JPH0622100B2 - Camera tube - Google Patents

Camera tube

Info

Publication number
JPH0622100B2
JPH0622100B2 JP57178422A JP17842282A JPH0622100B2 JP H0622100 B2 JPH0622100 B2 JP H0622100B2 JP 57178422 A JP57178422 A JP 57178422A JP 17842282 A JP17842282 A JP 17842282A JP H0622100 B2 JPH0622100 B2 JP H0622100B2
Authority
JP
Japan
Prior art keywords
porous
image pickup
film
photoconductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57178422A
Other languages
Japanese (ja)
Other versions
JPS5968152A (en
Inventor
三郎 信時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57178422A priority Critical patent/JPH0622100B2/en
Publication of JPS5968152A publication Critical patent/JPS5968152A/en
Publication of JPH0622100B2 publication Critical patent/JPH0622100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/39Charge-storage screens
    • H01J29/45Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光導電形の撮像管に関するもである。The present invention relates to a photoconductive type image pickup tube.

〔従来技術〕[Prior art]

この種の撮像管は、撮像面に対向してカソード側にメツ
シユ電極を備えたものが多い。このメツシユ電極にはカ
ソードから撮像面に向かう電子線の一部や撮像面にラン
デイングせずに反射した電子線等が射突し、その結果、
電極印加電圧にもよるがX線を発生する。特に、高解像
度を得ようとしてメツシユ電極への印加電圧を1000
〜1600V程度まで高くした場合にはこの現象が著し
い。
Most of this kind of image pickup tube has a mesh electrode on the cathode side facing the image pickup surface. On this mesh electrode, a part of the electron beam from the cathode to the image pickup surface or the electron beam reflected without landing on the image pickup surface is projected, and as a result,
X-rays are generated depending on the voltage applied to the electrodes. Especially, in order to obtain high resolution, the applied voltage to the mesh electrode is set to 1000
This phenomenon is remarkable when the voltage is increased to about 1600V.

これらのX線のうち、特に撮像面で反射した電子線等に
よつて発生するものは、中間の吸収層がないため、撮像
面が放射線損傷を受けて暗電流や光導電特性が変化して
しまうことが多い。特にSiを主成分とした阻止形撮像
面ではこの傾向が大きい。
Among these X-rays, especially those generated by electron beams reflected on the imaging surface do not have an intermediate absorption layer, so the imaging surface is damaged by radiation and dark current and photoconductive characteristics change. It often happens. In particular, this tendency is large on the blocking type imaging surface containing Si as a main component.

そこで、撮像面の電子線入射側表面に光導電現像とは直
接関係がなくかつ電子のランデイングを妨げない電子反
射率の低い材料,組織からなる層(ビームランデイング
層)を形成することが行なわれている。例えば最も広く
用いられているものとしては、低真空雰囲気でやゝ多孔
質性に形成したSb2S3がある。
Therefore, a layer (beam landing layer), which is not directly related to photoconductive development and has a low electron reflectance and does not interfere with electron landing, is formed on the surface of the imaging surface on the electron beam incident side (beam landing layer). ing. For example, the most widely used one is Sb 2 S 3 which is slightly porous in a low vacuum atmosphere.

しかしながらこのSb2S3は、X線の遮断率が十分に高く
ないため、相当量のX線が遮断されずに内部の光導電部
に到達してしまう。
However, since the blocking rate of X-rays of Sb 2 S 3 is not sufficiently high, a considerable amount of X-rays reach the internal photoconductive portion without being blocked.

〔発明の目的〕[Object of the Invention]

本発明は、このような状況に鑑みてなされたものであ
り、その目的は、メツシユ電極で発生したX線が撮像面
を形成する光導電部に侵入して光電変換および暗抵抗特
性を変化させるのを有効に防ぐことが可能な撮像管を提
供すること、にある。
The present invention has been made in view of such a situation, and an object thereof is that X-rays generated at a mesh electrode enter a photoconductive portion forming an imaging surface to change photoelectric conversion and dark resistance characteristics. The object is to provide an image pickup tube capable of effectively preventing the above problem.

