JPH06220002A - Hydroxyphenylglycine derivative and enzyme activity assay using the same - Google Patents

Hydroxyphenylglycine derivative and enzyme activity assay using the same

Info

Publication number
JPH06220002A
JPH06220002A JP2859493A JP2859493A JPH06220002A JP H06220002 A JPH06220002 A JP H06220002A JP 2859493 A JP2859493 A JP 2859493A JP 2859493 A JP2859493 A JP 2859493A JP H06220002 A JPH06220002 A JP H06220002A
Authority
JP
Japan
Prior art keywords
hpg
hydroxyphenyl
leu
activity
aminopeptidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2859493A
Other languages
Japanese (ja)
Inventor
Hitoshi Uematsu
仁 上松
Hiroyuki Chiba
裕之 千葉
Takashi Nakajima
崇 中島
Norio Shibamoto
憲夫 柴本
Takeo Yoshioka
武男 吉岡
Kazuhiko Okamura
和彦 岡村
Rokuro Okamoto
六郎 岡本
Takashi Shin
隆志 新
Sawao Murao
澤夫 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercian Corp
Original Assignee
Mercian Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercian Corp filed Critical Mercian Corp
Priority to JP2859493A priority Critical patent/JPH06220002A/en
Publication of JPH06220002A publication Critical patent/JPH06220002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide the subject new compound useful as a new substrate to be used for the assays of enzyme activities such as angiotensinase activity or aminopeptidase activity. CONSTITUTION:The objective compound of formula I [R<1> is H, t- butyloxycarbonyl, benzoyl or L-leucyl of formula II (R<3> is H, t-butyloxycarbonyl or benzyloxycarbonyl); R<2> is OH, benzyloxy or L-histidyl-L-leucyl of formula III (R<4> is H or alkyl)], e.g. N-benzoyl-L-2-(4-hydroxyphenyl)glycyl-L-histidyl-L- leucine. Angiotensinase is made to act on the above illustrated compound to form N-benzoyl-L-2-(4-hydroxyphenyl)glycine, which is then converted into 4- hydroxybenzaldehyde by an oxidase, and this product is quantified to determine angiotensinase activity. The activity of aminopeptidase can be determined using L-leucyl-L-2--(4-hydroxyphenyl)glycine as substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アンジオテンシン変換
酵素及びアミノペプチダーゼ等の活性測定に有用な基質
となる新規なヒドロキシフェニルグリシン誘導体及びそ
の合成中間体に関する。さらに本発明は、ラッカーゼ等
の酸化酵素が2−(4−ヒドロキシフェニル)グリシン
等のフェノール化合物を4−ヒドロキシベンズアルデヒ
ドに変換する新規な酵素反応を利用したアンジオテンシ
ン変換酵素及びアミノペプチダーゼの活性測定法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel hydroxyphenylglycine derivative which is a useful substrate for measuring the activity of angiotensin converting enzyme, aminopeptidase and the like, and a synthetic intermediate thereof. Furthermore, the present invention relates to a method for measuring the activity of angiotensin converting enzyme and aminopeptidase utilizing a novel enzymatic reaction in which an oxidase such as laccase converts a phenol compound such as 2- (4-hydroxyphenyl) glycine into 4-hydroxybenzaldehyde. .

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】アンジ
オテンシン変換酵素(ACE)は、生体内においてレニン・
アンジオテンシン系ではアンジオテンシンIに作用し、
そのC−末端のジペプチドすなわちL−ヒスチジル−L
−ロイシンを遊離せしめて、血圧上昇作用のある活性型
のアンジオテンシンIIを生成する酵素である。また、キ
ニン・カリクレイン系においてはブラジキニンのC−末
端をジペプチドにつぎつぎに水解しブラジキニンを不活
性化する酵素でもある。このように生体内において重要
な役割を果たしていることから、臨床においては、血中
での ACEの活性測定が活動性サルコイドーシス、慢性腎
不全、急性肝炎、慢性肝炎、肝硬変、等の診断に用いら
れている。
2. Description of the Related Art Angiotensin-converting enzyme (ACE) is used for renin
In the angiotensin system, it acts on angiotensin I,
Its C-terminal dipeptide, namely L-histidyl-L
-An enzyme that releases leucine to produce active angiotensin II, which has a blood pressure increasing effect. In the kinin-kallikrein system, it is also an enzyme that inactivates bradykinin by hydrolyzing the C-terminal of bradykinin with a dipeptide. Since it plays such an important role in vivo, clinically, the measurement of ACE activity in blood is used to diagnose active sarcoidosis, chronic renal failure, acute hepatitis, chronic hepatitis, cirrhosis, etc. ing.

【0003】従来の臨床検査における ACE活性測定法と
して最も一般的なのは、カッシュマン(Cushuman)の分光
吸光測定法もしくはその変法であるが、簡便性、測定精
度において問題点がある。
The most common method for measuring ACE activity in conventional clinical tests is the Cushuman's spectrophotometric method or its modification, but it has problems in simplicity and accuracy.

【0004】従来の ACEの酵素活性の測定法としては、
(1)蛍光を用いる方法、(2)放射性同位元素を用い
る方法、(3)高速液体クロマトグラフィーを用いる方
法、(4)分光光度計を用いる方法等が知られている。
しかし(1)〜(3)の方法は、特殊な分析装置を必要
とするために一般的な方法として用いられていない。
(4)の方法としては、上記カッシュマン法がある。カ
ッシュマン法は基質としてヒプリル−L−ヒスチジル−
L−ロイシンを用い、ACE によって水解されて生じたヒ
プリル酸を酢酸エチルで抽出し、酢酸エチルを減圧下に
留去した後、蒸留水にヒプリル酸を溶解し、紫外線によ
って吸光度を測定してヒプリル酸を定量することにより
ACE活性を測定する方法である。この測定法は操作が煩
雑であるため測定値のバラツキが大きいのが欠点であ
る。
As a conventional method for measuring the enzyme activity of ACE,
Known methods include (1) a method using fluorescence, (2) a method using a radioisotope, (3) a method using high performance liquid chromatography, and (4) a method using a spectrophotometer.
However, the methods (1) to (3) are not used as general methods because they require a special analyzer.
As the method (4), there is the above-mentioned Kashman method. The Kashman method uses hippuryl-L-histidyl- as a substrate.
Hypuric acid generated by hydrolysis with ACE using L-leucine was extracted with ethyl acetate, and the ethyl acetate was distilled off under reduced pressure. By quantifying the acid
This is a method of measuring ACE activity. The disadvantage of this measuring method is that the measurement values vary greatly because the operation is complicated.

【0005】一方、アミノペプチダーゼは腎臓、小腸、
膵臓、胆汁、尿などに広く分布し、腎臓では尿細管に、
小腸では絨毛に活性が強く、ペプチドの吸収に関与する
と言われている。また、肝臓では胆汁分泌側の膜に活性
があり、AIP 、γ−GTPとともに胆道系の酵素として
知られている。
On the other hand, aminopeptidase is used in the kidney, small intestine,
Widely distributed in the pancreas, bile, urine, etc., in the kidney, in the renal tubules,
It is said that villi in the small intestine have a strong activity and are involved in peptide absorption. In the liver, the membrane on the bile secreting side is active, and is known as a biliary enzyme along with AIP and γ-GTP.

【0006】通常の臨床検査で測定されているアミノペ
プチダーゼは、細胞質由来アミノペプチダーゼ(EC3.4.
11.1、別名ロイシンアミノペプチダーゼ)、ミクロソー
ム由来アミノペプチダーゼ(EC3.4.11.2、別名アミノペ
プチダーゼM)などであり、これらの酵素をロイシンア
ミノペプチダーゼ(LAP)として区別せずに測定してい
る。LAP 活性の上昇が見られる病態としては、細胞質由
来アミノペプチダーゼにおいては、急性肝炎、悪性リン
パ腫、白血病、非定型性肺炎などがあり、ミクロソーム
由来アミノペプチダーゼにおいては、胆道癌、胆管結
石、肝癌、膵癌などがある。
[0006] Aminopeptidase, which is measured by a normal clinical test, is a cytoplasmic aminopeptidase (EC3.4.
11.1, also known as leucine aminopeptidase), microsome-derived aminopeptidase (EC3.4.11.2, also known as aminopeptidase M), etc., and these enzymes are measured without distinction as leucine aminopeptidase (LAP). Pathologies with elevated LAP activity include cytoplasmic aminopeptidases such as acute hepatitis, malignant lymphoma, leukemia, and atypical pneumonia, and microsomal aminopeptidases include biliary tract cancer, bile duct stones, liver cancer, and pancreatic cancer. and so on.

【0007】従来の活性測定法としては、細胞質由来ア
ミノペプチダーゼには、L−ロイシンアミドを基質とし
酵素反応で生じたアンモニアを定量する方法がある。し
かし、この方法では血清中の内因性アンモニアを完全に
消去することが難しく、その為ブランク値が高くなる点
に問題がある。また、ミクロソーム由来アミノペプチダ
ーゼには、L−ロイシル−β−ナフチルアミドを基質と
する方法、L−ロイシル−p−ニトロアニリドを基質と
する方法等がある。しかるに、これらの基質は細胞質由
来アミノペプチダーゼには作用しないといわれている。
[0007] As a conventional activity measuring method, there is a method for quantifying ammonia produced by an enzymatic reaction of L-leucine amide as a substrate for cytoplasmic aminopeptidase. However, this method has a problem in that it is difficult to completely eliminate endogenous ammonia in the serum, and thus the blank value becomes high. In addition, for microsome-derived aminopeptidases, there are a method using L-leucyl-β-naphthylamide as a substrate, a method using L-leucyl-p-nitroanilide as a substrate, and the like. However, these substrates are said not to act on cytoplasmic aminopeptidases.

【0008】そこで、本発明の目的は、ACE 活性、アミ
ノペプチダーゼ活性等の酵素活性の測定に使用できる新
規な基質を提供することにある。
[0008] Therefore, an object of the present invention is to provide a novel substrate that can be used for measuring enzyme activities such as ACE activity and aminopeptidase activity.

【0009】さらに、本発明の目的は、上記基質を用い
たACE 活性及びアミノペプチダーゼ活性の正確かつ簡便
な測定法を提供することにある。
Further, an object of the present invention is to provide an accurate and simple assay method for ACE activity and aminopeptidase activity using the above-mentioned substrate.

【0010】[0010]

【課題を解決するための手段】本発明者らは、ある種の
ヒドロキシフェニルグリシン誘導体がACE 及びアミノペ
プチダーゼの基質となり得ること、及び酵素反応生成物
である2−(4−ヒドロキシフェニル)グリシン等のフ
ェノール化合物が、ラッカーゼ等の酸化酵素により酸化
され4−ヒドロキシベンズアルデヒドに変換され、4−
ヒドロキシベンズアルデヒドを定量することでACE 活性
及びアミノペプチダーゼ活性を測定できることを見出
し、本発明を完成するに至った。
The present inventors have found that certain hydroxyphenylglycine derivatives can be substrates for ACE and aminopeptidase, and that they are enzymatic reaction products such as 2- (4-hydroxyphenyl) glycine. The phenolic compound of 4 is oxidized by oxidase such as laccase and converted into 4-hydroxybenzaldehyde,
The inventors have found that ACE activity and aminopeptidase activity can be measured by quantifying hydroxybenzaldehyde, and have completed the present invention.

【0011】本発明は、下記一般式〔I〕で示されるヒ
ドロキシフェニルグリシン誘導体に関する。
The present invention relates to a hydroxyphenylglycine derivative represented by the following general formula [I].

【0012】[0012]

【化4】 [Chemical 4]

【0013】(式中、R1 は水素原子、tert−ブチルオ
キシカルボニル基、ベンゾイル基又は下記化5で示され
るL−ロイシル基(但し、化5中、R3 は水素原子、te
rt−ブチルオキシカルボニル基又はベンジルオキシカル
ボニル基を示す)であり、R2 は水酸基、ベンジルオキ
シ基又は下記化6で示されるL−ヒスチジル−L−ロイ
シル基(但し、化6中、R4 は水素原子又は低級アルキ
ル基を示す)である。)
(In the formula, R 1 is a hydrogen atom, a tert-butyloxycarbonyl group, a benzoyl group or an L-leucyl group represented by the following chemical formula 5 (wherein R 3 is a hydrogen atom, te
rt-butyloxycarbonyl group or benzyloxycarbonyl group), R 2 is a hydroxyl group, a benzyloxy group or an L-histidyl-L-leucyl group represented by the following Chemical formula 6 (wherein, R 4 is A hydrogen atom or a lower alkyl group). )

【0014】[0014]

【化5】 [Chemical 5]

【0015】[0015]

【化6】 [Chemical 6]

【0016】さらに本発明はN−ベンゾイル−L−2−
(4−ヒドロキシフェニル)グリシル−L−ヒスチジル
−L−ロイシンにアンジオテンシン変換酵素(ACE )を
作用させてN−ベンゾイル−L−2−(4−ヒドロキシ
フェニル)グリシンを生成させ、生成したN−ベンゾイ
ル−L−2−(4−ヒドロキシフェニル)グリシンを酸
化酵素により4−ヒドロキシベンズアルデヒドに変換
し、生成した4−ヒドロキシベンズアルデヒドを定量す
ることを特徴とするアンジオテンシン変換酵素の活性測
定法に関する。
Further, the present invention is N-benzoyl-L-2-
(4-Hydroxyphenyl) glycyl-L-histidyl-L-leucine is reacted with angiotensin converting enzyme (ACE) to produce N-benzoyl-L-2- (4-hydroxyphenyl) glycine, and the produced N-benzoyl -L-2- (4-hydroxyphenyl) glycine is converted into 4-hydroxybenzaldehyde by an oxidase, and the produced 4-hydroxybenzaldehyde is quantified, and relates to a method for measuring angiotensin converting enzyme activity.

