JPH06223884A - Metal-air battery - Google Patents

Metal-air battery

Info

Publication number
JPH06223884A
JPH06223884A JP1015293A JP1015293A JPH06223884A JP H06223884 A JPH06223884 A JP H06223884A JP 1015293 A JP1015293 A JP 1015293A JP 1015293 A JP1015293 A JP 1015293A JP H06223884 A JPH06223884 A JP H06223884A
Authority
JP
Japan
Prior art keywords
fuel
chamber
metal
air
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015293A
Other languages
Japanese (ja)
Inventor
Tatsuo Toyoda
竜生 豊田
Kazushi Nomura
一志 野村
Yasuo Kuwabara
保雄 桑原
Yumi Inaba
由美 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP1015293A priority Critical patent/JPH06223884A/en
Publication of JPH06223884A publication Critical patent/JPH06223884A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/128

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE:To perform sure continuous supply of the fuel to a movable quantitative part, which makes the fuel drop from a fuel container part installed in the upper part of a battery jar part. CONSTITUTION:A movable quantitative part 5 is interposed freely to slide between a battery jar part 3, which consists of plural unit cells 2, and a fuel container part 4 having fuel drop holes 17 corresponding to each unit cell 2. Each part of the movable quantitative part 5, which is formed with each sliding surface with each battery jar part 3 and fuel container 4, is provided with insulating solid lubricating films 21a-21c or an rubber elastic material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車駆動用電源
等に用いられる金属−空気電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-air battery used as a power source for driving an electric vehicle.

【0002】[0002]

【従来の技術】金属−空気電池は、空気極での酸素の還
元と金属極での金属の溶解とを組み合わせて発電を行う
一種の一次電池であり、金属極には、アルミ、鉄、亜鉛
等が用いられる。図9は金属極にアルミを使用した金属
−空気電池の発電原理を示しており、空気極には板状の
カーボンが用いられ、該空気極は一面が溌水膜を介して
空気と接し、他面が電解液に浸漬している。金属極は、
アルカリ金属水酸化物に属するKOHの電解液に浸漬さ
れている。
2. Description of the Related Art A metal-air battery is a type of primary battery that generates electricity by combining reduction of oxygen at the air electrode and dissolution of metal at the metal electrode. Etc. are used. FIG. 9 shows a power generation principle of a metal-air battery using aluminum for a metal electrode, and plate-shaped carbon is used for the air electrode, and one surface of the air electrode is in contact with air through a water repellent film, The other surface is immersed in the electrolyte. The metal pole is
It is immersed in an electrolyte solution of KOH belonging to alkali metal hydroxide.

【0003】そして、空気極では 3/4O2 +3/2H2 O+3e- →3OH- の反応が起こり、金属極では Al+3OH- →Al(OH)3 +3e- の反応が起きる。従って、全反応は、 Al+3/2H2 O+3/4O2 →Al(OH)3 ↓ となり、沈澱物Al(OH)3 が残る。Then, the reaction of 3 / 4O 2 + 3 / 2H 2 O + 3e → 3OH occurs at the air electrode, and the reaction of Al + 3OH → Al (OH) 3 + 3e occurs at the metal electrode. Therefore, the total reaction becomes Al + 3 / 2H 2 O + 3 / 4O 2 → Al (OH) 3 ↓, and the precipitate Al (OH) 3 remains.

【0004】このような電池反応を持続し燃料電池とし
て使用するため、電解液を循環することによって沈澱物
を除去し、金属極を容器状多孔性導電物質とその中に連
続的に供給される粒状金属燃料とで構成した金属−空気
電池が例えばPCT/FR91/00944号刊行物に
開示されている。同刊行物には、燃料取入口を上方に開
設した多孔導電性ホルダ及びその中の粒状金属燃料から
構成される金属極を、対向する板状の空気極によって形
成される電解液空間に在したセルの電槽部に対し、底孔
をもつ燃料容器部を上設し、該セルと燃料容器部との間
に燃料を一定量ごとセルに供給する可動定量部を介装さ
せたものが開示されている。具体的に、可動定量部は、
図10に示すように、燃料容器部aからの定量の燃料を
一時的に保持する小室bをもつ定量板cと、燃料容器部
aの底部と上記定量板cとの間で往復摺動可能に介在
し、上記燃料容器部aの底孔a1と上記定量板cの小室
bとを連通する孔d1を有した上仕切板dと、上記定量
板cとセルeの燃料取入口fが臨む上面との間に往復摺
動可能に介在し、上記定量板cの小室bとセルeの燃料
取入口fとを連通する孔g1を有した下仕切板gとから
なっている。
In order to continue such a cell reaction and to use it as a fuel cell, the electrolytic solution is circulated to remove the precipitate, and the metal electrode is continuously supplied to the container-like porous conductive material and the inside thereof. Metal-air cells composed of granular metal fuel are disclosed, for example, in PCT / FR91 / 00944. In the same publication, a metal electrode composed of a porous conductive holder having a fuel inlet opened upward and a granular metal fuel therein is present in an electrolyte space formed by opposed plate-shaped air electrodes. Disclosed is that a fuel container part having a bottom hole is provided above a battery case part of a cell, and a movable fixed amount part for supplying a fixed amount of fuel to the cell is interposed between the cell and the fuel container part. Has been done. Specifically, the movable fixed quantity unit
As shown in FIG. 10, a fixed amount plate c having a small chamber b for temporarily holding a fixed amount of fuel from the fuel container part a, and a reciprocating slide between the bottom part of the fuel container part a and the fixed amount plate c are possible. And an upper partition plate d having a hole d1 communicating between the bottom hole a1 of the fuel container portion a and the small chamber b of the fixed quantity plate c, and the fuel intake port f of the fixed quantity plate c and the cell e. It comprises a lower partition plate g having a hole g1 which is reciprocally slidably interposed between the upper surface and the small chamber b of the fixed amount plate c and the fuel intake port f of the cell e.