〔発明の概要〕[Outline of Invention]

このような目的を達成するために、本発明は、特にSi
を主成分とした光導電面からなる撮像管において電子線
入射側表面に多孔質Ba化合物層からなる軟X線阻止層を
備えた光導電面を用いたもの、およびそのような撮像管
の製造方法としてBaAl4を蒸発源としてガス雰囲気中で
分解分溜蒸着することにより光導電膜上に多孔質Ba化合
物層を形成するものである。
In order to achieve such an object, the present invention is particularly directed to Si.
Of a photoconductive surface having a photoconductive surface containing as a main component, using a photoconductive surface provided with a soft X-ray blocking layer made of a porous Ba compound layer on the electron beam incident side surface, and the manufacture of such a pickup tube. As a method, a porous Ba compound layer is formed on the photoconductive film by decomposing fractional vapor deposition in a gas atmosphere using BaAl 4 as an evaporation source.

すなわち、本発明は、1500V程度で発生する超軟X
線の透過率の低いビームランデイング層として多孔質Ba
化合物層を設けることを特徴とする。同様の目的を達成
する材料としては他にも例えばPbOやPbS等があるが、こ
れは空気中できわめて不安定であるため取扱いがむずか
しく、生産性が低い。同様に金属Baも軟X線吸収作用が
大きいが、空気中で不安定であり実際上Baのままで利用
することは困難である。
That is, the present invention is a super soft X generated at about 1500V.
Porous Ba as a beam-landing layer with low line transmittance
A feature is that a compound layer is provided. Other materials that achieve the same purpose include, for example, PbO and PbS, which are extremely unstable in air and are difficult to handle, resulting in low productivity. Similarly, metallic Ba has a large soft X-ray absorption effect, but it is unstable in air and it is practically difficult to use it as it is.

一般に、上述したようなビームランデイング層には各種
の条件を満足することが要求される。すなわち、先ず多
孔質であること。これは、ち密で平坦な表面では電子線
の反射率が大きくなることからきわめて重要である。ま
た、電子が光導電部まで侵入しないようにそれ自体導電
性を有すること、および当然のことながら2次電子放射
率が小さいこと、さらにそれ自体光導電性は持たないこ
と電気抵抗値が、撮像面用として充分高いこと等が望ま
れる。多孔質Ba化合物として酸化物,硫化物等はこれら
の条件を満足し、望ましいビームランデイング層を形成
することが可能である。また、この場合多孔質Ba化合物
層は、300〜8000Å程度、より一般的には800〜1500Å程
度の厚みに形成すればよい。
Generally, the beam landing layer as described above is required to satisfy various conditions. That is, it must first be porous. This is extremely important because a dense and flat surface has a high electron beam reflectance. In addition, it has conductivity itself so that electrons do not penetrate into the photoconductive portion, and naturally has a small secondary electron emissivity, and further has no photoconductivity itself. It is desired that it is sufficiently high for surface use. Oxides, sulfides and the like as the porous Ba compound satisfy these conditions and can form a desired beam landing layer. Further, in this case, the porous Ba compound layer may be formed to have a thickness of about 300 to 8000Å, more generally about 800 to 1500Å.

〔発明の実施例〕Example of Invention

光導電面上に、このような多孔質Ba化合物層を形成する
際に各種条件の限定理由等につき、以下実施例を用いて
説明する。
The reasons for limiting various conditions when forming such a porous Ba compound layer on the photoconductive surface will be described below with reference to examples.