【0017】加えて本発明は、L−ロイシル−L−2−
(4−ヒドロキシフェニル)グリシンにアミノペプチダ
ーゼを作用させてL−2−(4−ヒドロキシフェニル)
グリシンを生成させ、生成したL−2−(4−ヒドロキ
シフェニル)グリシンを酸化酵素により4−ヒドロキシ
ベンズアルデヒドに変換し、生成した4−ヒドロキシベ
ンズアルデヒドを定量することを特徴とするアミノペプ
チダーゼの活性測定法に関する。
In addition, the present invention provides L-leucyl-L-2-
Aminopeptidase is allowed to act on (4-hydroxyphenyl) glycine to give L-2- (4-hydroxyphenyl)
A method for measuring activity of aminopeptidase, which comprises producing glycine, converting the produced L-2- (4-hydroxyphenyl) glycine into 4-hydroxybenzaldehyde by an oxidase, and quantifying the produced 4-hydroxybenzaldehyde. Regarding

【0018】略記号の説明 本明細書中で使用されている略記号は以下のとおりであ
る。 HPG :2−(4−ヒドロキシフェニル)グリシン又は
2−(4−ヒドロキシフェニル)グリシル L- Leu :L−ロイシン又はL−ロイシル L- His :L−ヒスチジン又はL−ヒスチジル Boc :tert−ブチルオキシカルボニル基、(CH3
3 COCO−(アミノ基の保護基) Cbz :カルボベンゾキシ基あるいはベンジルオキシカ
ルボニル基、C6 5 CH2 OCO−(カルボキシル基
の保護基) OBzl :ベンジルエステル、−OCH2 6 5 Tos :p−トルエンスホニル基(トシル基) (ヒスチジンのイミダゾリル基の保護基)
Explanation of Abbreviations Abbreviations used in the present specification are as follows. HPG: 2- (4-hydroxyphenyl) glycine or 2- (4-hydroxyphenyl) glycyl L- Leu: L-leucine or L-leucyl L- His: L-histidine or L-histidyl Boc: tert-butyloxycarbonyl Group, (CH 3 )
3 COCO- (protecting group for an amino group) Cbz: carbobenzoxy group or benzyloxycarbonyl group, C 6 H 5 CH 2 OCO- ( carboxyl protecting group) OBzl: benzyl ester, -OCH 2 C 6 H 5 Tos : p-toluenesulfonyl group (tosyl group) (protecting group for imidazolyl group of histidine)

【0019】[0019]

【化7】 [Chemical 7]

【0020】TFA :トリフルオロ酢酸 THF :テトラヒドロフラン Bz :ベンゾイル基 Ac :アセチル基 Et :エチル基 DCC :ジシクロヘキシルカルボジイミド 尚、本明細書において、低級アルキル基とは、例えば炭
素数1〜6のアルキル基であって、具体例としてはメチ
ル、エチル、プロピル、ブチルを挙げることができる。
TFA: trifluoroacetic acid THF: tetrahydrofuran Bz: benzoyl group Ac: acetyl group Et: ethyl group DCC: dicyclohexylcarbodiimide In the present specification, the lower alkyl group means, for example, an alkyl group having 1 to 6 carbon atoms. Therefore, specific examples thereof include methyl, ethyl, propyl and butyl.

【0021】L−ロイシル−L−2−(4−ヒドロキシ
フェニル)グリシン〔L−Leu−L−HPG〕の合成 L−Leu−L−HPGの合成法を下記化8及び化9の
スキーム1に従って説明する。
L-leucyl-L-2- (4-hydroxy
Synthesis of Phenyl) glycine [L-Leu-L-HPG] A method for synthesizing L-Leu-L-HPG will be described according to scheme 1 of the following chemical formulas 8 and 9.

【0022】[0022]

【化8】 [Chemical 8]

【0023】[0023]

【化9】 [Chemical 9]

【0024】出発原料であるD−2−(4−ヒドロキシ
フェニル)グリシン〔D−HPG〕(1)は、市販品と
して(例えば、東京化成(株)から)入手可能な化合物
である。D−HPG(1)は、アセチル化されて、N−
アセチル−D−HPG(2)とし、次いで加水分解し
て、ラセミ体であるDL−HPG(3)とする。DL−
HPG(3)は(Boc)2 Oと反応させてBocでア
ミノ基を保護したN−Boc−DL−HPG(4)と
し、次いで臭化ベンジルと反応させて、カルボキシル基
を保護したN−Boc−DL−HPG−OBzl(5)
とする。N−Boc−DL−HPG−OBzl(5)を
TFAで脱保護してDL−HPG−OBzl(6)を
得、これをDCCの存在下N−Cbz−L−Leuと反
応させて、N−Cbz−Leu−DL−HPG−OBz
l(7)を得る。
The starting material D-2- (4-hydroxyphenyl) glycine [D-HPG] (1) is a commercially available compound (for example, from Tokyo Kasei Co., Ltd.). D-HPG (1) is acetylated to give N-
Acetyl-D-HPG (2), then hydrolyzed to racemic DL-HPG (3). DL-
HPG (3) was reacted with (Boc) 2 O to give N-Boc-DL-HPG (4) whose amino group was protected with Boc, and then with benzyl bromide to react with N-Boc which was protected with a carboxyl group. -DL-HPG-OBzl (5)
And N-Boc-DL-HPG-OBzl (5) was deprotected with TFA to give DL-HPG-OBzl (6), which was reacted with N-Cbz-L-Leu in the presence of DCC to give N- Cbz-Leu-DL-HPG-OBz
l (7) is obtained.

【0025】N−Cbz−L−Leu−DL−HPG−
OBzl(7)は、Pd/C接触還元によりL−Leu
−DL−HPG(8)とすることができる。また、上記
のDL−HPG−OBzl(6)にDCCの存在下、N
−Boc−L−Leuを反応させてN−Boc−L−L
eu−DL−HPG−OBzl(9)を得、これをアル
カリ加水分解してN−Boc−L−Leu−DL−HP
G(10)とし、さらにこれを酸加水分解に付して保護
基を脱離させても、L−Leu−DL−HPG(8)を
得ることができる。L−Leu−DL−HPG(8)は
公知の分離精製法、例えば分取HPLC等によりL−Leu
−L−HPGとL−Leu−D−HPGとに分離するこ
とができる。尚、N−Cbz−L−Leu及びN−Bo
c−L−Leuは市販品として(例えば(財)ペプチド
研究所から)入手可能な化合物である。
N-Cbz-L-Leu-DL-HPG-
OBzl (7) is L-Leu by Pd / C catalytic reduction.
-DL-HPG (8). Moreover, in the presence of DCC in the above DL-HPG-OBzl (6), N
-Boc-L-Leu is reacted to give N-Boc-LL
eu-DL-HPG-OBzl (9) was obtained, which was subjected to alkali hydrolysis to give N-Boc-L-Leu-DL-HP.
L-Leu-DL-HPG (8) can also be obtained by treating G (10) with acid hydrolysis to remove the protecting group. L-Leu-DL-HPG (8) can be isolated and purified by a known separation and purification method such as preparative HPLC.
-L-HPG and L-Leu-D-HPG can be separated. Incidentally, N-Cbz-L-Leu and N-Bo
c-L-Leu is a commercially available compound (for example, from Peptide Research Institute, Inc.).

【0026】N−ベンゾイル−L−2−(4−ヒドロキ
シフェニル)グリシル−L−ヒスチジル−L−ロイシン
〔N−Bz−L−HPG−L−His−L−Leu〕の
合成 N−Bz−L−HPG−L−His−L−Leuの合成
法を下記の化10及び化11のスキーム2に従って説明
する。
N-benzoyl-L-2- (4-hydroxy
Cyphenyl) glycyl-L-histidyl-L-leucine
Of [N-Bz-L-HPG-L-His-L-Leu]
A method for synthesizing the synthetic N-Bz-L-HPG-L-His-L-Leu will be described according to scheme 2 of the following chemical formulas 10 and 11.

【0027】[0027]

【化10】 [Chemical 10]

【0028】[0028]

【化11】 [Chemical 11]

【0029】出発原料であるL−Boc−His(To
s)(11)及びL−Leu−OEt・HCl(12)
はいずれも市販品として(例えば、(財)ペプチド研究
所から)入手可能な化合物である。L−Boc−His
(Tos)(11)とL−Leu−OEt・HCl(1
2)とはDCCの存在下反応させて、L−Boc−Hi
s(Tos)−L−Leu−OEt(13)とし、次い
で脱保護(脱Boc)して、L−His(Tos)−L
−Leu−OEt(14)とする。
L-Boc-His (To
s) (11) and L-Leu-OEt.HCl (12)
Are all commercially available compounds (for example, from Peptide Institute). L-Boc-His
(Tos) (11) and L-Leu-OEt.HCl (1
2) is reacted with DCC in the presence of DCC to give L-Boc-Hi.
s (Tos) -L-Leu-OEt (13), followed by deprotection (de-Boc) to give L-His (Tos) -L.
-Leu-OEt (14).

【0030】この化合物(14)を前記N−Boc−D
L−HPG(4)とDCCの存在下反応させて、N−B
oc−DL−HPG−L−His(Tos)−L−Le
u−OEt(15)を得る。化合物(15)は順次脱保
護して、N−Boc−DL−HPG−L−His−L−
Leu(16)を得、次いでDL−HPG−L−His
−L−Leu(17)を得る。DL−HPG−L−Hi
s−L−Leu(17)は、塩化ベンソイルと反応させ
てN−Bz−DL−HPG−L−His−L−Leu
(18)とすることができる。
This compound (14) was added to the above N-Boc-D.
L-HPG (4) was reacted in the presence of DCC to give NB
oc-DL-HPG-L-His (Tos) -L-Le
u-OEt (15) is obtained. Compound (15) was sequentially deprotected to give N-Boc-DL-HPG-L-His-L-.
Leu (16) was obtained, then DL-HPG-L-His
Obtain L-Leu (17). DL-HPG-L-Hi
s-L-Leu (17) was reacted with benzoyl chloride to give N-Bz-DL-HPG-L-His-L-Leu.
(18).

【0031】N−Bz−DL−HPG−L−His−L
−Leu(18)は、公知の分離精製法、例えば分取HP
LC等によりN−Bz−L−HPG−L−His−L−L
euとN−Bz−D−HPG−L−His−L−Leu
とに分離することができる。
N-Bz-DL-HPG-L-His-L
-Leu (18) is a known separation and purification method, for example, preparative HP
N-Bz-L-HPG-L-His-LL by LC etc.
eu and N-Bz-D-HPG-L-His-L-Leu
Can be separated into

【0032】ACE活性測定 ACE activity measurement

【0033】[0033]

【化12】 [Chemical 12]

【0034】本発明のACE 活性測定法は、上記の化12
のスキーム3に示すようにN−ベンゾイル−L−2−
(4−ヒドロキシフェニル)グリシル−L−ヒスチジル
−L−ロイシン〔N−Bz−L−HPG−L−His−
L−Leu〕を基質とし、ACEの加水分解によって生じ
るN−ベンゾイル−L−2−(4−ヒドロキシフェニ
ル)グリシン〔N−Bz−L−HPG〕をラッカーゼ等
の酸化酵素によって4−ヒドロキシベンズアルデヒドに
変換することにより行う。4−ヒドロキシベンズアルデ
ヒドの定量は、例えばアルデヒドに特異的な呈色試薬で
ある2、4−ジニトロフェニルヒドラジン(2 ,4-D )
によって、赤色(500nm 付近 )に呈色させて分光器で行
う方法や4−ヒドロキシベンズアルデヒドをラッカーゼ
等の酸化酵素によってABTS(2,2’−アジノ−ビス−
(3−エチルベンゾチアゾリン−6−スルホン酸)ジア
ンモニウム塩)等の色原体とカップリングさせ生じた呈
色物質を分光器で定量する方法を用いることができる。
これらの方法はいずれも長波長側での定量であるため血
清中の夾雑物質の影響を受けにくく、また、2 ,4-D を
用いる方法は自動分折器の使用が可能である。
The method for measuring ACE activity of the present invention comprises
N-benzoyl-L-2-as shown in Scheme 3 of
(4-Hydroxyphenyl) glycyl-L-histidyl-L-leucine [N-Bz-L-HPG-L-His-
L-Leu] as a substrate, N-benzoyl-L-2- (4-hydroxyphenyl) glycine [N-Bz-L-HPG] produced by hydrolysis of ACE is converted into 4-hydroxybenzaldehyde by an oxidase such as laccase. This is done by converting. 4-Hydroxybenzaldehyde can be quantified by, for example, 2,4-dinitrophenylhydrazine (2,4-D) which is a color reagent specific to aldehyde.
By using a spectroscope to change the color to red (near 500 nm) or by using 4-hydroxybenzaldehyde with an oxidase such as laccase to obtain ABTS (2,2'-azino-bis-
A method of quantifying a coloring substance produced by coupling with a chromogen such as (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) by a spectroscope can be used.
Since all of these methods are quantified on the long wavelength side, they are less likely to be affected by contaminants in serum, and the method using 2,4-D allows the use of an automatic separator.

