JPH06224425A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06224425A
JPH06224425A JP1055293A JP1055293A JPH06224425A JP H06224425 A JPH06224425 A JP H06224425A JP 1055293 A JP1055293 A JP 1055293A JP 1055293 A JP1055293 A JP 1055293A JP H06224425 A JPH06224425 A JP H06224425A
Authority
JP
Japan
Prior art keywords
region
drain region
conductivity type
concentration
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055293A
Other languages
Japanese (ja)
Inventor
Toshihiko Uno
利彦 宇野
Yuji Yamanishi
雄司 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1055293A priority Critical patent/JPH06224425A/en
Publication of JPH06224425A publication Critical patent/JPH06224425A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high breakdown strength horizontal insulating gate type bipolar transistor capable of increasing an AD resistance. CONSTITUTION:A second conductive type extension drain region 12 is formed on the surface of a semiconductor substrate 11 of a first conductivity type. A high concentration drain region 13 of a second conductivity type is formed on the surface of the extension drain region 12, and high concentration drain adjacent regions 14 of the first conductivity type are electrically connected to the high concentration drain region 13 and are formed so as to surround the high concentration drain region 13, and a top region 15 of the first conductivity type is electrically connected to the semiconductor substrate 11 and is formed so as to surround the high concentration drain region 13 and the drain adjacent regions 14. High concentration source regions 16 of the second conductivity type are formed on the surface of the semiconductor substrate 11, and a source lower region 19 of the first conductivity type is formed below the high concentration source regions 16. A resistance value below the high concentration source regions 16 is reduced by the source lower region 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高耐圧横型絶縁ゲート型
バイポーラトランジスタ等の半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a high voltage lateral insulated gate bipolar transistor.

【0002】[0002]

【従来の技術】以下、従来の半導体装置としての高耐圧
横型絶縁ゲート型バイポーラトランジスタ(以降L−I
GBTと称する)を図面に基づいて説明する。
2. Description of the Related Art A high breakdown voltage lateral insulated gate bipolar transistor (hereinafter referred to as LI) as a conventional semiconductor device will be described below.
(Referred to as GBT) will be described with reference to the drawings.