【0005】従って、定量板cの小室bには上仕切板d
の摺動によって燃料容器部aの底孔と小室bとが連通し
て定量の燃料が小室bに落下し保持され、セルe内の燃
料が少なくなると、下仕切板gの摺動によって、小室b
とセルeの燃料取入口fとが連通し小室bに保持された
燃料がセルeに落下して金属極hに補給される。小室b
の燃料が金属極hに補給されると下仕切板gの摺動によ
り小室bとセルeの燃料取入口fとを遮断した後、再び
上仕切板dを摺動して燃料容器部aの燃料を小室bに保
持し、次期燃料補給に備える。このように上仕切板dと
下仕切板gとの交互の往復摺動によって、金属極hには
連続的に定量の燃料が供給されることになる。
Therefore, the upper partition plate d is provided in the small chamber b of the fixed quantity plate c.
The bottom hole of the fuel container portion a and the small chamber b communicate with each other by sliding, and a certain amount of fuel drops and is held in the small chamber b. When the amount of fuel in the cell e becomes small, the lower partition plate g slides to cause the small chamber to slide. b
And the fuel inlet f of the cell e communicate with each other, and the fuel held in the small chamber b falls into the cell e and is replenished to the metal electrode h. Small room b
When the fuel of the above is replenished to the metal electrode h, the lower partition plate g slides to block the small chamber b from the fuel intake port f of the cell e, and then the upper partition plate d slides again to remove the fuel container part a. The fuel is held in the small chamber b to prepare for the next refueling. In this way, by alternately reciprocating the upper partition plate d and the lower partition plate g, a fixed amount of fuel is continuously supplied to the metal electrode h.

【0006】[0006]

【発明が解決しようとする課題】従来の金属−空気電池
における燃料供給構造は、燃料容器部と定量板との間で
上仕切板が摺動し、定量板と電槽部との間で下仕切板が
摺動する形態であり、両摺動面には、電解液や水蒸気等
が外部に漏洩しないシール機能と、各仕切板の円滑な摺
動性が要求される。
In the conventional fuel supply structure for a metal-air battery, the upper partition plate slides between the fuel container part and the metering plate, and the lower part between the metering plate and the battery case part. The partition plates are configured to slide, and both sliding surfaces are required to have a sealing function of preventing electrolyte and water vapor from leaking to the outside and smooth sliding properties of each partition plate.

【0007】しかしながら、上記従来の燃料供給構造
は、単に油脂iを介在させただけであり、上述したよう
なシール機能や摺動性に考慮がなされていない。従っ
て、電解液や水蒸気等が外部に漏洩するおそれがあると
ともに、熱膨張、電解液の浸入、摺動面の静電気力、湿
気による吸着、摺動面のキズ等によって、アルミ粉末が
摺動面に付着するおそれがある。その結果、円滑な摺動
が損なわれ、燃料供給の連続性が損なわれてしまう。
However, the above-mentioned conventional fuel supply structure merely interposes the oil and fat i, and the above-mentioned sealing function and slidability are not taken into consideration. Therefore, the electrolyte and water vapor may leak to the outside, and the aluminum powder may slide on the sliding surface due to thermal expansion, electrolytic solution infiltration, electrostatic force on the sliding surface, adsorption by moisture, scratches on the sliding surface, etc. May adhere to. As a result, smooth sliding is impaired, and continuity of fuel supply is impaired.

【0008】また、同燃料供給構造では、例えば上仕切
板cが摺動するとき、燃料容器部aにおける底孔a1の
下エッジa′と上仕切板dにおける孔d1の上エッジ
d′との間又は小室bの上エッジb′との間で粒状金属
燃料を挟み、上仕切板dがロックしてしまうことが考え
られる。この原因は、主に摺動面の汚れによって粒状金
属燃料がその部分に付着することによるものである。こ
のように仕切板がロックしてしまうと、燃料が過剰に供
給されたり、反対に不足して安定した出力が得られなく
なる。
Further, in the fuel supply structure, when the upper partition plate c slides, for example, the lower edge a'of the bottom hole a1 in the fuel container portion a and the upper edge d'of the hole d1 in the upper partition plate d are formed. It is conceivable that the upper partition plate d may be locked due to the particulate metal fuel being sandwiched between the space or the upper edge b ′ of the small chamber b. This is mainly due to the fact that the particulate metal fuel adheres to the sliding surface due to dirt on the sliding surface. If the partition plate is locked in this way, the fuel will be excessively supplied, or on the contrary, it will be insufficient and stable output cannot be obtained.

【0009】本発明は、燃料を定量的に連続供給するた
めに摺動する可動定量部における摺動面のシール機能と
円滑な摺動性を図るとともに、該摺動面での粒状金属燃
料によるロック現象を防止し、燃料を確実に定量的連続
的に供給して安定した出力を発生させることを解決すべ
き課題とする。
According to the present invention, the sealing function and smooth slidability of the sliding surface in the movable fixed amount portion that slides to quantitatively and continuously supply the fuel are provided, and the granular metal fuel on the sliding surface is used. The problem to be solved is to prevent the lock phenomenon and to reliably and quantitatively supply the fuel continuously to generate a stable output.

【0010】[0010]

【課題を解決するための手段】本発明は、空気極と該空
気極と所定間隔を隔てて対向する多孔壁とを具備し、該
空気極と該多孔壁との間に形成され、電解液を保持する
電解液室と該空気極で該電解液室と区画された空気室と
該多孔壁で該電解液室と区画され上部に取入口を有し、
該取入口より供給される粒状金属燃料を収納する金属極
とをもつ単セルを複数個形成する電槽部と、該電槽部に
上設され、前記各燃料取入口に対応する複数の燃料落下
孔を有し該粒状金属燃料を保持する燃料容器部と、該燃
料容器部と電槽部との間に設けられ、上部に前記各燃料
落下路に連通する開口と下部に前記各燃料取入口に連通
する開口を有する前記粒状金属燃料を定量保持する小室
があり、該小室を前記燃料落下路及び前記燃料取入口と
同時もしくは交互に連通させた状態と遮断させた状態と
に変位する可動定量部とを具備し、更に、可動定量部と
前記燃料容器部及び電槽部との両摺動面の少なくとも一
面を形成する部分は、絶縁性の固体潤滑膜又はゴム弾性
材料で形成されているものである。
The present invention is provided with an air electrode and a porous wall facing the air electrode with a predetermined space therebetween, and is formed between the air electrode and the porous wall to provide an electrolytic solution. An electrolyte chamber that holds, an air chamber that is partitioned from the electrolyte chamber by the air electrode, and an inlet that is partitioned from the electrolyte chamber by the porous wall at the top,
A battery case part forming a plurality of unit cells having a metal electrode for accommodating the granular metal fuel supplied from the intake port, and a plurality of fuels provided above the battery case part and corresponding to the respective fuel intake ports. A fuel container part having a drop hole for holding the granular metal fuel, an opening provided between the fuel container part and the battery case part, the upper part communicating with each of the fuel drop paths, and the lower part of the fuel collecting part. There is a small chamber for holding the particulate metal fuel in a fixed amount having an opening communicating with the inlet, and the small chamber is movable to be in communication with the fuel drop path and the fuel intake port at the same time or alternately or in a disconnected state. And a portion forming at least one of the sliding surfaces of the movable fixed portion and the fuel container portion and the battery case portion is formed of an insulating solid lubricating film or a rubber elastic material. There is something.