【0035】基質であるN−Bz−L−HPG−L−H
is−L−Leuの濃度はACE の反応速度がほぼ最大と
なるようにすることが測定時間を短くできる等の利点が
あることから好ましい。具体的な基質濃度は血清等の検
体中のACE 濃度によっても異なるが、例えば1 〜10mM、
好ましくは1 〜3mM とすることが適当である。酸化酵素
としては例えばポリフェノールオキシダーゼを挙げるこ
とができ、ポリフェノールオキシダーゼとしては例えば
ラッカーゼ、ビリルビンオキシダーゼ、パーオキシダー
ゼ、アスコルビン酸オキシダーゼ、セルロプラスミン等
を挙げることができる。反応系中の酸化酵素の濃度(タ
ンパク濃度mg/ml )にはACE 活性に対して過剰量存在す
れば特に限定はない。即ち、ACE による加水分解生成物
であるL−HPGを定量的に4−ヒドロキシベンズアル
デヒドに変換でき、4−ヒドロキシベンズアルデヒドを
定量することによりL−HPG生成速度を検定できる量
であれば良い。例えば酸化酵素としてラッカーゼを用い
る場合、例えば100 〜500U/ml とすることができる。
尚、酸化酵素としてパーオキシダーゼを用いる場合に
は、反応は過酸化水素の共存下で行う。
Substrate N-Bz-L-HPG-L-H
It is preferable that the concentration of is-L-Leu is such that the reaction rate of ACE is almost maximum because it has advantages such as shortening the measurement time. The specific substrate concentration varies depending on the ACE concentration in the sample such as serum, but is, for example, 1 to 10 mM,
It is suitable to set it to 1 to 3 mM. Examples of the oxidase include polyphenol oxidase, and examples of the polyphenol oxidase include laccase, bilirubin oxidase, peroxidase, ascorbate oxidase, and ceruloplasmin. The concentration of the oxidase in the reaction system (protein concentration mg / ml) is not particularly limited as long as it is present in an excess amount with respect to the ACE activity. That is, L-HPG, which is a hydrolysis product of ACE, can be quantitatively converted to 4-hydroxybenzaldehyde, and the amount of 4-hydroxybenzaldehyde can be quantified to determine the L-HPG production rate. For example, when laccase is used as the oxidase, it can be set to, for example, 100 to 500 U / ml.
When peroxidase is used as the oxidase, the reaction is carried out in the presence of hydrogen peroxide.

【0036】上記酵素反応は、ACE の最適条件付近で行
うことが好ましく、温度は35〜40℃、好ましくは約
37℃、pHは6〜9、好ましくは7〜8の範囲とするこ
とが適当である。
The above-mentioned enzyme reaction is preferably carried out under the optimum conditions of ACE, and the temperature is 35-40 ° C, preferably about 37 ° C, and the pH is 6-9, preferably 7-8. Is.

【0037】4−ヒドロキシベンズアルデヒドの定量法
としては、例えば、高速液体クロマトグラフィー(HPL
C) を用いる方法、及び化学的に発色させ分光器で定量
する方法等がある。尚、以下に説明する4−ヒドロキシ
ベンズアルデヒドの定量方法は、いずれも一例であって
これらの4−ヒドロキシベンズアルデヒドの定量方法に
よって本発明が限定されるものではない。高速液体クロ
マトグラフィー(HPLC)を用いる方法は、オクタデシル
シリル化シリカゲル(ODS)等を用いた逆相カラムを用
い、移動相としては必要により緩衝液を加えた含水メタ
ノールもしくは含水アセトニトリルを用いることができ
る。検出は紫外波長 260nm〜300nm を、好ましくは280n
m 〜285nm を用いる。紫外波長280nm において4−ヒド
ロキシベンズアルデヒドのモル吸光係数は2−(4−ヒ
ドロキシフェニル)グリシンのモル吸光係数の約14倍で
あり、4−ヒドロキシベンズアルデヒドの検出感度を高
めている。定量はインテグレータを用いた絶対検量線
法、内部標準法により行うことができる。
As a method for quantifying 4-hydroxybenzaldehyde, for example, high performance liquid chromatography (HPL) is used.
C) is used, and a method of chemically coloring and quantitatively determining with a spectroscope is available. The methods for quantifying 4-hydroxybenzaldehyde described below are all examples, and the present invention is not limited to these methods for quantifying 4-hydroxybenzaldehyde. The method using high-performance liquid chromatography (HPLC) uses a reversed-phase column using octadecylsilanized silica gel (ODS), etc., and the mobile phase can be hydrous methanol or hydrous acetonitrile with buffer added if necessary. . Detection is carried out at an ultraviolet wavelength of 260 nm to 300 nm, preferably 280 n.
m ~ 285 nm is used. At an ultraviolet wavelength of 280 nm, the molar extinction coefficient of 4-hydroxybenzaldehyde is about 14 times that of 2- (4-hydroxyphenyl) glycine, which enhances the detection sensitivity of 4-hydroxybenzaldehyde. Quantification can be performed by the absolute calibration curve method using an integrator or the internal standard method.

【0038】化学的に発色させ分光器で定量する方法と
しては、例えば2,4−ジニトロフェニルヒドラジンに
よるアルデヒドの呈色反応が挙げられる。生成した4−
ヒドロキシベンズアルデヒドと2,4−ジニトロフェニ
ルヒドラジンを酸性条件下で縮合させヒドラゾンを生成
させ、これをアルカリ条件下にすることによって赤色を
呈するキノイド構造体に変換し、500nm 付近での吸光度
を測定し、検量線より求める。
As a method of chemically developing the color and quantifying it with a spectroscope, for example, a color reaction of aldehyde with 2,4-dinitrophenylhydrazine can be mentioned. Generated 4-
Hydroxybenzaldehyde and 2,4-dinitrophenylhydrazine are condensed under acidic condition to form hydrazone, which is converted into red quinoid structure by applying alkaline condition, and the absorbance at around 500 nm is measured, Obtain from the calibration curve.

【0039】アミノペプチダーゼ活性測定法 Method for measuring aminopeptidase activity

【0040】[0040]

【化13】 [Chemical 13]

【0041】本発明のアミノペプチダーゼ活性測定法
は、上記の化13のスキーム4に示すようにL−ロイシ
ル−L−2−(4−ヒドロキシフェニル)グリシン〔L
−Leu−L−HPG〕を基質とし、アミノペプチダー
ゼの加水分解によって生じるL−2−(4−ヒドロキシ
フェニル)グリシン〔L−HPG〕をラッカーゼ等の酸
化酵素によって4−ヒドロキシベンズアルデヒドに変換
しすることにより行う。生成した4−ヒドロキシベンズ
アルデヒドの定量は、前記の方法と同様に行うことがで
きる。好ましくは、4−ヒドロキシベンズアルデヒドを
2,4−ジニトロフェニルヒドラジン(2 ,4-D ) によ
って、赤色(500nm 付近 )に呈色させて分光器で定量す
るか、もしくは、ラッカーゼ等の酸化酵素によってABTS
等の色原体とカップリングさせ生じた呈色物質を分光器
で定量する方法を挙げることができる。この定量法はア
ンモニアによる影響を受けず、また長波長側に安定な色
を呈するので血清中の爽雑物の影響を受けにくいので好
ましい。
The method for measuring the aminopeptidase activity of the present invention is as follows: L-leucyl-L-2- (4-hydroxyphenyl) glycine [L
-Leu-L-HPG] as a substrate, L-2- (4-hydroxyphenyl) glycine [L-HPG] produced by hydrolysis of aminopeptidase is converted into 4-hydroxybenzaldehyde by an oxidase such as laccase. By. The 4-hydroxybenzaldehyde produced can be quantified in the same manner as in the above method. Preferably, 4-hydroxybenzaldehyde is colored red (near 500 nm) with 2,4-dinitrophenylhydrazine (2,4-D) and quantified with a spectrophotometer, or by oxidase such as laccase.
Examples of the method include quantifying a color substance produced by coupling with a chromogen such as a spectrophotometer. This quantification method is preferable because it is not affected by ammonia and exhibits a stable color on the long wavelength side, and thus is less susceptible to contaminants in serum.

【0042】アミノペプチダーゼとしては、一般に細胞
質由来アミノペプチダーゼ(EC3.4.11.1)、ミクロソー
ム由来アミノペプチダーゼ(EC3.4.11.2)、シスチンア
ミノぺプチダーゼ(EC3.4.11.3)、アルギニンアミノペ
プチダーゼ(EC3.4.11.6)、アスパラギン酸アミノペプ
チダーゼ(EC3.4.11.7)、アミノペプチダーゼ(EC3.4.
11.11 )、アミノペプチダーゼ(ヒト肝臓)(EC3.4.1
1.14 )などが挙げられる。但し、有用性から臨床分析
において「ロイシンアミノペプチダーゼ(LAP) 測定」と
して測定されている細胞質由来アミノペプチダーゼおよ
びミクロソーム由来アミノペプチダーゼを挙げることが
できる。
As the aminopeptidase, generally, cytoplasmic aminopeptidase (EC3.4.11.1), microsomal aminopeptidase (EC3.4.11.2), cystine aminopeptidase (EC3.4.11.3), arginine aminopeptidase (EC3). .4.11.6), aspartic acid aminopeptidase (EC3.4.11.7), aminopeptidase (EC3.4.
11.11), aminopeptidase (human liver) (EC3.4.1
1.14) and so on. However, cytoplasmic aminopeptidases and microsomal aminopeptidases, which are measured as “leucine aminopeptidase (LAP) measurement” in clinical analysis due to their usefulness, can be mentioned.

【0043】基質であるL−Leu−L−HPGの濃度
はアミノペプチダーゼの反応速度がほぼ最大となるよう
にすることが測定時間の短縮が可能となる等の観点から
好ましい。具体的な基質濃度は血清等の検体中のアミノ
ペプチダーゼ濃度によっても異なるが、例えば 0.5〜3m
M 、好ましくは 1〜2mM とすることが適当である。酸化
酵素としては前記と同様にラッカーゼ等を用いることが
でき、濃度もACE 活性測定と同様に、アミノペプチダー
ゼの活性により適宜選択することができる。
It is preferable that the concentration of the substrate L-Leu-L-HPG is such that the reaction rate of aminopeptidase is almost maximized from the viewpoint that the measurement time can be shortened. The specific substrate concentration varies depending on the aminopeptidase concentration in the sample such as serum, but it is, for example, 0.5 to 3 m.
It is suitable to set M, preferably 1 to 2 mM. As the oxidase, laccase or the like can be used as described above, and the concentration can be appropriately selected depending on the activity of aminopeptidase as in the ACE activity measurement.

【0044】上記酵素反応条件は、アミノペプチダーゼ
の最適条件付近で行うことが好ましく、温度は35〜4
0℃、好ましくは約37℃、pHはアミノペプチダーゼの
種類によって異なり、例えば細胞質由来アミノペプチダ
ーゼについてはpH8〜10、好ましくは8.5〜9.5
とすることが適当であり、ミクロソーム由来アミノペプ
チダーゼについてはpH6〜8、好ましくは6.5〜7.
5とすることが適当である。
The above-mentioned enzyme reaction conditions are preferably carried out near the optimum conditions for aminopeptidase, and the temperature is 35-4.
0 ° C., preferably about 37 ° C., pH varies depending on the type of aminopeptidase, and for example, for cytoplasmic aminopeptidase, pH is 8 to 10, preferably 8.5 to 9.5.
Is suitable, and for microsome-derived aminopeptidases, the pH is 6 to 8, preferably 6.5 to 7.
A value of 5 is suitable.

【0045】尚、本発明のACE 活性測定においては、基
質としてL体であるN−Bz−L−HPG−L−His
−L−Leuを用いる。しかるにL体のみを分離するこ
となく、合成において得られるN−Bz−DL−HPG
−L−His−L−LeuをそのままACE 活性測定に用
いることも可能である。同様に、アミノペプチダーゼ活
性測定において、L体であるL−Leu−L−HPGを
用いる以外に、L−Leu−DL−HPGをそのまま用
いることも可能である。
In the measurement of ACE activity of the present invention, L-form N-Bz-L-HPG-L-His as a substrate is used.
-L-Leu is used. However, N-Bz-DL-HPG obtained in the synthesis without separating only the L-form
It is also possible to use -L-His-L-Leu as it is for ACE activity measurement. Similarly, in the aminopeptidase activity measurement, L-Leu-DL-HPG can be used as it is, instead of using L-Leu-L-HPG which is an L-form.

【0046】[0046]

【発明の効果】本発明によれば、ACE 又はアミノペプチ
ダーゼの基質となる新規なヒドロキシフェニルグリシン
誘導体及びその合成中間体を提供することができる。さ
らに、本発明の方法によれば、より簡便にかつ正確に測
定することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a novel hydroxyphenylglycine derivative as a substrate for ACE or aminopeptidase and a synthetic intermediate thereof. Furthermore, according to the method of the present invention, it is possible to perform the measurement more easily and accurately.

【0047】[0047]

【実施例】次に本発明を実施例によって具体的に説明す
る。但し、本発明は実施例に限定されるものではない。
EXAMPLES Next, the present invention will be specifically described by way of examples. However, the present invention is not limited to the examples.