【0003】図3は上記従来の半導体装置としてのL−
IGBT50を示す断面図である。図3において、第1
導電型の半導体基板51の表面部には第2導電型の延長
ドレイン領域52が形成され、該延長ドレイン領域52
の表面部には、第2導電型の高濃度ドレイン領域53が
形成され、該高濃度ドレイン領域53を取り囲むように
第1導電型の高濃度のドレイン隣接領域54が形成され
ており、該ドレイン隣接領域54は高濃度ドレイン領域
53と電気的に接続されている。さらに、延長ドレイン
領域52の表面部には高濃度ドレイン領域53及びドレ
イン隣接領域54を取り囲むように第1導電型の頂上領
域55が形成されており、該頂上領域55は半導体基板
51と電気的に接続されている。また、半導体基板51
の表面部には、第2導電型の高濃度ソース領域56が形
成され、該高濃度ソース領域56の中央部に第1導電型
の高濃度のソース隣接領域57が形成され、高濃度ソー
ス領域56を取り囲むように第1導電型の高濃度のチャ
ンネルストッパ58が形成されている。そして、半導体
基板51の表面上には、ドレイン隣接領域54から高濃
度ソース領域56に亙るゲート酸化膜60と、高濃度ド
レイン領域53及びドレイン隣接領域54と電気的に接
続された断面T字形のドレイン電極61と、高濃度ソー
ス領域56及びソース隣接領域57と電気的に接続され
た断面T字形のソース電極62とが形成されており、ゲ
ート酸化膜60の内部には延長ドレイン領域52の端部
から高濃度ソース領域56の端部に亙って多結晶シリコ
ン膜からなるゲート電極63が形成されており、半導体
基板51の表面部のゲート電極63下にチャンネルが形
成される。
FIG. 3 shows an L-type semiconductor device as the conventional semiconductor device.
It is sectional drawing which shows IGBT50. In FIG. 3, the first
A second conductivity type extended drain region 52 is formed on the surface of the conductivity type semiconductor substrate 51.
A second-conductivity-type high-concentration drain region 53 is formed on the surface of the first conductive-type drain region 53, and a first-conductivity-type high-concentration drain adjoining region 54 is formed so as to surround the high-concentration drain region 53. The adjacent region 54 is electrically connected to the high concentration drain region 53. Further, a first conductivity type top region 55 is formed on the surface of the extended drain region 52 so as to surround the high-concentration drain region 53 and the drain adjacent region 54, and the top region 55 is electrically connected to the semiconductor substrate 51. It is connected to the. In addition, the semiconductor substrate 51
A second-conductivity-type high-concentration source region 56 is formed on the surface portion of the first conductive-type high-concentration source region 56, and a first-conductivity-type high-concentration source adjacent region 57 is formed at the center of the high-concentration source region 56. A first conductive type high-concentration channel stopper 58 is formed so as to surround 56. Then, on the surface of the semiconductor substrate 51, the gate oxide film 60 extending from the drain adjacent region 54 to the high-concentration source region 56 and the T-shaped cross section electrically connected to the high-concentration drain region 53 and the drain adjacent region 54 are formed. A drain electrode 61 and a source electrode 62 having a T-shaped cross section that is electrically connected to the high-concentration source region 56 and the source adjacent region 57 are formed, and the end of the extended drain region 52 is formed inside the gate oxide film 60. A gate electrode 63 made of a polycrystalline silicon film is formed from the portion to the end of the high concentration source region 56, and a channel is formed below the gate electrode 63 on the surface of the semiconductor substrate 51.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の半導体装置としてのL−IGBTにおいては、イン
ダクタンス負荷の回路に用いた場合に、ゲートオフ時に
インダクタンスの逆起電力により、ドレイン−ソース間
に内蔵されるダイオードが降伏し過大な降伏電流がドレ
イン−ソース間に流れることによって、高濃度ソース領
域下の電圧降下が約0.7Vに達すると、第2導電型の
高濃度ソース領域と第1導電型の半導体基板と第2導電
型の延長ドレイン領域とからなるバイポーラトランジス
タが動作し、温度上昇を引き起こし熱破壊に至るという
課題を有している。このときのL−IGBTの消費エネ
ルギー量を当該L−IGBTのAD耐量と称する。
However, in the above-mentioned conventional L-IGBT as a semiconductor device, when it is used in a circuit of an inductance load, it is built in between the drain and the source due to the counter electromotive force of the inductance when the gate is off. When the voltage drop under the high-concentration source region reaches about 0.7 V due to the diode breakdown and an excessive breakdown current flowing between the drain and the source, the high-concentration source region of the second conductivity type and the first conductivity type The bipolar transistor including the semiconductor substrate and the second-conductivity-type extended drain region operates, causing a temperature rise and causing thermal destruction. The amount of energy consumed by the L-IGBT at this time is referred to as the AD tolerance of the L-IGBT.

【0005】本発明は上記に鑑みなされたものであっ
て、AD耐量を増大させることができる半導体装置を提
供することを目的とする。
The present invention has been made in view of the above, and an object thereof is to provide a semiconductor device capable of increasing the AD withstand capability.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、高濃度ソース領域下の抵抗値を低減する
ことにより、第2導電型の高濃度ソース領域と第1導電
型の半導体基板と第2導電型の延長ドレイン領域とから
なるバイポーラトランジスタの動作を抑制することによ
ってAD耐量を増大させるものである。
In order to achieve the above-mentioned object, the present invention reduces the resistance value under the high-concentration source region to reduce the resistance value of the second-conductivity-type high-concentration source region and the first-conductivity-type. The AD withstand capability is increased by suppressing the operation of the bipolar transistor including the semiconductor substrate and the second conductivity type extended drain region.