【0011】好適な態様として、固体潤滑膜とゴム弾性
材料を併用し、両摺動面の一面に固体潤滑膜を形成し、
他面を形成する部分はゴム弾性材料で形成される。
In a preferred embodiment, a solid lubricating film and a rubber elastic material are used together to form a solid lubricating film on one of both sliding surfaces,
The portion forming the other surface is made of a rubber elastic material.

【0012】[0012]

【作用】上記構成の金属−空気電池は、駆動手段を作動
すると、該燃料容器部と電槽部との間に設けられた可動
定量部が、燃料容器部と電槽部との間で摺動して、粒状
金属燃料を各単セルの金属極に供給する。そして、可動
定量部と前記燃料容器部及び電槽部との両摺動面の少な
くとも一面を形成する部分に絶縁性の固体潤滑膜が形成
されるものであるから、粒状金属燃料の付着が確実に防
止されるとともに、電解液や水蒸気等の漏洩を防止でき
る。その結果、摺動性が良好となって、燃料供給の連続
性が達成される。
In the metal-air battery having the above structure, when the driving means is operated, the movable fixed portion provided between the fuel container part and the battery case part slides between the fuel container part and the battery case part. The granular metal fuel is supplied to the metal electrode of each single cell. Further, since the insulating solid lubricating film is formed on the portion forming at least one of the sliding surfaces of the movable fixed amount portion and the fuel container portion and the battery case portion, the adhesion of the granular metal fuel is surely performed. In addition to being prevented, it is possible to prevent leakage of electrolytic solution, water vapor and the like. As a result, slidability is improved, and continuity of fuel supply is achieved.

【0013】また、ゴム弾性材料の場合は、粒状金属燃
料がゴム弾性材料の弾性変形によってゴム弾性材料の表
層部に埋没し、摺動性を確保して、ロック現象を防止す
ることができる。固体潤滑膜とゴム弾性材料を併用する
場合は、ロック現象の防止とともに一層の摺動性を発揮
する。
Further, in the case of the rubber elastic material, the granular metal fuel is buried in the surface layer portion of the rubber elastic material due to elastic deformation of the rubber elastic material, slidability can be secured, and the lock phenomenon can be prevented. When the solid lubricant film and the rubber elastic material are used together, the lock phenomenon is prevented and the sliding property is further enhanced.

【0014】[0014]

【実施例】以下、本発明を図示の実施例によって詳細に
説明する。 実施例1 図1及び図2は本発明の第1実施例に係る金属−空気電
池を示す。本第1実施例の金属−空気電池は、セラミッ
ク等で箱形に形成された下外容器1a内に設置され単セ
ル2を複数形成した電槽部3と、上外容器1bに構成さ
れた燃料容器部4と、上外容器1bの下側に構成した可
動定量部5と、該可動定量部5を駆動する一つの駆動手
段6とから構成されている。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. Example 1 FIGS. 1 and 2 show a metal-air battery according to a first example of the present invention. The metal-air battery of the first embodiment is composed of a battery case part 3 having a plurality of unit cells 2 installed in a lower outer container 1a formed of ceramic or the like in a box shape, and an upper outer container 1b. It is composed of a fuel container part 4, a movable fixed amount part 5 formed on the lower side of the upper outer container 1b, and one drive means 6 for driving the movable fixed amount part 5.

【0015】電槽部3は、外容器1の縦方向(紙面に垂
直な方向)に並設された複数単セル2の集合体である。
各単セル2は、フレーム7を母体に構成される。フレー
ム7は、横方向の対向する面が開口し、上カイド7a,
下ガイド7b及び縦方向に対向する側ガイド(図略)を
もつ四辺形枠体である。上ガイド7aには、縦方向にス
リット状の開口8が形成される。下ガイド7bには、電
解液通路用空間が形成されている。各フレーム7には、
横方向の対向面にそれぞれ板状の空気極11,11が接
着等の手段によって液密に固着される。これら空気極1
1とフレーム7とによってセル空間が形成され、該各セ
ル空間内に上記開口8と燃料取入口12aとが連通する
ように容器状の金属極12が上ガイド7aに懸架され
る。電解液室9は、金属極12と各空気極11との空間
に形成され、この電解液室9が下ガイド7bにおける電
解液通路用空間と連通することにより、該電解液通路用
空間は各単セル2の電解液室9を連通する電解液通路9
aとなっている。この電解液通路9aに図外の外部循環
手段によって電解液を供給し、電解液を循環できるよう
になっている。空気室10は、隣接する単セル2の各空
気極11が対接した空間によって形成される。このよう
な電槽部3の構成は、同時に出願した事務所整理番号P
000005670に詳細に説明されている。
The battery case portion 3 is an assembly of a plurality of single cells 2 arranged in parallel in the vertical direction of the outer container 1 (direction perpendicular to the paper surface).
Each unit cell 2 has a frame 7 as a base. The frame 7 has openings on the opposite sides in the lateral direction, and the upper guide 7a,
It is a quadrilateral frame having a lower guide 7b and side guides (not shown) that face each other in the vertical direction. A slit-shaped opening 8 is formed in the upper guide 7a in the vertical direction. A space for the electrolyte passage is formed in the lower guide 7b. In each frame 7,
Plate-shaped air electrodes 11, 11 are liquid-tightly fixed to the lateral facing surfaces by means such as bonding. These air poles 1
1 and the frame 7 form a cell space, and a container-shaped metal electrode 12 is suspended by the upper guide 7a so that the opening 8 and the fuel intake 12a communicate with each other in each cell space. The electrolytic solution chamber 9 is formed in the space between the metal electrode 12 and each air electrode 11. The electrolytic solution chamber 9 communicates with the electrolytic solution passage space in the lower guide 7b, so that the electrolytic solution passage space is Electrolyte passage 9 communicating with the electrolyte chamber 9 of the single cell 2
It is a. The electrolytic solution can be circulated by supplying the electrolytic solution to the electrolytic solution passage 9a by an external circulating means (not shown). The air chamber 10 is formed by a space where the air electrodes 11 of the adjacent single cells 2 are in contact with each other. The configuration of such battery case 3 is the office reference number P that was filed at the same time.
It is described in detail in 000005670.