【0048】実施例1L−ロイシル−DL−2−(4−ヒドロキシフェニル)
グリシン(8)の合成(1) D−(−)−2−(4−ヒドロキシフェニル)グリシン
(D−HPG)(1)5g(30mmol)と無水酢酸300ml
を混合し、80℃で5時間撹拌した。反応液をろ過後、
減圧下に濃縮し、粗N−アセチル−D−HPG(2)を
8.55g得た。反応混合物に1N塩酸水を300ml 加え、1
00℃で7時間撹拌した。得られた反応混合物をダウエ
ックス50Wで精製し(3Nアンモニア水溶出)、さらに
水で結晶化を行い、DL−2−(4−ヒドロキシフェニ
ル)グリシン(DL−HPG)(3)を1.53g(9.2mmo
l )得た。〔α〕26 D +1.5 °(c2.0 , 1N HC
l)1 H−NMR( D2 O, 50°C)δ:4.74(1H,s),
6.96( 2H,d,J=8.8), 7.33 (2H,d,J=8.
8)
Example 1 L-Leucyl-DL-2- (4-hydroxyphenyl)
Synthesis of Glycine (8) (1) 5 g (30 mmol) of D-(-)-2- (4-hydroxyphenyl) glycine (D-HPG) (1) and 300 ml of acetic anhydride
Were mixed and stirred at 80 ° C. for 5 hours. After filtering the reaction solution,
Concentrate under reduced pressure to remove crude N-acetyl-D-HPG (2).
8.55 g was obtained. Add 300 ml of 1N hydrochloric acid water to the reaction mixture, and
The mixture was stirred at 00 ° C for 7 hours. The obtained reaction mixture was purified with Dowex 50W (eluting with 3N ammonia water) and further crystallized with water to obtain 1.52 g of DL-2- (4-hydroxyphenyl) glycine (DL-HPG) (3). 9.2 mmo
l) got. [Α] 26 D +1.5 ° (c2.0, 1N HC
l) 1 H-NMR (D 2 O, 50 ° C) δ: 4.74 (1 H, s),
6.96 (2H, d, J = 8.8), 7.33 (2H, d, J = 8.
8)

【0049】DL−HPG(3)1.53g(9.2mmol) を水
−ジオキサン(1:1) 40mlに溶かし、トリエチルアミン
2.2ml(15.7mmol)、ジ−t-ブチル−ジカルボナート2.74
g(13.8mmol)を加え、室温で3時間撹拌した。反応液を
濃縮後、水、酢酸エチルを加え、1N塩酸水で水層のpH
を2に調整した。水洗後、無水硫酸ナトリウムにて脱水
乾燥し、減圧下に濃縮することにより粗N−Boc−D
L−HPG(4)を2.60g得た。
DL-HPG (3) (1.53 g, 9.2 mmol) was dissolved in water-dioxane (1: 1) (40 ml) and triethylamine was added.
2.2 ml (15.7 mmol), di-t-butyl-dicarbonate 2.74
g (13.8 mmol) was added, and the mixture was stirred at room temperature for 3 hours. After concentrating the reaction mixture, add water and ethyl acetate, and add 1N aqueous hydrochloric acid to adjust the pH of the aqueous layer.
Was adjusted to 2. After washing with water, dehydration and drying with anhydrous sodium sulfate, and concentration under reduced pressure gave crude N-Boc-D.
2.60 g of L-HPG (4) was obtained.

【0050】N−Boc−DL−HPG(4)2.10g
(7.9mmol) をN,N’−ジメチルホルムアミド25mlに溶
解し、トリエチルアミン 3.3ml(23.7mmol)、臭化ベンジ
ル1.7ml(14.3mmol) 加え、14時間撹拌した。反応液を
酢酸エチルに移し、水洗後、無水硫酸ナトリウムにて脱
水乾燥し、減圧下に濃縮し、反応混合物を 2.4gを得
た。残留物をシリカゲルカラムで精製し、N−Boc−
DL−HPG−OBzl(5)を1.80g(5.0mmol) 得
た。〔α〕26 D +1.1 °(c1.0 , CH3 OH)1 H−NMR( CDCl3 )δ:1.43(9H,s), 5.1
5 (2H,s),5.28(1H,d,J=6.6), 5.53 (1
H,brs.), 6.73(2H,d,J=8.8),7.17 (2
H,d,J=8.8), 7.19-7.21,7.29-7.30 (5H,m)
2.10 g of N-Boc-DL-HPG (4)
(7.9 mmol) was dissolved in 25 ml of N, N'-dimethylformamide, 3.3 ml (23.7 mmol) of triethylamine and 1.7 ml (14.3 mmol) of benzyl bromide were added, and the mixture was stirred for 14 hours. The reaction solution was transferred to ethyl acetate, washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain 2.4 g of a reaction mixture. The residue was purified by silica gel column, N-Boc-
1.80 g (5.0 mmol) of DL-HPG-OBzl (5) was obtained. [Α] 26 D + 1.1 ° (c1.0, CH 3 OH) 1 H-NMR (CDCl 3 ) δ: 1.43 (9H, s), 5.1
5 (2H, s), 5.28 (1H, d, J = 6.6), 5.53 (1
H, brs. ), 6.73 (2H, d, J = 8.8), 7.17 (2
H, d, J = 8.8), 7.19-7.21,7.29-7.30 (5H, m)

【0051】N−Boc−DL−HPG−OBzl
(5)1.80g(5.0mmol) を塩化メチレン30mlに溶解し、
トリフルオロ酢酸を10mlを加え、室温で2時間撹拌し
た。反応液を減圧下に濃縮した後、酢酸エチル 200ml、
飽和炭酸水素ナトリウム水溶液 (100ml)、1N水酸化ナ
トリウム水溶液(5ml) を加え、溶媒抽出、水洗後、無水
硫酸ナトリウムで脱水乾燥し、減圧下に濃縮し、DL−
HPG−OBzl(6)を1.20g(4.7mmol )得た。1 H−NMR( CDCl3 )δ:4.58(1H,s), 5.1
0 (1H,d,J=12.5), 5.17 (1H,d,J=12.5)
,6.70 (2H,d,J=8.8),7.17 (2H,d,J=
8.8), 7.20-7.24,7.27-7.33 (5H,m)
N-Boc-DL-HPG-OBzl
(5) Dissolve 1.80 g (5.0 mmol) in 30 ml of methylene chloride,
10 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 2 hours. After the reaction solution was concentrated under reduced pressure, 200 ml of ethyl acetate,
Saturated aqueous sodium hydrogen carbonate solution (100 ml) and 1N aqueous sodium hydroxide solution (5 ml) were added, the solvent was extracted, washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain DL-
1.20 g (4.7 mmol) of HPG-OBzl (6) was obtained. 1 H-NMR (CDCl 3 ) δ: 4.58 (1H, s), 5.1
0 (1H, d, J = 12.5), 5.17 (1H, d, J = 12.5)
, 6.70 (2H, d, J = 8.8), 7.17 (2H, d, J =
8.8), 7.20-7.24,7.27-7.33 (5H, m)

【0052】この化合物(6)を酢酸エチル100mに溶か
し、N−Cbz−L−Leu(6)を1.34g(5.1mmo
l)、DCCを1.17g(5.1mmol)加え、室温で1時間撹
拌した。反応液をろ過後、ろ液に水、酢酸エチルを加
え、溶媒抽出を行い、酢酸エチル層を 0.1N塩酸、水で
洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下に濃
縮して反応混合物を2.84g得た。得られた反応混合物
を、シリカゲルカラムクロマトグラフィーにより精製を
行いN−Cbz−L−Leu−DL−HPG−OBzl
(7)を2.34g(4.5mmol)得た。
This compound (6) was dissolved in 100 m of ethyl acetate, and 1.34 g (5.1 mmo) of N-Cbz-L-Leu (6) was added.
l) and 1.17 g (5.1 mmol) of DCC were added, and the mixture was stirred at room temperature for 1 hour. After filtering the reaction solution, water and ethyl acetate were added to the filtrate and solvent extraction was performed. The ethyl acetate layer was washed with 0.1N hydrochloric acid and water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a reaction mixture. 2.84 g was obtained. The obtained reaction mixture is purified by silica gel column chromatography to obtain N-Cbz-L-Leu-DL-HPG-OBzl.
2.34 g (4.5 mmol) of (7) was obtained.

【0053】得られたN−Cbz−L−Leu−DL−
HPG−OBzl(7)を2.34g(4.5mmol) をメタノー
ル80mlに溶かし、10%パラジウム炭素を 240mg加え、
室温で1時間撹拌して接触還元によりCbz基とベンジ
ルエステル基を除去した。反応液を減圧下に濃縮乾固
し、L−ロイシル−DL−2−(4−ヒドロキシフェニ
ル)グシリン(L−Leu−DL−HPG)(8)を1.
22g(4.12mmol)得た。〔α〕26 D −67°(c0.1 ,CH
3 OH中)、 IR(KBr)cm-1:3333, 2932, 2853, 1674, 1628,
1576, 1514, 1451, 1385, 1246, 1175, 1088, 1005, 89
3,837,754,708,640,521,476,4151 H−NMR(D2 O+NaOH,400MHz) :0.81
(3H,d,J=8.8),0.83(3H,d,J=8.8),1.3
3-1.53( 3H, m),3.39 (1H, t,J=6.6,7.4),5.0
3(1H, s),6.55 (2H,d,J=8.4),7.05(2H,
d,J=8.8)
The obtained N-Cbz-L-Leu-DL-
2.34 g (4.5 mmol) of HPG-OBzl (7) was dissolved in 80 ml of methanol, and 240 mg of 10% palladium carbon was added,
After stirring at room temperature for 1 hour, the Cbz group and the benzyl ester group were removed by catalytic reduction. The reaction solution was concentrated to dryness under reduced pressure, and L-leucyl-DL-2- (4-hydroxyphenyl) gucillin (L-Leu-DL-HPG) (8) was added to 1.
22 g (4.12 mmol) was obtained. [Α] 26 D −67 ° (c0.1, CH
3 OH), IR (KBr) cm −1 : 3333, 2932, 2853, 1674, 1628,
1576, 1514, 1451, 1385, 1246, 1175, 1088, 1005, 89
3,837,754,708,640,521,476,415 1 H-NMR (D 2 O + NaOH, 400 MHz): 0.81
(3H, d, J = 8.8), 0.83 (3H, d, J = 8.8), 1.3
3-1.53 (3H, m), 3.39 (1H, t, J = 6.6, 7.4), 5.0
3 (1H, s), 6.55 (2H, d, J = 8.4), 7.05 (2H,
d, J = 8.8)

【0054】実施例2L−ロイシル−DL−2−(4−ヒドロキシフェニル)
グシリン(8)の合成(2) 実施例1で得られたDL−HPG−OBzl(6) (1.
20g) を酢酸エチル30mlに溶解し、N−Boc−L−L
eu1.24g(5.4mmol)、DCC1.25g(6.1mmol)を加
え、室温で2時間撹拌した。反応液をろ過後、酢酸エチ
ルに移し、0.1 N塩酸水、水で洗浄後、無水硫酸ナトリ
ウムにて脱水乾燥し、減圧下に濃縮し、反応混合物を2.
59g得た。残留物をシリカゲルカラムで精製し、N−B
oc−L−Leu−DL−HPG−OBzl(9)を1.
97g(4.2mmol)得た。〔α〕26 D −17.8°(c1.0 ,C
3 OH)1 H−NMR( CDCl3 )δ:0.89-0.94 ( 3H×
2,m),1.41, 1.44(9H,s), 1.60-1.78 ( 3
H, m), 4.15 ( 1H, m), 5.10, 5.11 (1H,d,
J=12.5), 5.15, 5.16 (1H,d,J=12.5), 5.42,
5.60 (1H,s),6.57, 6.62(2H,d,J=8.
8), 7.06, 7.08(2H,d,J=8.8), 7.17-7.20,7.27
-7.30 ( 5H, m)
Example 2 L-Leucyl-DL-2- (4-hydroxyphenyl)
Synthesis of gucillin (8) (2) DL-HPG-OBzl (6) obtained in Example 1 (1.
20 g) was dissolved in 30 ml of ethyl acetate to give N-Boc-LL
Eu (1.24 g, 5.4 mmol) and DCC (1.25 g, 6.1 mmol) were added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was filtered, transferred to ethyl acetate, washed with 0.1 N aqueous hydrochloric acid and water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a reaction mixture of 2.
59 g were obtained. The residue was purified with a silica gel column, NB
oc-L-Leu-DL-HPG-OBzl (9) 1.
97 g (4.2 mmol) was obtained. [Α] 26 D -17.8 ° (c1.0, C
H 3 OH) 1 H-NMR (CDCl 3 ) δ: 0.89-0.94 (3H ×
2, m), 1.41, 1.44 (9H, s), 1.60-1.78 (3
H, m), 4.15 (1H, m), 5.10, 5.11 (1H, d,
J = 12.5), 5.15, 5.16 (1H, d, J = 12.5), 5.42,
5.60 (1H, s), 6.57,6.62 (2H, d, J = 8.
8), 7.06, 7.08 (2H, d, J = 8.8), 7.17-7.20, 7.27
-7.30 (5H, m)

