radioizlucheniia s ionosfernoi plazmoi v nizkikh shirotakh) | |
US6002647A (en) | Acoustic transmitting antenna for underwater seismic prospecting | |
US3351902A (en) | Underwater sound source | |
CN216362307U (en) | Overwater and underwater multi-frequency-band wireless communication system and underwater vehicle | |
JPH07203579A (en) | Underwater sound source device | |
US6118732A (en) | Secure marine communication system | |
CN115833862A (en) | Digital-analog compatible radio transceiver for aviation sonar buoy | |
JPH0918377A (en) | Data communication equipment | |
JPS56102191A (en) | Ultrasonic wave receiver | |
JP2004085223A (en) | Active sonobuoy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000404 |