【0016】なお、上記単セル2の構造は、既述のごと
く金属極12を両側から空気極11で挟んだ構造でなく
とも、一方は単に電解液を仕切るだけの多孔壁であって
もよい。また、空気極11はカーボン等によって形成さ
れている。金属極12は、電解液が浸透可能な多孔質導
電性材料を容器状に作製され、電解液に対し耐腐食性の
金属、例えばニッケル,ステンレス,ニッケルメッキし
た鉄などによって構成され、空気極11間の縦方向に壁
状に位置している。そして、金属極12には、上記燃料
取入口12aを介して燃料容器部4から0.1〜1.0
mm径の金属燃料、例えばアルミ燃料が供給されるよう
になっている。
The structure of the unit cell 2 is not limited to the structure in which the metal electrode 12 is sandwiched by the air electrodes 11 from both sides as described above, but one may be a porous wall that simply partitions the electrolytic solution. . The air electrode 11 is made of carbon or the like. The metal electrode 12 is made of a porous conductive material that is permeable to the electrolytic solution in the form of a container, and is made of a metal that is corrosion resistant to the electrolytic solution, such as nickel, stainless steel, or nickel-plated iron. It is located like a wall in the vertical direction. Then, from the fuel container portion 4 to the metal electrode 12 through the fuel intake port 12a, 0.1 to 1.0.
A metal fuel having a diameter of mm, for example, aluminum fuel is supplied.

【0017】なお、特定した一つの金属極12の内側に
は、アルミ燃料の量をセンシングする一対の導体片14
a,14bによる燃料検出器が設けられているが、同燃
料検出器の説明も上記出願に詳細に開示されている。次
に、上外容器1bの上側には、簀の子状底部4aを板状
に配設して燃料室15を区画形成した燃料容器部4が形
成されている。該簀の子状底部4aには、燃料室15側
への上部開口と可動定量部5側への下部開口とが連通し
た縦方向にスリット状の燃料落下孔17が形成される。
該燃料落下孔17は、上部開口が断面逆台形状に拡大
し、下部開口側へは細径に絞られ、アルミ燃料が細径の
部分に落下しやすくなっているとともに、電槽部3の燃
料取入口12aに対し位相が半ピッチずれている。ま
た、上外容器1bの天井には金網18が貼設されたガス
抜き孔19が形成されるとともに、アルミ燃料を燃料室
15に補給するための燃料供給口20が開設されてい
る。
Inside the specified one metal electrode 12, a pair of conductor pieces 14 for sensing the amount of aluminum fuel is provided.
Although the fuel detectors according to a and 14b are provided, the description of the fuel detector is also disclosed in detail in the above application. Next, on the upper side of the upper outer container 1b, there is formed the fuel container portion 4 in which the child-shaped bottom portion 4a of the cage is arranged in a plate shape to define the fuel chamber 15. A slit-shaped fuel drop hole 17 is formed in the vertical direction in the child-shaped bottom portion 4a of the cage so that an upper opening toward the fuel chamber 15 and a lower opening toward the movable fixed amount portion 5 communicate with each other.
The fuel drop hole 17 has an upper opening enlarged in an inverted trapezoidal shape in cross section and is narrowed to a lower opening side so that the aluminum fuel can easily drop into a small diameter portion and the battery case 3 The phase is shifted from the fuel intake port 12a by a half pitch. Further, a gas vent hole 19 having a wire mesh 18 attached thereto is formed on the ceiling of the upper outer container 1b, and a fuel supply port 20 for replenishing the aluminum fuel to the fuel chamber 15 is opened.

【0018】また、上記簀の子状底部4aの下側には、
電槽部3と対接する仕切底部4bによってスライド室5
aを区画形成し、該スライド室5aに定量板22を内挿
してなる可動定量部5が形成されている。仕切底部4b
には、下部開口を単セル2の燃料取入口12aと位相を
一致され(正しくは燃料取入口12aの右端に寄った位
相とされ)、アルミ燃料を燃料取入口12aに導く燃料
導孔4cが形成されている。この燃料導孔4cの上部開
口はスライド室5aへ連通している。
On the lower side of the child-shaped bottom portion 4a of the cage,
The slide chamber 5 is provided by the partition bottom 4b that is in contact with the battery case 3.
A movable fixed-quantity portion 5 is formed by partitioning and forming a, and inserting a fixed-quantity plate 22 in the slide chamber 5a. Partition bottom 4b
Includes a fuel guide hole 4c for aligning the lower opening with the fuel intake port 12a of the unit cell 2 (correctly, a phase closer to the right end of the fuel intake port 12a) and for guiding the aluminum fuel to the fuel intake port 12a. Has been formed. The upper opening of the fuel guide hole 4c communicates with the slide chamber 5a.

【0019】スライド室5aに内挿された定量板22
は、該スライド内で横方向に往復動自在とされている。
該定量板22には、上下開口が連通し、該定量板22の
往復動によって燃料落下孔17及び燃料導孔4cを介し
て各単セル2の燃料取入口12aに連通可能で、アルミ
燃料を定量保持する小室23が形成されている。定量板
22を往復動させる駆動手段6は、例えば直動式のモー
タが用いられ、その出力軸6aが上外容器1bの側部を
貫通して定量板22に接続されている。
Quantitative plate 22 inserted in the slide chamber 5a
Are reciprocally movable in the lateral direction within the slide.
Upper and lower openings communicate with the metering plate 22, and reciprocating motion of the metering plate 22 allows communication with the fuel inlet 12a of each unit cell 2 through the fuel drop hole 17 and the fuel guide hole 4c. A small chamber 23 for holding a fixed amount is formed. The drive means 6 for reciprocating the fixed quantity plate 22 is, for example, a direct-acting motor, and its output shaft 6a is connected to the fixed quantity plate 22 through the side portion of the upper outer container 1b.

【0020】ここで、上外容器1bの底面には、電解液
や水蒸気等を上外容器1bと下外容器1aの接合面を通
じて外部へ漏洩させないために、窒化ホウ素粉末、PT
FE粉末等の絶縁性の固体潤滑剤による膜21aが塗布
又は噴霧により形成されている。また、定量板22にお
けるスライド室5aの上側内壁及び下側内壁との各摺接
面には、それぞれ燃料落下孔17及び燃料導孔4cの開
口面を除き、上外容器1bの底面と同様の絶縁性の固体
潤滑膜21b,21cが形成されている。
Here, on the bottom surface of the upper outer container 1b, in order to prevent the electrolyte solution, water vapor, etc. from leaking to the outside through the joint surface between the upper outer container 1b and the lower outer container 1a, the boron nitride powder, PT
The film 21a made of an insulating solid lubricant such as FE powder is formed by coating or spraying. Further, the sliding surfaces of the fixed volume plate 22 with the upper inner wall and the lower inner wall of the slide chamber 5a are the same as the bottom surface of the upper outer container 1b except the opening surfaces of the fuel drop hole 17 and the fuel guide hole 4c. Insulating solid lubricant films 21b and 21c are formed.