【0055】N−Boc−L−Leu−DL−HPG−
OBzl(9)1.00g(2.2mmol)をTHF8ml に溶解
し、0.5 N水酸化ナトリウム水溶液を4ml 加え、室温で
4時間撹拌した。反応液を濃縮後、酢酸エチル、水を加
え、0.5 N塩酸水で水層のpHを2.0 に調整した。水洗
後、無水硫酸ナトリウムにて脱水乾燥し、減圧下に濃縮
し、N−Boc−L−Leu−DL−HPG(10)を
0.84g(2.2mmol)得た。〔α〕26 D −18.7°(c1.0 ,
CH3 OH)1 H−NMR( CD3 OD)δ:0.89-0.95 ( 3H×
2,m),1.43(9H,s),1.46-1.55 (2H,
m),1.66-1.69 (1H,m),4.08-4.16 (1H,
m),5.29, 5.30(1H,s),6.76(2H,d,J=
8.8 ),7.20, 7.22(2H,d,J=8.8 )
N-Boc-L-Leu-DL-HPG-
1.00 g (2.2 mmol) of OBzl (9) was dissolved in 8 ml of THF, 4 ml of 0.5 N sodium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 4 hours. The reaction mixture was concentrated, ethyl acetate and water were added, and the pH of the aqueous layer was adjusted to 2.0 with 0.5N aqueous hydrochloric acid. After washing with water, it was dehydrated and dried over anhydrous sodium sulfate and concentrated under reduced pressure to give N-Boc-L-Leu-DL-HPG (10).
0.84 g (2.2 mmol) was obtained. [Α] 26 D -18.7 ° (c1.0,
CH 3 OH) 1 H-NMR (CD 3 OD) δ: 0.89-0.95 (3H ×
2, m), 1.43 (9H, s), 1.46-1.55 (2H,
m), 1.66-1.69 (1H, m), 4.08-4.16 (1H,
m), 5.29, 5.30 (1H, s), 6.76 (2H, d, J =
8.8), 7.20, 7.22 (2H, d, J = 8.8)

【0056】得られたN−Boc−L−Leu−DL−
HPG(10)(840mg) を塩化メチレエン15mlに溶解
し、トリフルオロ酢酸を5ml 加え、室温で2時間撹拌し
た。濃縮後、水20mlに溶解し、ダイヤイオンWA−30を
加え、pH4.6 に調整した。これをろ別し、ろ液を減圧下
に濃縮乾固してL−Leu−DL−HPG(8)を0.43
g(1.5mmol)得た。〔α〕26 D −14.5°(c1.0 ,1N
HCl)1 H−NMR( D2 O+NaOH)δ:0.85-0.94 (3
H×2,m), 1.36-1.58 (2H,m),1.63-1.71
(1H,m),3.45( 2H,dd,J=5.8,13.2), 5.0
6, 5.08(1H,s),6.59, 6.60( 2H,d,J=8.
1),7.09, 7.11( 2H,d,J=8.1)
Obtained N-Boc-L-Leu-DL-
HPG (10) (840 mg) was dissolved in 15 ml of methylene chloride, 5 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 2 hours. After concentration, it was dissolved in 20 ml of water, and Diaion WA-30 was added to adjust the pH to 4.6. This was filtered off and the filtrate was concentrated to dryness under reduced pressure to give L-Leu-DL-HPG (8) 0.43.
g (1.5 mmol) was obtained. [Α] 26 D -14.5 ° (c1.0, 1N
HCl) 1 H-NMR (D 2 O + NaOH) δ: 0.85-0.94 (3
H × 2, m), 1.36-1.58 (2H, m), 1.63-1.71
(1H, m), 3.45 (2H, dd, J = 5.8, 13.2), 5.0
6, 5.08 (1H, s), 6.59, 6.60 (2H, d, J = 8.
1), 7.09, 7.11 (2H, d, J = 8.1)

【0057】実施例3L−ロイシル−L−2−(4−ヒドロキシフェニル)グ
リシンの分離精製 L−Leu−L−HPGとL−Leu−D−HPGの区
別は、実施例1と同様の方法によりD−HPGから合成
したL−Leu−D−HPGを用いて行った。即ち、HP
LC分析(カラム:YMC-Pack ODS A−302 (4.6×150mm)、
移動相:メタノール/20mMリン酸緩衝液(pH6.8) (3/7)
、流速:0.5ml/min 、検出:UV280nm )においてL−
Leu−L−HPGとL−Leu−D−HPGの保持時
間は、それぞれ4.8 分、5.9 分であり、二つのジアステ
レオマーを区別することができた。
Example 3 L-leucyl-L-2- (4-hydroxyphenyl) g
Separation and purification of lysine L-Leu-L-HPG and L-Leu-D-HPG were distinguished from each other by using L-Leu-D-HPG synthesized from D-HPG by the same method as in Example 1. That is, HP
LC analysis (column: YMC-Pack ODS A-302 (4.6 x 150 mm),
Mobile phase: Methanol / 20 mM phosphate buffer (pH 6.8) (3/7)
, Flow rate: 0.5 ml / min, detection: UV280 nm) L-
The retention times of Leu-L-HPG and L-Leu-D-HPG were 4.8 minutes and 5.9 minutes, respectively, and two diastereomers could be distinguished.

【0058】実施例1で合成したL−ロイシル−DL−
2−(4−ヒドロキシフェニル)グリシン(L−Leu
−DL−HPG)(8)からL−ロイシル−L−2−
(4−ヒドロキシフェニル)グリシン(L−Leu−L
−HPG)を分離精製するために、L−Leu−DL−
HPG 1.2gをメタノール:20mMリン酸緩衝液 (pH6.8)
(2:8) 50ml に溶かし、5ml ずつ10回に分けて連
続して、分取HPLC(カラム:YMC-Pack ODS S-343-15
(2 ×25cm)、移動相:メタノール/20mMリン酸緩衝
液 (pH6.8)(2/8) 、流速:7.0ml/min 、検出:UV280nm
)にかけ、保持時間15.5分のピークを分取した。尚、
L−Leu−DL−HPG画分の脱塩は、移動層を水と
する他は上記の分取高速液体クロマトグラフィーと同じ
条件で行い、脱塩されて溶出してきたL−Leu−L−
HPGのピークを分取し、凍結乾燥してL−Leu−L
−HPGをナトリウム塩として 560mg得た。1 H−NMR(D2 O+NaOH):0.86 (3H,d,
J=7.4),0.88( 3H,d,J=7.4),1.36-1.58(2
H,m),1.63-1.71(1H,m), 3.45(2H,dd,J=
5.8,13.2) ,5.06( 1H, s), 6.59 ( 2H,d,J=
8.1) ,7.09(1H,d,J=8.1)
L-leucyl-DL-synthesized in Example 1
2- (4-hydroxyphenyl) glycine (L-Leu
-DL-HPG) (8) to L-leucyl-L-2-
(4-hydroxyphenyl) glycine (L-Leu-L
-HPG) for separation and purification, L-Leu-DL-
HPG 1.2 g methanol: 20 mM phosphate buffer (pH 6.8)
(2: 8) Dissolve in 50 ml, and divide 5 ml each 10 times in succession to perform preparative HPLC (column: YMC-Pack ODS S-343-15).
(2 x 25cm), mobile phase: methanol / 20mM phosphate buffer (pH6.8) (2/8), flow rate: 7.0ml / min, detection: UV280nm
), And the peak with a retention time of 15.5 minutes was collected. still,
The L-Leu-DL-HPG fraction was desalted under the same conditions as in the preparative high performance liquid chromatography described above except that the mobile phase was water, and the desalted L-Leu-L- was eluted.
The HPG peak was collected, freeze-dried and L-Leu-L.
-560 mg of HPG as sodium salt was obtained. 1 H-NMR (D 2 O + NaOH): 0.86 (3H, d,
J = 7.4), 0.88 (3H, d, J = 7.4), 1.36-1.58 (2
H, m), 1.63-1.71 (1H, m), 3.45 (2H, dd, J =
5.8, 13.2), 5.06 (1H, s), 6.59 (2H, d, J =
8.1), 7.09 (1H, d, J = 8.1)

【0059】実施例4N−Boc−DL−HPG−L−His(Tos)−L
−LeuOEt(14)の合成 L−LeuOEt・HCl(12)0.98g(5.0mmol) に
ジクロロメタン20mlを加えて溶かし、これにトリエチル
アミン0.77ml(5.5mmol)を加えて混ぜ、更に、ジクロロ
メタン 5mlに溶かしたL−Boc−His(Tos)
(11)2.05g(5.0mmol) を加えた。これを氷冷下撹拌
しながらDCC1.13g(5.5mmol) のジクロロメタン18ml
溶液を滴下した。撹拌しながら氷冷下で5時間反応させ
た後、更に室温で11時間反応させた。反応終了後、不
溶物をろ過で除き減圧下に溶媒を留去した。得られた残
渣を酢酸エチルに溶かし、 0.1N HCl、水、飽和食
塩水で洗浄後、無水硫酸ナトリウムで乾燥し減圧下に濃
縮乾固して反応混合物2.98gを得た。これをシリカゲル
カラムクロマトグラフィー(トルエン−酢酸エチル、2:
1 溶出)にかけL−Boc−His(Tos)−L−L
euOEt(13)2.36g(収率、85.6%)を得た。
Example 4 N-Boc-DL-HPG-L-His (Tos) -L
-Synthesis of LeuOEt (14) 20 ml of dichloromethane was added to 0.98 g (5.0 mmol) of L-LeuOEt.HCl (12) to dissolve it, 0.77 ml (5.5 mmol) of triethylamine was added and mixed, and further dissolved in 5 ml of dichloromethane. L-Boc-His (Tos)
(11) 2.05 g (5.0 mmol) was added. 18 ml of dichloromethane containing 1.13 g (5.5 mmol) of DCC while stirring under ice cooling
The solution was added dropwise. After reacting for 5 hours under ice cooling with stirring, the reaction was further continued at room temperature for 11 hours. After completion of the reaction, insoluble materials were removed by filtration and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in ethyl acetate, washed with 0.1N HCl, water and saturated brine, dried over anhydrous sodium sulfate and concentrated to dryness under reduced pressure to give 2.98 g of a reaction mixture. This was subjected to silica gel column chromatography (toluene-ethyl acetate, 2:
1 Elution) L-Boc-His (Tos) -LL
Obtained 2.36 g of euOEt (13) (yield, 85.6%).

【0060】L−Boc−His(Tos)−L−Le
uOEt(13) 2.0g(3.64mmol)をジクロロメタン20
mlに溶かし、氷冷下撹拌しながらTFA10mlを加え、
氷冷下撹拌しながら1時間反応させた後、更に室温で1.
5 時間反応させた。反応終了後、減圧下に溶媒を留去
し、得られた残渣を酢酸エチルに溶かし、氷冷した飽和
炭酸カリウム水溶液を加えて分液した後、酢酸エチル層
を飽和塩水で洗浄後、無水硫酸ナトリウムで乾燥し減圧
下に濃縮乾固してL−His(Tos)−L−LeuO
Et(14)1.31g(収率、79.9%)を得た。
L-Boc-His (Tos) -L-Le
uOEt (13) 2.0 g (3.64 mmol) was added to dichloromethane 20
10 ml of TFA while stirring under ice-cooling,
After reacting for 1 hour with stirring under ice cooling, further at room temperature 1.
Allowed to react for 5 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, the obtained residue was dissolved in ethyl acetate, ice-cooled saturated aqueous potassium carbonate solution was added for liquid separation, and the ethyl acetate layer was washed with saturated brine, followed by sulfuric anhydride. Dried over sodium and concentrated to dryness under reduced pressure to give L-His (Tos) -L-LeuO.
1.31 g (yield, 79.9%) of Et (14) was obtained.

【0061】L−His(Tos)−L−LeuOEt
(14)0.93g(2.06mmol)をジクロロメタン9ml に溶か
し、これに実施例1と同様の方法で合成したN−Boc
−DL−HPG(4) 0.5g(1.87mmol)とジクロロメタ
ン 6mlの溶液を加え、氷冷下に撹拌しながらDCC0.43
g(2.06mmol)とジクロロメタン 5mlの溶液を加え、氷冷
下13時間、さらに室温で2時間攪拌した。反応終了
後、不溶物をろ過で除き減圧下に溶媒を留去した。得ら
れた残渣を酢酸エチルに溶かし、5%クエン酸水溶液、
水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し
減圧下に濃縮乾固して反応混合物1.36gを得た。これを
シリカゲルカラムクロマトグラフィー(クロロホルム:
メタノール=50:1 溶出)にかけ、N−Boc−DL−
HPG−L−His(Tos)−L−LeuOEt(1
5)0.59g(収率、40.8%)を得た。
L-His (Tos) -L-LeuOEt
(14) N-Boc prepared by dissolving 0.93 g (2.06 mmol) in 9 ml of dichloromethane and synthesizing it in the same manner as in Example 1.
A solution of 0.5 g (1.87 mmol) of -DL-HPG (4) and 6 ml of dichloromethane was added, and DCC 0.43 was added while stirring under ice cooling.
A solution of g (2.06 mmol) and 5 ml of dichloromethane was added, and the mixture was stirred under ice cooling for 13 hours and further at room temperature for 2 hours. After completion of the reaction, insoluble materials were removed by filtration and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in ethyl acetate, 5% aqueous citric acid solution,
The extract was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated to dryness under reduced pressure to give 1.36 g of a reaction mixture. This is subjected to silica gel column chromatography (chloroform:
Methanol = 50: 1 elution) and N-Boc-DL-
HPG-L-His (Tos) -L-LeuOEt (1
5) 0.59 g (yield, 40.8%) was obtained.