【0007】具体的に本発明が講じた解決手段は、L−
IGBT等の半導体装置を対象とし、、第1導電型の半
導体基板と、該半導体基板の表面部に形成された第2導
電型の延長ドレイン領域と、該延長ドレイン領域の表面
部に形成された第2導電型の高濃度ドレイン領域と、上
記半導体基板の表面部における上記延長ドレイン領域の
外部に形成された第2導電型の高濃度ソース領域と、上
記延長ドレイン領域の表面部における上記高濃度ドレイ
ン領域と高濃度ソース領域との間の部位に形成され且つ
上記半導体基板と電気的に接続された第1導電型の頂上
領域と、上記延長ドレイン領域の表面部における上記高
濃度ドレイン領域と頂上領域との間で該高濃度ドレイン
領域と隣接する部位に形成され且つ上記高濃度ドレイン
領域と電気的に接続された第1導電型の高濃度のドレイ
ン隣接領域と、上記半導体基板の表面部における上記高
濃度ソース領域の下側に形成され当該高濃度ソース領域
下の抵抗値を低減させる第1導電型のソース下領域とを
備えている構成とするものである。
[0007] Specifically, the solution means taken by the present invention is L-
For a semiconductor device such as an IGBT, a semiconductor substrate of a first conductivity type, a second conductivity type extended drain region formed on a surface portion of the semiconductor substrate, and a surface portion of the extension drain region are formed. A second conductivity type high-concentration drain region, a second conductivity type high-concentration source region formed outside the extended drain region on the surface of the semiconductor substrate, and the high-concentration drain region on the surface of the extended drain region. A top region of the first conductivity type formed at a portion between the drain region and the high-concentration source region and electrically connected to the semiconductor substrate; and the high-concentration drain region and the top on the surface portion of the extended drain region. A first-conductivity-type high-concentration drain adjoining region which is formed between the high-concentration drain region and a region adjacent to the high-concentration drain region and is electrically connected to the high-concentration drain region; It is an arrangement and a source under region of the first conductivity type to reduce the resistance value under the high-concentration source region is formed on the lower side of the high concentration source region in the surface portion of the semiconductor substrate.

【0008】[0008]

【作用】上記の構成により、第2導電型の高濃度ソース
領域の下側には第1導電型のソース下領域が形成されて
おり、該ソース下領域により高濃度ソース領域下の抵抗
値を低減することができる。このため、例えば、本発明
に係る半導体装置をインダクタンス負荷の回路に用いた
場合にゲートオフ時のインダクタンスの逆起電力により
過大な降伏電流がドレイン−ソース間に流れたとして
も、高濃度ソース領域下の電圧降下を低く抑えることが
できるため、第2導電型の高濃度ソース領域と第1導電
型の半導体基板と第2導電型の延長ドレイン領域とから
なるバイポーラトランジスタの動作を抑制することがで
きるのでAD耐量を増大させることが可能である。
With the above structure, the first-conductivity-type source lower region is formed below the second-conductivity-type high-concentration source region, and the resistance value under the high-concentration source region is reduced by the source-lower region. It can be reduced. Therefore, for example, when the semiconductor device according to the present invention is used in a circuit of an inductance load, even if an excessive breakdown current flows between the drain and the source due to the counter electromotive force of the inductance when the gate is off, Since it is possible to suppress the voltage drop of the low voltage, it is possible to suppress the operation of the bipolar transistor including the high-concentration source region of the second conductivity type, the semiconductor substrate of the first conductivity type, and the extended drain region of the second conductivity type. Therefore, it is possible to increase the AD tolerance.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は上記実施例に係る半導体装置として
のL−IGBT10を示す断面図である。図1におい
て、第1導電型の半導体基板11の表面部には第2導電
型の延長ドレイン領域12が島状に形成され、該延長ド
レイン領域12の表面部には第2導電型の高濃度ドレイ
ン領域13が形成され、延長ドレイン領域12の表面部
における高濃度ドレイン領域13と隣接する部位に該高
濃度ドレイン領域13を取り囲むように第1導電型の高
濃度のドレイン隣接領域14が形成されており、該ドレ
イン隣接領域14は高濃度ドレイン領域13と電気的に
接続されている。さらに、延長ドレイン領域12の表面
部には高濃度ドレイン領域13及びドレイン隣接領域1
4を取り囲むように第1導電型の頂上領域15が形成さ
れており、該頂上領域15は半導体基板11と電気的に
接続されている。
FIG. 1 is a sectional view showing an L-IGBT 10 as a semiconductor device according to the above embodiment. In FIG. 1, a second conductivity type extended drain region 12 is formed in an island shape on the surface part of the first conductivity type semiconductor substrate 11, and a high concentration of the second conductivity type is formed on the surface part of the extension drain region 12. The drain region 13 is formed, and the first-conductivity-type high-concentration drain adjoining region 14 is formed so as to surround the high-concentration drain region 13 in a portion of the surface of the extended drain region 12 adjacent to the high-concentration drain region 13. The drain adjacent region 14 is electrically connected to the high concentration drain region 13. Further, the high-concentration drain region 13 and the drain-adjacent region 1 are formed on the surface of the extended drain region 12.
A top region 15 of the first conductivity type is formed so as to surround 4 and the top region 15 is electrically connected to the semiconductor substrate 11.