【0021】このように構成された第1実施例の金属−
空気電池は、次のように動作する。空気極11と金属極
12は、既述したような反応式によって電池の放電作用
を行い、放電により金属極12のアルミ燃料が消費され
る。そして、特定された金属極12内のアルミ燃料が予
め設定した燃料量より減少すると、定量板22が駆動手
段6によって復動(A方向に移動)され、図2(B)に
示す小室23が燃料落下孔17と連通した状態から、図
2(A)のように、小室23が燃料導孔4cを介して燃
料取入口12aに連通した状態に変位して、小室23に
保持した量のアルミ燃料を各金属極12に供給する。定
量板22のこのような復動は、金属極12内に設けた導
体片14a,14bによって燃料の減少が検出されるこ
とをトリガとして、駆動手段6が作動指令されることに
よる。
The metal of the first embodiment constructed as described above
The air battery operates as follows. The air electrode 11 and the metal electrode 12 perform the discharge operation of the battery by the reaction formula as described above, and the aluminum fuel of the metal electrode 12 is consumed by the discharge. Then, when the amount of aluminum fuel in the specified metal electrode 12 decreases below a preset fuel amount, the fixed quantity plate 22 is moved back (moved in the direction A) by the drive means 6, and the small chamber 23 shown in FIG. As shown in FIG. 2 (A), the small chamber 23 is displaced from the state in which it communicates with the fuel drop hole 17 to the state in which the small chamber 23 communicates with the fuel intake port 12a via the fuel guide hole 4c, and the amount of aluminum retained in the small chamber 23 is changed. Fuel is supplied to each metal electrode 12. Such return movement of the metering plate 22 is due to the actuation command of the driving means 6 triggered by the detection of the decrease of the fuel by the conductor pieces 14a, 14b provided in the metal electrode 12.

【0022】ところで、上記実施例では、定量板22の
上下摺動面に絶縁性の固体潤滑膜21b,21cが形成
されているため、摺動面へのアルミ燃料の付着が確実に
防止されるとともに、電解液や水蒸気等の漏洩を防止で
きる。その結果、定量板22の円滑な摺動性を確保する
とともに、アルミの粒が小室23の開口エッジや、燃料
落下孔17の開口エッジに付着することがなく、定量板
22のロック現象が防止される。 また、上外容器1b
の底面に形成された絶縁性の固体潤滑膜21aは、電解
液や水蒸気の外部への漏洩を防止する。かくして本実施
例を採用する金属−空気電池は、安定な発電を行うこと
ができる。なお、各外容器1a,1bを一体にする場合
は、絶縁性の固体潤滑膜21aは省略してもよい。
By the way, in the above embodiment, since the insulating solid lubricating films 21b and 21c are formed on the upper and lower sliding surfaces of the metering plate 22, the aluminum fuel is surely prevented from adhering to the sliding surfaces. At the same time, it is possible to prevent leakage of the electrolytic solution and water vapor. As a result, smooth slidability of the fixed quantity plate 22 is ensured, and aluminum particles do not adhere to the opening edge of the small chamber 23 or the opening edge of the fuel drop hole 17, thus preventing the locking phenomenon of the fixed quantity plate 22. To be done. Also, the outer container 1b
The insulative solid lubricant film 21a formed on the bottom surface of the electrode prevents the electrolyte and water vapor from leaking to the outside. Thus, the metal-air battery adopting this embodiment can generate stable power. When the outer containers 1a and 1b are integrated, the insulating solid lubricating film 21a may be omitted.

【0023】実施例2 図4は本発明の第2実施例に係る金属−空気電池を示
す。この実施例は、単セル2の集合体である電槽部3を
下外容器1a内に構成する点は第1実施例と同じである
が、可動定量部5を省略し、上外容器1bによって構成
される燃料容器部4を直接に往復動させたものである。
すなわち、上外容器1bの電槽部3と摺接する簀の子状
底部4aには各単セル2に対応して燃料落下孔17が形
成され、該簀の子状底部4aと天井との間に燃料室15
が形成さてれいる。この場合、燃料の定量落下を確保す
る底部2の厚みを前実施例より大きくし、燃料落下孔1
7の経路を長くしている。これにより、燃料落下孔17
は小室23と同様な機能を果たす。
Embodiment 2 FIG. 4 shows a metal-air battery according to a second embodiment of the present invention. This embodiment is the same as the first embodiment in that the battery case portion 3 which is an assembly of the single cells 2 is configured in the lower outer container 1a, but the movable fixed amount portion 5 is omitted and the upper outer container 1b is omitted. The fuel container portion 4 constituted by is directly reciprocated.
That is, a fuel drop hole 17 is formed corresponding to each unit cell 2 in the child-shaped bottom portion 4a of the cage which slidably contacts the battery case portion 3 of the upper outer container 1b, and the fuel chamber 15 is provided between the child-shaped bottom portion 4a of the cage and the ceiling.
Is formed. In this case, the thickness of the bottom portion 2 that secures a fixed amount of fuel drop is made larger than that in the previous embodiment, and the fuel drop hole 1
Route 7 is long. As a result, the fuel drop hole 17
Performs the same function as the small chamber 23.

【0024】そして、本実施例では、上記燃料容器部4
の燃料落下孔17を除く底面に、絶縁性の固体潤滑膜2
1dが形成されている。従って、この実施例でも、摺動
面へのアルミ燃料の付着が確実に防止され、燃料容器部
4と電槽部3との摺動面の円滑な摺動性が確保されると
ともに、該摺動面からの電解液や水蒸気の外部漏洩を防
止できる。
Further, in this embodiment, the fuel container portion 4 is
Of the insulating solid lubricating film 2 on the bottom surface except the fuel drop hole 17 of
1d is formed. Therefore, also in this embodiment, the aluminum fuel is surely prevented from adhering to the sliding surface, the smooth sliding property of the sliding surface between the fuel container portion 4 and the battery case portion 3 is ensured, and the sliding It is possible to prevent external leakage of electrolytic solution and water vapor from the moving surface.