【0062】N−Boc−DL−HPG−L−His
(Tos)−L−LeuOEt NMR(CDCl3 )δ:0.76,0.84,0.87,0.94 (3H
×4,d,J=6.6 Hz),1.28,1.29 (3H×2,
t,J=7.3 Hz),1.47(9H×2,brs),1.40
-1.52 (2H×2,m),1.62(1H×2,m),2.48
(3H×2,s),2.75-2.90 (1H×2,m),2.92
-3.02,3.10-3.20 (1H×2),3.79(1H×2,br
s),4.17,4.18 (2H×2,q,J=7.0 Hz),4.
39-4.49 (1H×2,m),4.74(1H×2,m),5.
03,5.09 (1H×2,brs),5.64,5.74 (1H×
2,d,J=5.9 Hz),6.69(2H×2,d,J=8.
4 Hz),6.77(1H×2,d,J=8.4 Hz),7.0
5,7.13 (1H×2,s),7.14,7.20 (2H×2,
d,J=8.4 Hz),7.40(2H×2,d,J=8.1 H
z),7.84,7.85 (2H×2,d,J=8.4 Hz),7.
90,7.92 (1H×2,s) IR cm-1(KBr):3410, 3326(br), 2965,2
872,1665(br),1615,1597, 1514(br),1379,122
1,1192,1175,1080,1051,1026,893,839,704,677,590,542 UVnm(MeOH):2670(E1% 1cm =32),230.4(26
6) FAB−MS(pos,マトリクス;NBA)m/z 700 (M
+H)+ 〔α〕25 D +6.7 ° (c0.3 CHCl3
N-Boc-DL-HPG-L-His
(Tos) -L-LeuOEt NMR (CDCl 3 ) δ: 0.76, 0.84, 0.87, 0.94 (3H
× 4, d, J = 6.6 Hz), 1.28, 1.29 (3H × 2,
t, J = 7.3 Hz), 1.47 (9H × 2, brs), 1.40
-1.52 (2H × 2, m), 1.62 (1H × 2, m), 2.48
(3H × 2, s), 2.75-2.90 (1H × 2, m), 2.92
-3.02,3.10-3.20 (1H × 2), 3.79 (1H × 2, br
s), 4.17, 4.18 (2H × 2, q, J = 7.0 Hz), 4.
39-4.49 (1H × 2, m), 4.74 (1H × 2, m), 5.
03,5.09 (1H × 2, brs), 5.64,5.74 (1H ×
2, d, J = 5.9 Hz), 6.69 (2H × 2, d, J = 8.
4 Hz), 6.77 (1H × 2, d, J = 8.4 Hz), 7.0
5,7.13 (1H × 2, s), 7.14,7.20 (2H × 2,
d, J = 8.4 Hz, 7.40 (2H × 2, d, J = 8.1 H
z), 7.84, 7.85 (2H × 2, d, J = 8.4 Hz), 7.
90,7.92 (1H × 2, s) IR cm −1 (KBr): 3410, 3326 (br), 2965,2
872,1665 (br), 1615,1597,1514 (br), 1379,122
1,1192,1175,1080,1051,1026,893,839,704,677,590,542 UVnm (MeOH): 2670 (E 1% 1cm = 32), 230.4 (26
6) FAB-MS (pos, matrix; NBA) m / z 700 (M
+ H) + [α] 25 D +6.7 ° (c0.3 CHCl 3 )

【0063】実施例5N−Boc−DL−HPG−L−His(Tos)−L
−Leu(16)の合成 実施例4で得たN−Boc−DL−HPG−L−His
(Tos)−L−LeuOEt(15)0.50g(0.72mm
ol)にTHF3mlを加えて溶かし、氷冷下撹拌しながら水 1
5ml 、1NNaOH15mlを加え、氷冷下2時間撹拌した
後、更に室温で20時間撹拌した。反応終了後、水を加
えて希釈し、減圧下に THFを留去した後、n−ブタノー
ルを加え、氷冷下1NHClで水層のpHを3 にしてn−
ブタノール抽出を行った。得られたn−ブタノール層を
減圧下に濃縮乾固して反応混合物0.67gを得た。得られ
た反応混合物をセファデックスLH−20カラムクロマト
グラフィーにより精製してN−Boc−DL−HPG−
L−His(Tos)−L−Leu(16)を0.37g得
た。
Example 5 N-Boc-DL-HPG-L-His (Tos) -L
Synthesis of -Leu (16) N-Boc-DL-HPG-L-His obtained in Example 4
(Tos) -L-LeuOEt (15) 0.50g (0.72mm
(3) THF (3 ml) to dissolve, and water with stirring under ice cooling.
After adding 5 ml and 15 ml of 1N NaOH, the mixture was stirred under ice cooling for 2 hours, and further stirred at room temperature for 20 hours. After completion of the reaction, water was added to dilute, THF was distilled off under reduced pressure, n-butanol was added, and the pH of the aqueous layer was adjusted to 3 with 1N HCl under ice cooling to n-.
Butanol extraction was performed. The obtained n-butanol layer was concentrated to dryness under reduced pressure to obtain 0.67 g of a reaction mixture. The resulting reaction mixture was purified by Sephadex LH-20 column chromatography to give N-Boc-DL-HPG-
0.37 g of L-His (Tos) -L-Leu (16) was obtained.

【0064】N−Boc−DL−HPG−L−His−
L−LeuOH(16) NMR(CD3 OD)δ:0.84,0.91,0.92,0.97 (3H
×4,d,J=6.2 Hz),1.42,1.44 (9H×2,
s),1.50-1.67 (1H×2,m),1.71(2H×2,
m),3.08(1H,dd,J=15.0,7.0Hz),3.17
(1H,dd,J=15.0,5.9Hz),3.22-3.34(1H
×2,m),4.32,4.39 (1H×2m),4.72(1H×
2,q,like, J=5.9 Hz),4.96,5.00 (1H
×2,s),6.74,6.76 (2H×2,d,J=8.4 H
z),6.82,7.28 (1H×2,s),7.17,7.18 (2H
×2,d,J=8.4 Hz),8.53,8.63 (1H×2,
s) IR cm-1(KBr):3310, (br), 2961,1659,
1514,1454,1393,1370,1248,1167,1053,895,841,685,627 UVnm(MeOH):276.8 (E1% 1cm =29),221.8
(239) FAB−MS(pos,マトリクス;NBA)m/z 518 (M
+H)+ 〔α〕25 D −15.5° (c1.01, CH3 OH)
N-Boc-DL-HPG-L-His-
L-LeuOH (16) NMR (CD 3 OD) δ: 0.84, 0.91, 0.92, 0.97 (3H
× 4, d, J = 6.2 Hz), 1.42, 1.44 (9H × 2,
s), 1.50-1.67 (1H × 2, m), 1.71 (2H × 2,
m), 3.08 (1H, dd, J = 15.0, 7.0Hz), 3.17
(1H, dd, J = 15.0, 5.9Hz), 3.22-3.34 (1H
X2, m), 4.32, 4.39 (1H x 2m), 4.72 (1H x
2, q, like, J = 5.9 Hz), 4.96,5.00 (1H
× 2, s), 6.74,6.76 (2H × 2, d, J = 8.4 H
z), 6.82, 7.28 (1H × 2, s), 7.17, 7.18 (2H
X2, d, J = 8.4 Hz), 8.53, 8.63 (1H x 2,
s) IR cm -1 (KBr): 3310, (br), 2961,1659,
1514,1454,1393,1370,1248,1167,1053,895,841,685,627 UVnm (MeOH): 276.8 (E 1% 1cm = 29), 221.8
(239) FAB-MS (pos, matrix; NBA) m / z 518 (M
+ H) + [α] 25 D -15.5 ° (c1.01, CH 3 OH)

【0065】実施例6DL−HPG−L−His−L−Leu(17)の合成 実施例5で得たN−Boc−DL−HPG−L−His
−L−Leu(16)0.36g(0.69mmol)にジクロロメ
タン 3mlを加えて懸濁し、氷冷下撹拌しながらTFA1mlを
加えた後、室温で2時間撹拌した。反応終了後、反応液
を減圧下に溶媒を留去し、更にトルエン、水をそれぞれ
用いて TFAの共沸除去を行った。得られた残渣を水に溶
かし、室温で撹拌しながらダイヤイオンWA−30を少し
ずつ加え、pH4.6 に調整した。これをろ別し、ろ液を減
圧下に濃縮乾固してDL−HPG−L−His−L−L
eu(17)を0.32g得た。
Example 6 Synthesis of DL-HPG-L-His-L-Leu (17) N-Boc-DL-HPG-L-His obtained in Example 5
To 0.36 g (0.69 mmol) of -L-Leu (16), 3 ml of dichloromethane was added to suspend, and 1 ml of TFA was added with stirring under ice-cooling, followed by stirring at room temperature for 2 hours. After completion of the reaction, the solvent was distilled off from the reaction solution under reduced pressure, and TFA was azeotropically removed using toluene and water, respectively. The obtained residue was dissolved in water, and Diaion WA-30 was added little by little while stirring at room temperature to adjust the pH to 4.6. This was filtered off, and the filtrate was concentrated to dryness under reduced pressure to obtain DL-HPG-L-His-LL.
0.32 g of eu (17) was obtained.

【0066】FAB−MS(pos,マトリクス;グリセリ
ン) m/z:418 (M+H)+ 1 H−NMR(CD3 OD):0.84(3H,d,J=6.2
Hz),1.50-1.80(3H×2, m),3.02-3.28(2H
×2,m),4.27 (1H, dd,J=10.6,3.7Hz),
4.33 (1H, dd,J=10.6,3.7Hz),4.72 (1
H,t,J=5.9 Hz),4.75 (1H,t,J=5.9 H
z),4.96 (1H×2,s),6.58(1H, brs),7.2
3 (1H, brs),6.81 (2H, d,J=8.4 H
z),6.86(2H,d,J=8.4 Hz),7.29(2H,
d,J=8.4 Hz),7.30(2H, d,J=8.4 H
z),8.30(1H, brs),8.37 (1H, brs) 〔α〕26 D −1.6 ° (c1.1,CH3 OH)
FAB-MS (pos, matrix; glycerin) m / z: 418 (M + H) + , 1 H-NMR (CD 3 OD): 0.84 (3H, d, J = 6.2)
Hz), 1.50-1.80 (3H × 2, m), 3.02-3.28 (2H
× 2, m), 4.27 (1H, dd, J = 10.6, 3.7Hz),
4.33 (1H, dd, J = 10.6, 3.7Hz), 4.72 (1
H, t, J = 5.9 Hz), 4.75 (1 H, t, J = 5.9 H)
z), 4.96 (1H × 2, s), 6.58 (1H, brs), 7.2
3 (1H, brs), 6.81 (2H, d, J = 8.4H
z), 6.86 (2H, d, J = 8.4 Hz), 7.29 (2H,
d, J = 8.4 Hz), 7.30 (2H, d, J = 8.4 H)
z), 8.30 (1H, brs), 8.37 (1H, brs) [α] 26 D −1.6 ° (c1.1, CH 3 OH)

【0067】実施例7N−ベンゾイル−L−2−(4−ヒドロキシフェニル)
グリシル−L−ヒスジル−L−ロイシンの合成 実施例5で得たDL−HPG−L−His−L−Leu
(17)0.26g(0.62mmol)を水15mlに溶かし、氷冷下
撹拌しながら塩化ベンゾイル86μl (0.74mmol)と炭酸
ナトリウム水(1mmol)をそれぞれ4回に分けて2時間か
けて添加し、更に2時間反応させた。反応終了後、エー
テルで洗浄してから、水層を 5mlずつ3回に分けて連続
して、分取HPLC(カラム:YMC-Pack ODS A-302 S-343-1
5 (2 ×25cm):移動相:メタノール/20mMリン酸緩
衝液(pH6.8)(45/55) 、流速:7.0ml/min 、検出:UV28
0nm)にかけ、保持時間18.4分のピークを分取した。尚、
Bz−D−HPG−L−His−L−Leuは保持時間
20.9分に溶出してきた。
Example 7 N-benzoyl-L-2- (4-hydroxyphenyl)
Synthesis of Glycyl-L-Hisudil-L-Leucine DL-HPG-L-His-L-Leu obtained in Example 5
(17) 0.26 g (0.62 mmol) was dissolved in 15 ml of water, and 86 μl (0.74 mmol) of benzoyl chloride and aqueous sodium carbonate (1 mmol) were added in 4 portions over 2 hours while stirring under ice-cooling. The reaction was carried out for 2 hours. After completion of the reaction, the reaction mixture was washed with ether, and the aqueous layer was continuously divided into 5 ml portions in three times and preparative HPLC (column: YMC-Pack ODS A-302 S-343-1).
5 (2 x 25 cm): Mobile phase: methanol / 20 mM phosphate buffer (pH6.8) (45/55), flow rate: 7.0 ml / min, detection: UV28
(0 nm) and the peak having a retention time of 18.4 minutes was collected. still,
Bz-D-HPG-L-His-L-Leu is retention time
It eluted at 20.9 minutes.