【0011】また、半導体基板11の表面部における延
長ドレイン領域12の外部には第2導電型の高濃度ソー
ス領域16が形成され、該高濃度ソース領域16の中央
部には第1導電型の高濃度のソース隣接領域17が形成
され、半導体基板11の表面部における延長ドレイン領
域12の外部において高濃度ソース領域16を取り囲む
ように第1導電型の高濃度のチャンネルストッパ18が
形成され、半導体基板11における高濃度ソース領域1
6及びソース隣接領域17の下側には第1導電型のソー
ス下領域19が形成されており、該ソース下領域19は
頂上領域15と同時に形成される。
A second conductivity type high-concentration source region 16 is formed outside the extended drain region 12 on the surface of the semiconductor substrate 11, and a first conductivity type high-concentration source region 16 is formed in the center of the high-concentration source region 16. A high-concentration source adjacent region 17 is formed, and a first-conductivity-type high-concentration channel stopper 18 is formed outside the extended drain region 12 on the surface portion of the semiconductor substrate 11 so as to surround the high-concentration source region 16. High concentration source region 1 on substrate 11
A source lower region 19 of the first conductivity type is formed under 6 and the source adjacent region 17, and the source lower region 19 is formed at the same time as the top region 15.

【0012】そして、半導体基板11の表面上には、ド
レイン隣接領域14から高濃度ソース領域16に亙るゲ
ート酸化膜20と、高濃度ドレイン領域13及びドレイ
ン隣接領域14と電気的に接続された断面T字形のドレ
イン電極21と、高濃度ソース領域16及びソース隣接
領域17と電気的に接続された断面T字形のソース電極
22とが形成されており、ゲート酸化膜20の内部には
延長ドレイン領域12の端部から高濃度ソース領域16
の端部に亙って多結晶シリコン膜からなるゲート電極2
3が形成されており、半導体基板11の表面部のゲート
電極23下にチャンネルが形成される。ここで、ソース
隣接領域17は当該チャンネルの基板バイアス効果を抑
制するために形成されている。
On the surface of the semiconductor substrate 11, a cross section electrically connected to the gate oxide film 20 extending from the drain adjacent region 14 to the high concentration source region 16 and the high concentration drain region 13 and the drain adjacent region 14 is formed. A T-shaped drain electrode 21 and a source electrode 22 having a T-shaped cross section electrically connected to the high-concentration source region 16 and the source adjoining region 17 are formed, and an extended drain region is formed inside the gate oxide film 20. High concentration source region 16 from the end of 12
Gate electrode 2 made of a polycrystalline silicon film over the edge of
3 is formed, and a channel is formed below the gate electrode 23 on the surface portion of the semiconductor substrate 11. Here, the source adjacent region 17 is formed in order to suppress the substrate bias effect of the channel.