【0025】実施例3 図4及び図5は本発明の第3実施例に係る金属−空気電
池を示す。この実施例は、外容器1は一体品であり、そ
の下側に電槽部3を構成し、上側に燃料容器部4を構成
したものである。そして、該燃料容器部4の簀の子状底
部4aは、電槽部3の上面に対しスライド室5aの間隔
を開けて形成され、該スライド室5aに小室23を有す
る定量板22が内挿されている。本実施例の特徴は、小
室23の上下端開口を除く定量板22の上下摺動面をそ
れぞれゴム等の弾性材料24a,24bでシールし、該
上下摺動面に摺接するスライド室5aの天床各摺動面に
絶縁性の固体潤滑膜21e,21fを形成したものであ
る。
Embodiment 3 FIGS. 4 and 5 show a metal-air battery according to a third embodiment of the present invention. In this embodiment, the outer container 1 is an integrated product, and the battery case part 3 is formed on the lower side and the fuel container part 4 is formed on the upper side. And, the child-shaped bottom 4a of the container of the fuel container portion 4 is formed with a gap of the slide chamber 5a with respect to the upper surface of the battery case portion 3, and the fixed volume plate 22 having the small chamber 23 is inserted in the slide chamber 5a. There is. The feature of the present embodiment is that the upper and lower sliding surfaces of the quantitative plate 22 except the upper and lower openings of the small chamber 23 are sealed with elastic materials 24a and 24b such as rubber, and the ceiling of the slide chamber 5a slidingly contacting the upper and lower sliding surfaces. Insulating solid lubricating films 21e and 21f are formed on each sliding surface of the floor.

【0026】なお、本実施例では、スライド室5aは、
外容器1の横方向対向側の一側から外部と連通し、定量
板22が抜き取り可能となっいる。なお、25はストッ
パである。このような実施例によれば、燃料容器部絶縁
性の固体潤滑膜21e,21fにより、アルミ燃料の付
着を防止できるとともに、電解液や水蒸気の外部漏洩を
防止し、更に、図5に示すように、例えば小室23の上
端開口エッジと燃料落下孔17の下端開口エッジがアル
ミ粒を挟んでも、該アルミ粒Alがゴム弾性材料24a
の弾性変形によってゴム弾性材料24aの表層部に埋没
し、摺動性を悪化させることがなく、ロック現象を回避
できる。
In this embodiment, the slide chamber 5a is
The one side of the outer container 1 opposite to the lateral direction communicates with the outside, and the fixed quantity plate 22 can be pulled out. Incidentally, 25 is a stopper. According to such an embodiment, the solid lubricating films 21e and 21f having an insulating property in the fuel container can prevent aluminum fuel from adhering to the electrolyte and prevent external leakage of the electrolyte and water vapor, and as shown in FIG. Even if, for example, the aluminum opening is sandwiched between the upper opening edge of the small chamber 23 and the lower opening edge of the fuel drop hole 17, the aluminum particle Al does not separate the rubber elastic material 24a.
Due to the elastic deformation, the rubber elastic material 24a is buried in the surface layer portion, the slidability is not deteriorated, and the locking phenomenon can be avoided.

【0027】実施例4 図6〜図8に示す金属−燃料電池は、第1実施例の定量
板22をローラ形態としたものである。すなわち、この
第4実施例は、燃料容器部4の簀の子状底部4aと、各
単セル2の母体となる複数のフレーム7を一体化した一
体フレーム16により、電槽部3及び燃料容器部4を一
体形としたものである。そして、燃料落下孔17に相当
する燃料通路は、簀の子状底部4aとなる部分と、上ガ
イド7aとなる部分とにわたって、後述するローラ式の
定量板22を境にそれより上側の落下孔17aと、下側
の落下孔17bとで鉛直に形成され、落下孔17aの上
端開口が燃料室15に連通し、落下孔17bの下端開口
が各単セル2の燃料取入口12aに連通されている。
Example 4 In the metal-fuel cell shown in FIGS. 6 to 8, the metering plate 22 of the first example has a roller form. That is, in the fourth embodiment, the battery case part 3 and the fuel container part 4 are formed by the integral frame 16 in which the cage-shaped bottom part 4a of the fuel container part 4 and the plurality of frames 7 which are the bases of the individual cells 2 are integrated. Is an integrated type. The fuel passage corresponding to the fuel drop hole 17 extends from the child-like bottom 4a of the cage to the upper guide 7a and a drop hole 17a above the roller-type fixed plate 22 which will be described later. , The lower drop hole 17b is formed vertically, the upper end opening of the drop hole 17a communicates with the fuel chamber 15, and the lower end opening of the drop hole 17b communicates with the fuel intake 12a of each unit cell 2.

【0028】各ローラ式の定量板22は、落下孔17
a,17bと連通自在で軸を通る割孔23′を有した長
尺円柱状をなし、落下孔17a,17bとの境に形成さ
れた縦方向の筒孔26内に軸回転自在に介装されてい
る。また、各ローラ式定量板22は、図7に示すよう
に、それぞれ各一端が外容器1の外側に突出し、突出し
たローラ部22Aには、駆動手段6の正逆回転出力軸6
aと固定ローラ29に架設されたベルト6bにそれぞれ
連結されている。これにより、ローラ式の定量板22
は、駆動手段6によって回転駆動される。
Each roller type quantitative plate 22 has a drop hole 17
a long columnar shape having a split hole 23 'passing through the shaft and capable of communicating with a and 17b, and axially rotatably interposed in a vertical cylindrical hole 26 formed at a boundary between the falling holes 17a and 17b. Has been done. As shown in FIG. 7, each roller type fixed plate 22 has one end protruding outside the outer container 1, and the protruding roller portion 22A has a forward / reverse rotation output shaft 6 of the driving means 6.
a and a belt 6b installed on a fixed roller 29, respectively. As a result, the roller type quantitative plate 22
Are driven to rotate by the driving means 6.

【0029】さらに、本実施例の各ローラ式の定量板2
2は、ゴム弾性材料にて形成されている。一方、上記筒
孔26のフレーム壁面には、絶縁性の固体潤滑膜21g
が形成されている。従って、上記第4実施例の場合、各
ローラ式の定量板22は、駆動手段6の回転動によっ
て、落下孔17a及び落下孔17bに割孔23′を一致
させた状態と、図6に示すように、落下孔17a及び落
下孔17bの燃料通路に対し割孔23′が十字となる状
態に変位させることができる。これにより、燃料消費に
応じて各単セル2にアルミ燃料を連続的に供給すること
ができる。
Further, each roller type quantitative plate 2 of this embodiment is used.
2 is formed of a rubber elastic material. On the other hand, on the frame wall surface of the cylindrical hole 26, an insulating solid lubricating film 21g is formed.
Are formed. Therefore, in the case of the above-described fourth embodiment, the roller type fixed quantity plate 22 is shown in FIG. 6 in a state in which the split holes 23 'are aligned with the drop holes 17a and 17b by the rotational movement of the driving means 6. Thus, the split hole 23 'can be displaced in a cross shape with respect to the fuel passages of the drop holes 17a and 17b. As a result, the aluminum fuel can be continuously supplied to each unit cell 2 according to the fuel consumption.