【0068】N−Bz−L−HPG−L−His−L−
LeuとN−Bz−D−HPG−L−His−L−Le
uの区別は、実施例3、4、5、6と同様の方法により
D−HPGから合成したN−Bz−D−HPG−L−H
is−L−Leuを用いて行った。即ち、HPLC分析 (カ
ラム:YMC-Pack ODS A-302 (4.6×150mm)、移動相:メ
タノール/20mMリン酸緩衝液(pH6.8) (45/55) 、流速:
0.5ml/min 、検出:UV280nm)においてN−Bz−L−H
PG−L−His−L−LeuとN−Bz−D−HPG
−L−His−L−Leuの保持時間は、それぞれ7.4
分、8.3 分であり、二つのジアステレオマーを区別する
ことができた。分取したBz−L−HPG−L−His
−L−Leu画分の脱塩は、移動層を水とする他は上記
の分取高速液体クロマトグラフィーと同じ条件で行い、
脱塩されて溶出してきたBz−L−HPG−L−His
−L−Leuピークを分取し、凍結乾燥してBz−L−
HPG−L−His−L−Leuをナトリウム塩として
103 mg(0.2mmol) 得た。
N-Bz-L-HPG-L-His-L-
Leu and N-Bz-D-HPG-L-His-L-Le
u is distinguished from N-Bz-D-HPG-L-H synthesized from D-HPG by the same method as in Examples 3, 4, 5, and 6.
It was performed using is-L-Leu. That is, HPLC analysis (column: YMC-Pack ODS A-302 (4.6 × 150 mm), mobile phase: methanol / 20 mM phosphate buffer (pH 6.8) (45/55), flow rate:
0.5 ml / min, detection: UV280 nm) N-Bz-L-H
PG-L-His-L-Leu and N-Bz-D-HPG
The retention time of -L-His-L-Leu is 7.4, respectively.
Min, 8.3 min, and the two diastereomers could be distinguished. Fractionated Bz-L-HPG-L-His
Desalination of the -L-Leu fraction is carried out under the same conditions as in the preparative high performance liquid chromatography described above except that water is used as the mobile phase,
Bz-L-HPG-L-His desalted and eluted
-L-Leu peak was collected, freeze-dried and Bz-L-
HPG-L-His-L-Leu as sodium salt
103 mg (0.2 mmol) was obtained.

【0069】N−Bz−L−HPG−L−His−L−
Leu FAB−MS(pos,マトリクス;グリセリン) m/
z:522 (M+H)+ ,544(M+Na)+ 1 H−NMR(CD3 OD):0.90(3H,d, J=4.0
Hz),0.91(3H,d, J=4.0 Hz),1.60-1.70
(3H,m),3.08 (2H, d,J=5.5 Hz),4.3
2(1H, dd,J=9.9,4.0 Hz),4.70 (1H,
t,J=5.5 Hz),5.60(1H, s),6.47 (1H,
brs),6.78 (2H, dd,J=6.6,1.8Hz),7.25
(2H, dd,J=6.6,1.8 Hz),7.43-7.55(4
H,m),7.85(2H, dd,J=8.6,1.3 Hz)
N-Bz-L-HPG-L-His-L-
Leu FAB-MS (pos, matrix; glycerin) m /
z: 522 (M + H) + , 544 (M + Na) + , 1 H-NMR (CD 3 OD): 0.90 (3H, d, J = 4.0).
Hz), 0.91 (3H, d, J = 4.0 Hz), 1.60-1.70
(3H, m), 3.08 (2H, d, J = 5.5 Hz), 4.3
2 (1H, dd, J = 9.9, 4.0 Hz), 4.70 (1H,
t, J = 5.5 Hz), 5.60 (1H, s), 6.47 (1H,
brs), 6.78 (2H, dd, J = 6.6, 1.8Hz), 7.25
(2H, dd, J = 6.6, 1.8 Hz), 7.43-7.55 (4
H, m), 7.85 (2H, dd, J = 8.6, 1.3 Hz)

【0070】参考例 カワラタケ属の木材腐朽菌であるコリオラス・ベルシカ
ラー(Coriolus versicolor IFO 9791)由来のラッカー
ゼ(タンパク濃度:2.3mg/ml)を用いて、2−(4−ヒ
ドロキシフェニル)グリシンを基質とするラッカーゼの
活性測定法と従来のシリンガルダジンを基質とするラッ
カーゼの活性測定法の比較を行った。
Reference Example 2- (4-hydroxyphenyl) glycine was used as a substrate using laccase (protein concentration: 2.3 mg / ml) derived from Coriolus versicolor IFO 9791 which is a wood-rotting fungus of the genus Agaricale. A comparison was made between the method for measuring the activity of laccase and the conventional method for measuring the activity of laccase using syringaldazine as a substrate.

【0071】前者のラッカーゼの活性測定法は、50mMリ
ン酸緩衝液(pH6.0 )に2−(4−ヒドロキシフェニ
ル)グリシンを50mMになるように溶かした水溶液 200μ
l をエッペンドルフチューブに入れ、それに酵素液2μ
l を添加して攪拌し30℃で反応を行った。生成する4−
ヒドロキシベンズアルデヒドの定量は高速液体クロマト
グラフィーを用いて行った。即ち、カラム:YMC-Pack A
-302 ODS (4.6 ×150mm)、移動相:30%(v/v) メタノー
ル/0.02Mリン酸緩衝液(pH6.8 )、流速:0.5ml/mi
n、検出:UV280nm、分析試料容量:20μl の条件で行
い、保持時間9.6 分に溶出してくる4ーヒドロキシベン
ズアルデヒドを標準試料による絶対検量線法によりイン
テギュレータを用いて自動定量を行った。測定は反応開
始後、ラッカーゼ濃度が0.023 μg/ml以上の場合は 5分
と20分に、それ以下の濃度においては10分と40分の2回
行い、4−ヒドロキシベンズアルデヒドの生成速度(nm
ol/min/ml )を求め、ラッカーゼ活性とした。
The former method for measuring the activity of laccase was carried out by using 200 μl of an aqueous solution prepared by dissolving 2- (4-hydroxyphenyl) glycine in 50 mM phosphate buffer (pH 6.0) to a concentration of 50 mM.
Put l into an Eppendorf tube and add 2μ of enzyme solution to it.
l was added, and the mixture was stirred and reacted at 30 ° C. Generate 4-
The quantification of hydroxybenzaldehyde was performed using high performance liquid chromatography. That is, the column: YMC-Pack A
-302 ODS (4.6 x 150 mm), mobile phase: 30% (v / v) methanol / 0.02M phosphate buffer (pH 6.8), flow rate: 0.5 ml / mi
n, detection: UV280 nm, analytical sample volume: 20 μl, and 4-hydroxybenzaldehyde eluting at a retention time of 9.6 minutes was automatically quantified using an integrator by the absolute calibration curve method using a standard sample. After the start of the reaction, the measurement was performed twice for 5 minutes and 20 minutes when the laccase concentration was 0.023 μg / ml or more, and 10 minutes and 40 minutes when the concentration was lower than that, and the production rate of 4-hydroxybenzaldehyde (nm
ol / min / ml) was calculated and used as the laccase activity.

【0072】シリンガルダジン基質とするラッカーゼ活
性測定法は、レオノビッツ(Leonowicz )らの方法(En
z. Microb. Technol. 3 、55-58 、1981)に基づいて行
った。即ち、50mMリン酸緩衝液(pH6.0 )2.7ml に反応
直前に0.2mM シリンガルダジンのエタノール溶液 0.3ml
を加え、酵素液 3μl を添加して攪拌をし、光路長1cm
のセル中で反応を開始した。30℃の恒温セルホルダー中
で525nm の吸光度の上昇を経時的に計測し、単位時間当
たりの吸光度の上昇( △E/min )を求めラッカーゼ活性
とした。それぞれの活性測定法で6回測定した結果は表
1に示す。
A method for measuring laccase activity using a syringaldazine substrate is described by Leonowicz et al.
z. Microb. Technol. 3, 55-58, 1981). That is, 0.2 ml of 0.2 mM syringaldazine in ethanol was added to 2.7 ml of 50 mM phosphate buffer (pH 6.0) immediately before the reaction.
Then, add 3 μl of the enzyme solution and stir to obtain an optical path length of 1 cm.
The reaction was started in the cell. The increase in absorbance at 525 nm was measured with time in a constant temperature cell holder at 30 ° C., and the increase in absorbance per unit time (ΔE / min) was determined and used as the laccase activity. Table 1 shows the results of 6 measurements by each activity measuring method.

【0073】[0073]

【表1】 [Table 1]

【0074】表1の結果から判るように、2−(4−ヒ
ドロキシフェニル)グリシンを基質として用いる方法は
シリンガルダジンを基質とする方法に比べ、検出感度が
高く、またより小さな変動係数(CV)を示し再現性に
おいて優れていることを示している。
As can be seen from the results in Table 1, the method using 2- (4-hydroxyphenyl) glycine as the substrate has higher detection sensitivity and a smaller coefficient of variation (CV) than the method using syringaldazine as the substrate. ) Indicates that the reproducibility is excellent.

【0075】実施例8 (アンジオテンシン変換酵素の活性測定法)0.2 Mホウ
酸緩衝液(pH7.5) にN−ベンゾイル−L−2−(4−ヒ
ドロキシフェニル)グリシル−L−ヒスチジル−L−ロ
イシンを 2mMに、塩化ナトリウムを0.1Mになるように溶
かし基質溶液とした。この基質溶液 100μl をエッペン
ドルフチューブに取り、ラッカーゼ(コリオラス・ベル
シカラー IFO9791由来、比活性4.8 ×103 U/mg 、蛋白
濃度2.3mg/ml)を 4μl 加えて、37℃で3分以上予備
加温した後、標準血清(シグマ社製、ACE CONTROL-N 、
No.A6040 )100 μlを加え次いで37℃で保温して
1、2、3時間それぞれ酵素反応を行った。反応の停止
は1N塩酸の2,4−ジニトロフェニルヒドラジン飽和溶
液10μlの添加によって行い6〜8分間室温で放置後、
5N水酸化ナトリウム水溶液10μlを添加して発色させ
て、500nm の吸光度を測定し、既知濃度の4−ヒドロキ
シベンズアルデヒドから同様にして発色させて求めた検
量線より、測定試料中の4−ヒドロキシンべンズアルデ
ヒドの濃度を求めた。測定結果を表2に示す。
Example 8 (Method for measuring activity of angiotensin converting enzyme) N-benzoyl-L-2- (4-hydroxyphenyl) glycyl-L-histidyl-L-leucine was added to 0.2 M borate buffer (pH 7.5). Was dissolved in 2 mM and sodium chloride was dissolved to 0.1 M to obtain a substrate solution. 100 μl of this substrate solution was placed in an Eppendorf tube, and 4 μl of laccase (derived from Coriolus versicolor IFO9791, specific activity 4.8 × 10 3 U / mg, protein concentration 2.3 mg / ml) was added, and preheated at 37 ° C for 3 minutes or more. After that, the standard serum (made by Sigma, ACE CONTROL-N,
No. A6040) (100 μl) was added, and the mixture was kept warm at 37 ° C. for enzyme reaction for 1, 2 and 3 hours. The reaction was stopped by adding 10 μl of a saturated solution of 2,4-dinitrophenylhydrazine in 1N hydrochloric acid, and after leaving it at room temperature for 6 to 8 minutes,
Color was added by adding 10 μl of 5N sodium hydroxide aqueous solution, the absorbance at 500 nm was measured, and 4-hydroxybenzene in the measurement sample was analyzed from the calibration curve obtained by similarly developing color from known concentration of 4-hydroxybenzaldehyde. The concentration of benzaldehyde was determined. The measurement results are shown in Table 2.

【0076】[0076]

【表2】 [Table 2]

【0077】得られた測定値から4−ヒドロキシベンズ
アルデヒドの生成速度を求めると、0.0338μM/min
(相関係数=0.9989)となる。従って、標準血清中での
4−ヒドロキシベンズアルデヒドの生成速度は、0.0338
×2.24=0.0757から0.0757μM/min になる。次に、先
と同様に、0.2 Mホウ酸緩衝液 (pH7.5)にN−ベンゾイ
ル−L−2−(4−ヒドロキシフェニル)グリシル−L
−ヒスチジル−L−ロイシンを2mM に、塩化ナトリウム
を 0.1Mになるように溶かし基質溶液を37℃で3分間以
上予備加温した後、標準血清(シグマ社製、ACE CONTRO
L-N 、No.A6040) 100μl を加え次いで37℃で保温し
て経時的に反応液をサンプリングして基質がACE により
分解されて生成されたN−ベンゾイル−L−2−(4−
ヒドロキシフェニル)グリシンをHPLCを用いて定量し
た。HPLC分析条件は、カラム:YMC-Pack A-302 S-5 12
0A ODS(6×150mm)、移動相:40%(v/v)メタノール/0.
02Mリン酸緩衝液 (pH6.8)、流速:1.0ml/min 、検出:
UV230nm 、分析試料容量:5μl の条件で行ない、保持
時間5.8 分に溶出してくるN−ベンゾイル−L−2−
(4−ヒドロキシフェニル)グリシンを標準試料による
絶対検量線法によりインテギュレータを用いて自動定量
を行った。結果を表3に示す。
The production rate of 4-hydroxybenzaldehyde was calculated from the obtained measured values and found to be 0.0338 μM / min.
(Correlation coefficient = 0.9989). Therefore, the production rate of 4-hydroxybenzaldehyde in standard serum was 0.0338.
× 2.24 = 0.0757 to 0.0757 μM / min. Then, in the same manner as above, N-benzoyl-L-2- (4-hydroxyphenyl) glycyl-L was added to 0.2 M borate buffer (pH 7.5).
-Histidyl-L-leucine was dissolved in 2 mM and sodium chloride to be 0.1 M, and the substrate solution was preheated at 37 ° C for 3 minutes or more, and then standard serum (Sigma ACE CONTRO).
LN, No. A6040) 100 μl was added, and the mixture was kept warm at 37 ° C. and the reaction solution was sampled over time to decompose the substrate by ACE to produce N-benzoyl-L-2- (4-
Hydroxyphenyl) glycine was quantified using HPLC. HPLC analysis conditions are as follows: Column: YMC-Pack A-302 S-5 12
0A ODS (6 x 150 mm), mobile phase: 40% (v / v) methanol / 0.
02M phosphate buffer (pH 6.8), flow rate: 1.0 ml / min, detection:
UV-230nm, analytical sample volume: 5 μl, N-benzoyl-L-2- eluting at retention time 5.8 minutes
(4-Hydroxyphenyl) glycine was automatically quantified using an integrator by the absolute calibration curve method using a standard sample. The results are shown in Table 3.