先ず、このような薄膜を形成する方法として真空蒸着法
によることはごく一般的であるが、この場合BaO,BaS,Ba
CO3およびそれらの混合体などの高抵抗Ba化合物膜を形
成するのに蒸発源としてこれらの化合物自体を用いるこ
とは例えばBaOの如く高融点であり多孔性蒸着困難であ
つたり、硫化物,塩酸塩などは真空加熱で分解してしま
つたりするので成膜が困難である。また、金属Baはそれ
自体蒸発し易いが、先に述べたように空気中では不安定
で取扱い中に酸素に触れてBaO化してしまうため上述し
たと同様の問題が生じる。これに対し、BaAl4は通常ゲ
ツター材として用いられるもので空気中できわめて安定
である。しかも、これを蒸発源とするとき、はじめにBa
が分解して蒸発、次いでAlが蒸発するため、この差を利
用してBaのみを分解分溜蒸着することができる。
First, it is very common to use a vacuum deposition method as a method for forming such a thin film. In this case, BaO, BaS, Ba
The use of these compounds themselves as evaporation sources to form high resistance Ba compound films such as CO 3 and mixtures thereof has a high melting point such as BaO and is difficult to vapor-deposit porous materials, sulfides and hydrochloric acid. It is difficult to form a film because salts and the like are decomposed by heating under vacuum and are easily exhausted. Further, metal Ba itself easily evaporates, but as described above, it is unstable in air and contacts oxygen during handling to be converted into BaO, which causes the same problem as described above. On the other hand, BaAl 4 is usually used as a getter material and is extremely stable in air. Moreover, when using this as the evaporation source, first, Ba
Is decomposed and evaporated, and then Al is evaporated. Therefore, by utilizing this difference, only Ba can be decomposed and fractionally evaporated.

したがつて、この蒸着を酸素ガス雰囲気中で行なうこと
により、BaO膜が形成できる。この場合酸素ガス雰囲気
の気圧は5×10-4〜1×10-1torr程度が適当である。
Therefore, a BaO film can be formed by performing this vapor deposition in an oxygen gas atmosphere. In this case, it is appropriate that the atmospheric pressure of the oxygen gas atmosphere is approximately 5 × 10 −4 to 1 × 10 −1 torr.

これに対し、上記蒸着は例えばアルゴンガス等の不活性
ガス中で行ない、Ba膜を形成した後に酸化してBaO膜と
する方法を用いてもよい。この場合、Ba膜を蒸着形成後
に蒸着装置内に酸素を導入して酸化してもよいことは勿
論であるが、Ba膜形成後単に空気中に放置するのみでよ
い。
On the other hand, the vapor deposition may be performed in an inert gas such as argon gas to form a Ba film and then oxidize it to form a BaO film. In this case, it is needless to say that after the Ba film is formed by vapor deposition, oxygen may be introduced into the vapor deposition apparatus to be oxidized, but it is only necessary to leave it in the air after the Ba film is formed.

また、酸素もしくは空気に限らず、H2S,SO2,CO2など
の気体またはその混合体、またはその稀釈体ガスを用い
ることによりBaOに限らずBaS,BaSO3,BaCO3またはこれ
ら複塩などBa化合物からなる多孔質膜を形成できる。上
記複塩からなる多孔質膜を形成する場合には、各ガスの
濃度や速度を変えることにより成分比を変えることがで
きる。
Further, not limited to oxygen or air, H 2 S, a gas or a mixture of such SO 2, CO 2, or BaS not limited to BaO by using the dilution thereof gases, BaSO 3, BaCO 3, or their double salt It is possible to form a porous film composed of a Ba compound. When forming a porous membrane composed of the above double salt, the component ratio can be changed by changing the concentration and speed of each gas.

このようなガス体との反応によつてBa化合物膜は十分に
多孔質化するので、必ずしも膜厚制御のむずかしい低真
空中での多孔質蒸着法を用いることなく、容易に多孔質
のBa化合物膜を得ることができる。
Since the Ba compound film is made sufficiently porous by the reaction with such a gas body, it is not always necessary to use the porous vapor deposition method in a low vacuum where the film thickness control is difficult, and the Ba compound film can be easily porous. A membrane can be obtained.

因に、BaO薄膜の形成方法としてはスパツタリング法も
広く用いられているが、この場合形成されるBaO膜はち
密で電子反射率が大きくなるために不適当である。
Incidentally, although a sputtering method is widely used as a method for forming a BaO thin film, the BaO film formed in this case is not suitable because it is dense and has a high electron reflectance.