【0030】また、本実施例は、図8に示すように、割
孔23′の開口エッジと落下孔17a,17bの開口エ
ッジとがアルミ粒Alを挟んでも、第3実施例と同様
に、アルミ粒Alはローラ式の定量板22自体の弾性変
形によってゴム弾性材料の表層部に埋没し、ロック現象
を防止することができる。
Further, in the present embodiment, as shown in FIG. 8, even if the opening edge of the split hole 23 'and the opening edge of the drop holes 17a and 17b sandwich the aluminum grain Al, as in the third embodiment, The aluminum particles Al are buried in the surface layer portion of the rubber elastic material due to elastic deformation of the roller type quantitative plate 22 itself, so that the locking phenomenon can be prevented.

【0031】[0031]

【発明の効果】以上述べたように本発明によれば、電槽
部と燃料容器部又は電槽部及び燃料容器部と可動定量部
との摺動面を形成する部分に、絶縁性の固体潤滑膜又は
ゴム弾性材料を使用したので、粒状燃料の付着を防止す
るとともに、電解液や水蒸気等の漏洩を防止でき、その
結果、可動定量部の摺動性が良好となって、燃料供給の
連続性を確保する効果がある。また、ゴム弾性材料の弾
性変形によってロック現象を回避することができるとい
う効果がある。
As described above, according to the present invention, an insulating solid is formed in the portion forming the sliding surface between the battery case part and the fuel container part or the battery case part and the fuel container part and the movable fixed amount part. Since a lubrication film or rubber elastic material is used, it is possible to prevent adhesion of granular fuel and also prevent leakage of electrolyte solution, water vapor, etc. As a result, the slidability of the movable fixed quantity part is improved and the fuel supply It has the effect of ensuring continuity. Further, there is an effect that the lock phenomenon can be avoided by the elastic deformation of the rubber elastic material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】(A)は第1実施例における燃料供給時の動作
を示す説明図、(B)は同実施例における燃料遮断時の
動作を示す説明図。
FIG. 2A is an explanatory view showing an operation at the time of fuel supply in the first embodiment, and FIG. 2B is an explanatory view showing an operation at a fuel cutoff in the same embodiment.

【図3】本発明の第2実施例を示す構成図。FIG. 3 is a configuration diagram showing a second embodiment of the present invention.

【図4】本発明の第3実施例を示す構成図。FIG. 4 is a configuration diagram showing a third embodiment of the present invention.

【図5】上記第3実施例の動作を示す説明図。FIG. 5 is an explanatory view showing the operation of the third embodiment.

【図6】本発明の第4実施例を示す構成図。FIG. 6 is a configuration diagram showing a fourth embodiment of the present invention.

【図7】上記第4実施例の正面図。FIG. 7 is a front view of the fourth embodiment.

【図8】上記第4実施例の動作を示す説明図。FIG. 8 is an explanatory diagram showing the operation of the fourth embodiment.

【図9】アルミ−空気電池の原理を説明する説明図。FIG. 9 is an explanatory diagram illustrating the principle of an aluminum-air battery.

【図10】ロック現象を説明する説明図。FIG. 10 is an explanatory diagram illustrating a lock phenomenon.

【符号の説明】[Explanation of symbols]

2…単セル、3…電槽部、4…燃料容器部、5…可動定
量部、7…フレーム、9…電解液室、10…空気室、1
1…空気極、12…金属極、12a…燃料取入口、15
…燃料室、17…燃料落下孔、21a〜21c…固体潤
滑膜、22…定量板、24a,24b…ゴム弾性材料。
2 ... Single cell, 3 ... Battery case part, 4 ... Fuel container part, 5 ... Movable fixed amount part, 7 ... Frame, 9 ... Electrolyte chamber, 10 ... Air chamber, 1
1 ... Air electrode, 12 ... Metal electrode, 12a ... Fuel intake port, 15
... fuel chamber, 17 ... fuel drop hole, 21a-21c ... solid lubricating film, 22 ... fixed quantity plate, 24a, 24b ... rubber elastic material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 由美 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yumi Inaba 2-1-1 Asahi-cho, Kariya City, Aichi Prefecture Aisin Seiki Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】空気極と該空気極と所定間隔を隔てて対向
する多孔壁とを具備し、該空気極と該多孔壁との間に形
成され、電解液を保持する電解液室と該空気極で該電解
液室と区画された空気室と該多孔壁で該電解液室と区画
され上部に取入口を有し、該取入口より供給される粒状
金属燃料を収納する金属極とをもつ単セルを複数個形成
する電槽部と、 該電槽部に上設され、前記各燃料取入口に対応する複数
の燃料落下孔を有し該粒状金属燃料を保持する燃料容器
部と、 該燃料容器部と電槽部との間に設けられ、上部に前記各
燃料落下路に連通する開口と下部に前記各燃料取入口に
連通する開口を有する前記粒状金属燃料を定量保持する
小室があり、該小室を前記燃料落下路及び前記燃料取入
口と同時もしくは交互に連通させた状態と遮断させた状
態とに変位する可動定量部とを具備し、 該可動定量部と前記燃料容器部及び電槽部との両摺動面
の少なくとも一面を形成する部分は、絶縁性の固体潤滑
膜又はゴム弾性材料で形成されていることを特徴とする
金属−空気電池。
1. An electrolytic solution chamber, comprising an air electrode and a porous wall facing the air electrode with a predetermined distance therebetween, the electrolytic solution chamber being formed between the air electrode and the porous wall, and holding an electrolytic solution. An air chamber that is partitioned from the electrolyte chamber by an air electrode, and a metal electrode that is partitioned from the electrolyte chamber by the porous wall and has an inlet at the top and that stores the granular metal fuel supplied from the inlet. A plurality of unit cells having a single cell, and a fuel container section which is provided on the cell section and has a plurality of fuel drop holes corresponding to the fuel inlets and holds the granular metal fuel. A small chamber that is provided between the fuel container section and the battery case section and has an opening that communicates with each of the fuel drop passages at an upper portion and an opening that communicates with each of the fuel intake portions at a lower portion, holds a fixed amount of the granular metal fuel. The small chamber is shut off from the state in which the small chamber is communicated with the fuel drop path and the fuel intake port simultaneously or alternately. A movable fixed amount portion that displaces into a closed state, and a portion forming at least one of both sliding surfaces of the movable fixed amount portion and the fuel container portion and the battery case portion is an insulating solid lubricating film or rubber. A metal-air battery characterized by being formed of an elastic material.
【請求項2】空気極と該空気極と所定間隔を隔てて対向
する多孔壁とを具備し、該空気極と該多孔壁との間に形
成され、電解液を保持する電解液室と該空気極で該電解
液室と区画された空気室と該多孔壁で該電解液室と区画
され上部に取入口を有し、該取入口より供給される粒状
金属燃料を収納する金属極とをもつ単セルを複数個形成
する電槽部と、 該電槽部に上設され前記燃料取入口に対応する燃料落下
路を前記燃料取入口に対し連通させた状態と遮断した状
態に相対摺動する燃料容器部とを具備し、 該電槽部及び燃料容器部の両摺動面の少なくとも一面を
形成する部分は、絶縁性の固体潤滑膜又はゴム弾性材料
で形成されていることを特徴とする金属−空気電池。
2. An electrolytic solution chamber comprising an air electrode and a porous wall facing the air electrode with a predetermined distance therebetween, the electrolytic solution chamber being formed between the air electrode and the porous wall, and holding an electrolytic solution. An air chamber that is partitioned from the electrolyte chamber by an air electrode, and a metal electrode that is partitioned from the electrolyte chamber by the porous wall and has an inlet at the top and that stores the granular metal fuel supplied from the inlet. A plurality of unit cells having a unit cell, and a relative sliding between a state in which the fuel drop path, which is provided on the cell unit and corresponds to the fuel intake port, is in communication with the fuel intake port and in a closed state. And a portion forming at least one of the sliding surfaces of the battery case portion and the fuel container portion is formed of an insulating solid lubricating film or a rubber elastic material. A metal-air battery that does.
JP1015293A 1993-01-25 1993-01-25 Metal-air battery Pending JPH06223884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015293A JPH06223884A (en) 1993-01-25 1993-01-25 Metal-air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015293A JPH06223884A (en) 1993-01-25 1993-01-25 Metal-air battery