【0013】以上のように、本実施例に係る半導体装置
としてのL−IGBT10においては、第2導電型の高
濃度ソース領域16の下側に頂上領域15と同時に形成
される第1導電型のソース下領域19が形成されてお
り、該ソース下領域19により高濃度ソース領域16下
の抵抗値を低減することができる。このため、例えば、
L−IGBT10をインダクタンス負荷の回路に用いた
場合にゲートオフ時のインダクタンスの逆起電力により
過大な降伏電流がドレイン−ソース間に流れたとして
も、高濃度ソース領域16下の電圧降下を低く抑えるこ
とができるため、第2導電型の高濃度ソース領域16と
第1導電型の半導体基板11と第2導電型の延長ドレイ
ン領域12とからなるバイポーラトランジスタの動作を
抑制することができるのでAD耐量を増大させることが
可能である。
As described above, in the L-IGBT 10 as the semiconductor device according to the present embodiment, the first conductivity type is formed below the second conductivity type high concentration source region 16 at the same time as the top region 15. The source lower region 19 is formed, and the resistance value under the high concentration source region 16 can be reduced by the source lower region 19. So, for example,
When the L-IGBT 10 is used in an inductance load circuit, even if an excessive breakdown current flows between the drain and the source due to the counter electromotive force of the inductance when the gate is off, the voltage drop under the high-concentration source region 16 is kept low. Therefore, the operation of the bipolar transistor including the second-conductivity-type high-concentration source region 16, the first-conductivity-type semiconductor substrate 11, and the second-conductivity-type extended drain region 12 can be suppressed, so that the AD withstand capability is improved. It can be increased.

【0014】図2は本実施例に係る半導体装置のAD耐
量と従来の半導体装置のAD耐量とを示しており、ここ
では、従来の半導体装置の単位面積当たりのAD耐量の
値を1としている。図2に示すように、本実施例に係る
半導体装置によると従来の半導体装置に比較して単位面
積当たりのAD耐量の値を1.6倍にすることが可能で
ある。
FIG. 2 shows the AD tolerance of the semiconductor device according to this embodiment and the AD tolerance of the conventional semiconductor device. Here, the value of the AD tolerance per unit area of the conventional semiconductor device is 1. . As shown in FIG. 2, the semiconductor device according to the present embodiment can increase the value of the AD withstand amount per unit area by 1.6 times as compared with the conventional semiconductor device.

【0015】[0015]

【発明の効果】以上説明したように、本発明に係る半導
体装置によると、第2導電型の高濃度ソース領域の下側
に形成された第1導電型のソース下領域により高濃度ソ
ース領域下の抵抗値を低減することができる。これによ
り、過大な降伏電流がドレイン−ソース間に流れたとし
ても高濃度ソース領域下の電圧降下を低く抑えることが
できるため、第2導電型の高濃度ソース領域と第1導電
型の半導体基板と第2導電型の延長ドレイン領域とから
なるバイポーラトランジスタの動作を抑制することがで
きるのでAD耐量を増大させることができる。
As described above, according to the semiconductor device of the present invention, the high-concentration source region is formed under the first-conductivity-type source region formed below the second-conductivity-type high-concentration source region. The resistance value of can be reduced. With this, even if an excessive breakdown current flows between the drain and the source, the voltage drop under the high-concentration source region can be suppressed to a low level. Therefore, the high-concentration source region of the second conductivity type and the semiconductor substrate of the first conductivity type are suppressed. Since it is possible to suppress the operation of the bipolar transistor including the second conductive type extended drain region, it is possible to increase the AD tolerance.

【0016】従って、本発明によると半導体装置の過熱
を防止し熱破壊から半導体装置を保護することが可能で
ある。
Therefore, according to the present invention, it is possible to prevent the semiconductor device from overheating and protect the semiconductor device from thermal destruction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体装置を示す断面
図である。
FIG. 1 is a sectional view showing a semiconductor device according to an embodiment of the present invention.

【図2】上記実施例に係る半導体装置のAD耐量と従来
の半導体装置のAD耐量とを示す図である。
FIG. 2 is a diagram showing the AD tolerance of the semiconductor device according to the above embodiment and the AD tolerance of the conventional semiconductor device.