なお、BaOは、従来ビームランデイング層に用いられて
いるSb2S3等に比較して抵抗がやや高い。このため、こ
れらのSb2S3,Sb2Se3その他の物質を抵抗減少用添加物
として併用することは有益である。
Note that BaO has a slightly higher resistance than Sb 2 S 3 or the like which has been conventionally used for the beam landing layer. Therefore, it is useful to use these Sb 2 S 3 , Sb 2 Se 3 and other substances together as a resistance reducing additive.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、電子線入射側表
面に多孔質Ba化合物層からなる軟X線阻止層を備えた高
導電面を用いたことにより、メツシユ電極で発生するX
線が光導電部に侵入するのを有効に阻止することがで
き、撮像面の光電変換および暗抵抗特性の変化を防止す
ることができる。また、BaAl4を蒸発源としてガス雰囲
気中で分解分溜蒸着することによりこのような多孔質Ba
化合物層を容易に形成することができる。
As described above, according to the present invention, by using the highly conductive surface provided with the soft X-ray blocking layer made of the porous Ba compound layer on the electron beam incident side surface, X generated at the mesh electrode is used.
It is possible to effectively prevent the line from entering the photoconductive portion, and prevent photoelectric conversion and dark resistance characteristic change of the imaging surface. In addition, by performing decomposition fraction deposition in a gas atmosphere using BaAl 4 as an evaporation source, such porous Ba
The compound layer can be easily formed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Siを主成分とした光導電面からなる撮像
面と、この撮像面に対向して電子線入射側に配置したメ
ッシュ電極とを備えた撮像管において、光導電面の電子
線入射側表面に多孔質Ba化合物からなる軟X線阻止層
を設けたことを特徴とする撮像管。
1. An image pickup tube comprising an image pickup surface composed of a photoconductive surface containing Si as a main component, and a mesh electrode arranged on the electron beam incident side facing the image pickup surface. An image pickup tube having a soft X-ray blocking layer made of a porous Ba compound on the incident side surface.
JP57178422A 1982-10-13 1982-10-13 Camera tube Expired - Lifetime JPH0622100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57178422A JPH0622100B2 (en) 1982-10-13 1982-10-13 Camera tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178422A JPH0622100B2 (en) 1982-10-13 1982-10-13 Camera tube

Publications (2)

Publication Number Publication Date
JPS5968152A JPS5968152A (en) 1984-04-18
JPH0622100B2 true JPH0622100B2 (en) 1994-03-23

Family

ID=16048220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178422A Expired - Lifetime JPH0622100B2 (en) 1982-10-13 1982-10-13 Camera tube

Country Status (1)

Country Link
JP (1) JPH0622100B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129427A (en) * 1973-04-11 1974-12-11
JPS5488720A (en) * 1977-12-26 1979-07-14 Sony Corp Image pick up tube unit

Also Published As

Publication number Publication date
JPS5968152A (en) 1984-04-18

Similar Documents

Publication Publication Date Title
US4039887A (en) Electron emitter including porous antimony
EP0283020B1 (en) Photocathode and method of manufacturing the same
US2739084A (en) Secondary electron emitting coatings and method for producing same
JPH0622100B2 (en) Camera tube
US2242395A (en) Electron emissive cathode
US2960416A (en) Method of manufacturing screens for electron-discharge devices
JPH0544132B2 (en)
US5256870A (en) Input screen of a radiographic image intensifying tube having a radially variable thickness intermediary layer
US3350591A (en) Indium doped pickup tube target
JPS5828705B2 (en) Piro Electric Busicon
EP0036779B1 (en) Photoelectric conversion device and method of producing the same
GB1417452A (en) Image tube employing high field electron emission suppression
US2843774A (en) Light absorbent surfaces
US5619091A (en) Diamond films treated with alkali-halides
US3278326A (en) Method of coating fluorescent layer of electron discharge tube
Verma Potential and limitations of caesium iodide as a dynode material for use in electron multipliers
Scott Photocathodes for use in an electron image projector
US3584251A (en) Camera tube having glass membrane with layer of magnesium oxide and nickel oxide
JP2809689B2 (en) Method of manufacturing input surface for X-ray image intensifier
Zykov et al. Simultaneous Adsorption of Oxygen and Caesium on Molybdenum(110) Faces
US4090758A (en) Method of regenerating a lead monoxide target layer of a camera tube
SU743469A1 (en) Secondary electron emitter for shooting-through
JPS5861548A (en) Target for pickup tube
JPS6127848B2 (en)
JPS6221209B2 (en)