Publications (1)

Publication Number Publication Date
JPH06223884A true JPH06223884A (en) 1994-08-12

Family

ID=11742307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015293A Pending JPH06223884A (en) 1993-01-25 1993-01-25 Metal-air battery

Country Status (1)

Country Link
JP (1) JPH06223884A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078852A1 (en) * 2004-02-16 2005-08-25 Meet Co., Ltd. Collapsible metal air battery
WO2010068007A2 (en) * 2008-12-08 2010-06-17 (주)레오모터스 Zinc air fuel cell stack assembly
KR100976504B1 (en) * 2010-04-16 2010-08-17 주식회사 레오모터스 Zinc-air fuel cell assembly
KR101007554B1 (en) * 2008-12-08 2011-01-14 이정용 Zinc-Air fuel cell stack assembly
KR101010235B1 (en) * 2010-10-13 2011-01-21 이정용 Zinc-air fuel cell assembly
KR101010236B1 (en) * 2010-10-13 2011-01-21 이정용 Zinc-air fuel cell assembly
KR101024663B1 (en) * 2009-03-31 2011-03-25 이정용 Zinc-Air fuel cell stack assembly
WO2011142586A2 (en) * 2010-05-11 2011-11-17 주식회사 레오모터스 Apparatus for supplying zinc balls
KR101151783B1 (en) * 2010-05-11 2012-05-31 이정용 Zinc-ball supplying apparatus
KR101152790B1 (en) * 2010-05-11 2012-06-12 이정용 Zinc-ball supplying apparatus
KR101152793B1 (en) * 2010-06-08 2012-06-12 이정용 Zinc-ball supplying apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078852A1 (en) * 2004-02-16 2005-08-25 Meet Co., Ltd. Collapsible metal air battery
WO2010068007A2 (en) * 2008-12-08 2010-06-17 (주)레오모터스 Zinc air fuel cell stack assembly
WO2010068007A3 (en) * 2008-12-08 2010-08-05 (주)레오모터스 Zinc air fuel cell stack assembly
KR101007554B1 (en) * 2008-12-08 2011-01-14 이정용 Zinc-Air fuel cell stack assembly
KR101024663B1 (en) * 2009-03-31 2011-03-25 이정용 Zinc-Air fuel cell stack assembly
KR100976504B1 (en) * 2010-04-16 2010-08-17 주식회사 레오모터스 Zinc-air fuel cell assembly
WO2011142586A3 (en) * 2010-05-11 2012-04-19 주식회사 레오모터스 Apparatus for supplying zinc balls
WO2011142586A2 (en) * 2010-05-11 2011-11-17 주식회사 레오모터스 Apparatus for supplying zinc balls
KR101151783B1 (en) * 2010-05-11 2012-05-31 이정용 Zinc-ball supplying apparatus
KR101152790B1 (en) * 2010-05-11 2012-06-12 이정용 Zinc-ball supplying apparatus
KR101152793B1 (en) * 2010-06-08 2012-06-12 이정용 Zinc-ball supplying apparatus
KR101010236B1 (en) * 2010-10-13 2011-01-21 이정용 Zinc-air fuel cell assembly
KR101010235B1 (en) * 2010-10-13 2011-01-21 이정용 Zinc-air fuel cell assembly

Similar Documents

Publication Publication Date Title
JPH06223884A (en) Metal-air battery
US6162555A (en) Particle feeding apparatus for electrochemical power source and method of making same
KR101871203B1 (en) Electrolyte flow configuration for a metal-halogen flow battery
CA1226031A (en) Liquid fuel cell
US20110020722A1 (en) Fuel cell and bipolar plate having manifold sump
US20110114496A1 (en) Electrochemical Devices, Systems, and Methods
US20080241617A1 (en) Fuel cell
JP2004501480A (en) Mixed reactant fuel cell
US10218021B2 (en) Flow battery electrolyte compositions containing an organosulfate wetting agent and flow batteries including same
JPH06223882A (en) Metal-air battery
EP0861926A1 (en) Ozone generating system
JP4285518B2 (en) Connection structure, flow path control unit, fuel cell power generator and electronic device
JP3848283B2 (en) Fuel cell device
Suppes et al. High‐energy density flow battery validation
US8252482B2 (en) Solid polymer fuel cell
KR102242418B1 (en) Electrolyzer using electromotive force of electrolytic fluid
CN117712436A (en) Electrolyte flow field for rebalancing cells of redox flow battery systems
US8835064B2 (en) Fuel battery
JPH06223883A (en) Metal-air battery
CN116007271A (en) Refrigerating and freezing device
CN108091916A (en) Vehicle-mounted fuel cell pack
JPH06223885A (en) Metal-air battery and fuel supplying device thereof
JPS5816471A (en) Liquid fuel cell
JP2013219000A (en) Fuel cell stack
US20240178430A1 (en) Tank enclosed injection system