【図3】従来の半導体装置を示す断面図である。FIG. 3 is a cross-sectional view showing a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

10 L−IGBT(半導体装置) 11 半導体基板 12 延長ドレイン領域 13 高濃度ドレイン領域 14 ドレイン隣接領域 15 頂上領域 16 高濃度ソース領域 19 ソース下領域 DESCRIPTION OF SYMBOLS 10 L-IGBT (semiconductor device) 11 Semiconductor substrate 12 Extended drain region 13 High concentration drain region 14 Drain adjacent region 15 Top region 16 High concentration source region 19 Source lower region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板と、該半導体基
板の表面部に形成された第2導電型の延長ドレイン領域
と、該延長ドレイン領域の表面部に形成された第2導電
型の高濃度ドレイン領域と、上記半導体基板の表面部に
おける上記延長ドレイン領域の外部に形成された第2導
電型の高濃度ソース領域と、上記延長ドレイン領域の表
面部における上記高濃度ドレイン領域と高濃度ソース領
域との間の部位に形成され且つ上記半導体基板と電気的
に接続された第1導電型の頂上領域と、上記延長ドレイ
ン領域の表面部における上記高濃度ドレイン領域と頂上
領域との間で該高濃度ドレイン領域と隣接する部位に形
成され且つ上記高濃度ドレイン領域と電気的に接続され
た第1導電型の高濃度のドレイン隣接領域と、上記半導
体基板の表面部における上記高濃度ソース領域の下側に
形成され当該高濃度ソース領域下の抵抗値を低減させる
第1導電型のソース下領域とを備えていることを特徴と
する半導体装置。
1. A semiconductor substrate of a first conductivity type, a second conductivity type extended drain region formed on a surface portion of the semiconductor substrate, and a second conductivity type extended drain region formed on a surface portion of the extension drain region. A high-concentration drain region, a second-conductivity-type high-concentration source region formed outside the extended drain region on the surface of the semiconductor substrate, and a high-concentration drain region and a high concentration on the surface of the extended drain region. Between the top region of the first conductivity type formed in a portion between the source region and electrically connected to the semiconductor substrate, and between the high-concentration drain region and the top region in the surface portion of the extended drain region. A high-concentration drain adjacent region of the first conductivity type formed in a portion adjacent to the high-concentration drain region and electrically connected to the high-concentration drain region, and a surface portion of the semiconductor substrate. And a source lower region of the first conductivity type that is formed below the high-concentration source region and reduces the resistance value under the high-concentration source region.
JP1055293A 1993-01-26 1993-01-26 Semiconductor device Pending JPH06224425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055293A JPH06224425A (en) 1993-01-26 1993-01-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055293A JPH06224425A (en) 1993-01-26 1993-01-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH06224425A true JPH06224425A (en) 1994-08-12

Family

ID=11753424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055293A Pending JPH06224425A (en) 1993-01-26 1993-01-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH06224425A (en)

Similar Documents

Publication Publication Date Title
US6639295B2 (en) Semiconductor device
KR100398532B1 (en) Insulated gate transistor
US20060081919A1 (en) Semiconductor device
JP2009033036A (en) Semiconductor device, and electric circuit device using same
US11444155B2 (en) Silicon carbide semiconductor device
JP5321377B2 (en) Power semiconductor device
JP3076468B2 (en) Semiconductor device
US10438946B2 (en) Semiconductor device and electrical apparatus
JPH09260665A (en) Short-circuit anode horizontal insulated gate bipolar transistor
JPH04251983A (en) Semiconductor device
JP2002076020A (en) Semiconductor device
US6310385B1 (en) High band gap layer to isolate wells in high voltage power integrated circuits
US20100084684A1 (en) Insulated gate bipolar transistor
JP2003031821A (en) Semiconductor device
JP2003092414A (en) Semiconductor device
JP2005150348A (en) Semiconductor device
JPH01215067A (en) Vertical insulating gate field effect transistor
JPH06224425A (en) Semiconductor device
JP4218512B2 (en) Semiconductor device
JP3755231B2 (en) Insulated gate bipolar transistor
JP3649056B2 (en) Semiconductor device
JPH09260503A (en) Semiconductor device
JPH03229469A (en) Vertical mos field effect transistor
KR20230117856A (en) Semiconductor device and 3-phase inverter comprising the same
JPH06151837A (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001003