【0078】[0078]

【表3】 [Table 3]

【0079】得られた測定値からN−ベンゾイル−L−
2−(4−ヒドロキシフェニル)グリシンの生成速度を
求めると、0.0368μM/min (相関係数=0.9978)とな
る。従って、標準血清中での基質N−ベンゾイル−L−
2−(4−ヒドロキシフェニル)グリシル−L−ヒスチ
ジル−L−ロイシンの分解速度、即ちACE 活性は、0.03
68×2 =0.0 から0.0736μM/min になる。この結果は
先に求めた4−ヒドロキシベンズアルデヒドの生成速度
とほぼ同じ値である。以上の結果から、4−ヒドロキシ
ベンズアルデヒドの生成速度を求めるこによりACE 活性
を測定できることが分かる。ACE 活性の1単位(U)を
1分間に1μmol のベンゾイル−L−2−(4−ヒドロ
キシフェニル)グリシンを生成する酵素量と定義した場
合、本発明方法により求めた値0.0757μM/min より、
この標準血清中のACE 活性は75.7mU/Lと表すことが
できる。
From the obtained measured values, N-benzoyl-L-
When the production rate of 2- (4-hydroxyphenyl) glycine is calculated, it becomes 0.0368 μM / min (correlation coefficient = 0.9978). Therefore, the substrate N-benzoyl-L- in standard serum
The decomposition rate of 2- (4-hydroxyphenyl) glycyl-L-histidyl-L-leucine, that is, ACE activity was 0.03.
From 68 × 2 = 0.0 to 0.0736 μM / min. This result is almost the same value as the production rate of 4-hydroxybenzaldehyde obtained previously. From the above results, it is understood that the ACE activity can be measured by determining the production rate of 4-hydroxybenzaldehyde. When 1 unit (U) of ACE activity is defined as the amount of enzyme that produces 1 μmol of benzoyl-L-2- (4-hydroxyphenyl) glycine in 1 minute, the value obtained by the method of the present invention is 0.0757 μM / min.
The ACE activity in this standard serum can be expressed as 75.7 mU / L.

【0080】実施例9 0.2 Mホウ酸緩衝液 (pH7.5)にベンゾイル−L−2−
(4−ヒドロキシフェニル)グリシル−L−ヒスチジル
−L−ロイシンを2mMに、塩化ナトリウムを0.1Mにな
るように溶かし基質溶液とした。この基質溶液 100μl
をエッペンドルフチューブに取り、ラッカーゼ(コリオ
ラス・ベルシカラー IFO9791由来、比活性4.8×103 U/
mg 、蛋白濃度2.3mg/ml)を 4μl 加えて、37℃で3
分以上予備加温した後、ヒト血清 100μl を加えて次い
で37℃で保温して50分と90分間の酵素反応をそれぞ
れ行った。反応の停止は 1N塩酸の2,4−ジニトロフ
ェニルヒドラジン飽和溶液10μl の添加によって行い6
〜8分間室温で放置後、5N水酸化ナトリウム水溶液10
μl を添加して発色させて、500nm の吸光度を測定し
た。その結果、酵素反応時間50分、90分における500nm
の吸光度はそれぞれ0.4465、0.4952であった。これらの
値から下記式により血清中のACE 活性を求めた。なお、
4−ヒドロキシベンズアルデヒドに由来するキノイド構
造体の分子吸光係数は28200 である。 ACE 活性=(0.4952-0.4465) /40/28200 ×2.24 =9.67×10-8M/min =96.7m U/L
Example 9 Benzoyl-L-2-in 0.2 M borate buffer (pH 7.5)
(4-Hydroxyphenyl) glycyl-L-histidyl-L-leucine was dissolved in 2 mM and sodium chloride was dissolved in 0.1 M to obtain a substrate solution. 100 μl of this substrate solution
In an Eppendorf tube and laccase (derived from Coriolas versicolor IFO9791 with a specific activity of 4.8 × 10 3 U /
mg, protein concentration 2.3 mg / ml) 4 μl and add 3 at 37 ℃.
After preliminarily heating for more than 10 minutes, 100 μl of human serum was added and then kept at 37 ° C. for enzyme reaction for 50 minutes and 90 minutes, respectively. The reaction was stopped by adding 10 μl of a saturated solution of 1N hydrochloric acid in 2,4-dinitrophenylhydrazine.
After leaving at room temperature for ~ 8 minutes, 5N sodium hydroxide solution 10
μl was added for color development, and the absorbance at 500 nm was measured. As a result, the enzyme reaction time was 500 nm at 50 minutes and 90 minutes.
The respective absorbances were 0.4465 and 0.4952. From these values, the ACE activity in serum was calculated by the following formula. In addition,
The molecular extinction coefficient of the quinoid structure derived from 4-hydroxybenzaldehyde is 28200. ACE activity = (0.4952-0.4465) /40/28200×2.24=9.67×10 -8 M / min = 96.7m U / L

【0081】実施例10 合成基質L−ロイシル−L−2−(4−ヒドロキシフェ
ニル)グリシンの各pHにおける細胞質由来アミノペプチ
ダーゼ、及びミクロソーム由来アミノペプチダーゼによ
る分解速度を求めた。酵素は、細胞質由来アミノペプチ
ダーゼ(細胞質由来LAP と略記する)としてはSIGMA 社
製のロイシンアミノペプチダーゼ(細胞質)(type 3-C
P 、豚肝臓由来、タンパク濃度:1.9mg/ml)を、ミクロ
ソーム由来アミノペプチダーゼ(ミクロソーム由来LAP
と略記する) としては、SIGMA 社製のロイシンアミノペ
プチダーゼ( ミクロソーム)(type 4-S、豚肝臓ミクロ
ソーム由来、タンパク濃度:2.3mg/ml)をそれぞれ5倍
希釈して用いた。
Example 10 The rates of degradation of synthetic substrate L-leucyl-L-2- (4-hydroxyphenyl) glycine by cytoplasmic aminopeptidase and microsomal aminopeptidase at various pHs were determined. The enzyme is a leucine aminopeptidase (cytoplasm) (type 3-C) manufactured by SIGMA as cytoplasm-derived aminopeptidase (abbreviated as cytoplasmic LAP).
P, pig liver-derived, protein concentration: 1.9 mg / ml), and microsome-derived aminopeptidase (microsome-derived LAP)
Abbreviated as "), leucine aminopeptidase (microsome) (type 4-S, derived from pig liver microsome, protein concentration: 2.3 mg / ml) manufactured by SIGMA was used after being diluted 5-fold.

【0082】酵素による基質の加水分解によって生じる
2−(4−ヒドロキシフェニル)グリシンは、高速液体
クロマトグラフィーにより定量した。分析条件を次に示
す。 カラム: YMC-Pack A-302 S-5 120A ODS (60×150mm) 移動相: 10%(v/v)MeOH/20mMリン酸緩衝液(pH6.8) 流速: 1.0ml/min 検出: UV280nm 使用した緩衝液は、pH6.0 、6.8 、7.5 はリン酸緩衝液
を、pH8.0 、8.5 はトリス一塩酸緩衝液を、pH9.0 、9.
5 はホウ酸緩衝液を用いた。
2- (4-Hydroxyphenyl) glycine produced by enzymatic hydrolysis of the substrate was quantified by high performance liquid chromatography. The analysis conditions are shown below. Column: YMC-Pack A-302 S-5 120A ODS (60 × 150 mm) Mobile phase: 10% (v / v) MeOH / 20 mM phosphate buffer (pH 6.8) Flow rate: 1.0 ml / min Detection: UV280nm used The pH of the buffers used was pH 6.0, 6.8, 7.5, phosphate buffer, pH 8.0, 8.5, Tris monohydrochloride buffer, pH 9.0, 9.
5 used a borate buffer.

【0083】実験は次のようにして行った。即ち、L−
ロイシル−L−2−(4−ヒドロキシフェニル)グリシ
ンを水に溶かし3.3mMの水溶液を作り、このうち50μl
を1.5ml 容のエッペンドルフチューブに取り、そこに各
緩衝液50μl を加えて(最終濃度、1.65 mM)、37℃
で10分間保温した後各酵素1μl 添加して酵素反応を開
始した。一定時間間隔で高速液体クロマトグラフィーに
より生じた2−(4−ヒドロキシフェニル)グリシンを
定量することにより生成速度(μmol/ml/min)を求め各
酵素の酵素活性とした。結果を以下の表4に示す。
The experiment was conducted as follows. That is, L-
Leucyl-L-2- (4-hydroxyphenyl) glycine was dissolved in water to make a 3.3 mM aqueous solution, of which 50 μl
To an Eppendorf tube of 1.5 ml volume, add 50 μl of each buffer solution (final concentration, 1.65 mM) to 37 ° C.
After incubation for 10 minutes, 1 μl of each enzyme was added to start the enzyme reaction. The production rate (μmol / ml / min) was determined by quantifying 2- (4-hydroxyphenyl) glycine produced by high performance liquid chromatography at regular time intervals, and used as the enzyme activity of each enzyme. The results are shown in Table 4 below.

【0084】[0084]

【表4】 [Table 4]

【0085】以上の結果は、合成基質L−ロイシル−2
−(4−ヒドロキシフェニル)グリシンが細胞質由来LA
P 、ミクロソーム由来LAP のいずれにおいても加水分解
されて、2−(4−ヒドロキシフェニル)グリシンが生
じることを示している。また、pH6.8 の反応液で両方の
酵素活性が測定できることが分かった。
The above results show that the synthetic substrate L-leucyl-2
-(4-Hydroxyphenyl) glycine is derived from cytoplasmic LA
It is shown that both P 2 and LAP derived from microsomes are hydrolyzed to produce 2- (4-hydroxyphenyl) glycine. It was also found that both enzyme activities could be measured in the reaction solution at pH 6.8.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 武男 神奈川県綾瀬市上土棚1959 グリーンハイ ツ3−3102 (72)発明者 岡村 和彦 神奈川県藤沢市藤沢2502−1 (72)発明者 岡本 六郎 神奈川県藤沢市花の木2−18 (72)発明者 新 隆志 熊本県熊本市池田4−5−2 吉永ビル 505号 (72)発明者 村尾 澤夫 大阪府堺市堀上緑町2−8−12 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Yoshioka 1959, Kamitotsutan, Ayase-shi, Kanagawa 3-3102 Green Heights (72) Inventor Kazuhiko Okamura 2502-1 Fujisawa, Fujisawa, Kanagawa Prefecture (72) Rokuro Okamoto, Kanagawa 2-18 Hananoki, Fujisawa-shi (72) Inventor Takashi Shin, 4-5-2 Ikeda, Kumamoto-shi, Kumamoto No. 505 Yoshinaga Building (72) Sawao Murao, 2-8-12 Horikami-midori-cho, Sakai-shi, Osaka

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式〔I〕で示されるヒドロキシ
フェニルグリシン誘導体。 【化1】 (式中、R1 は水素原子、tert−ブチルオキシカルボニ
ル基、ベンゾイル基又は下記化2で示されるL−ロイシ
ル基(但し、化2中、R3 は水素原子、tert−ブチルオ
キシカルボニル基又はベンジルオキシカルボニル基を示
す)であり、R2 は水酸基、ベンジルオキシ基又は下記
化3で示されるL−ヒスチジル−L−ロイシル基(但
し、化3中、R4 は水素原子又は低級アルキル基を示
す)である。) 【化2】 【化3】
1. A hydroxyphenylglycine derivative represented by the following general formula [I]. [Chemical 1] (In the formula, R 1 is a hydrogen atom, a tert-butyloxycarbonyl group, a benzoyl group or an L-leucyl group represented by the following chemical formula 2 (wherein, R 3 is a hydrogen atom, a tert-butyloxycarbonyl group or Benzyloxycarbonyl group), R 2 is a hydroxyl group, a benzyloxy group or an L-histidyl-L-leucyl group represented by the following chemical formula 3 (provided that in the chemical formula 3, R 4 is a hydrogen atom or a lower alkyl group). It is shown).) [Chemical 3]
【請求項2】 N−ベンゾイル−L−2−(4−ヒドロ
キシフェニル)グリシル−L−ヒスチジル−L−ロイシ
ンにアンジオテンシン変換酵素を作用させてN−ベンゾ
イル−L−2−(4−ヒドロキシフェニル)グリシンを
生成させ、生成物を酸化酵素により4−ヒドロキシベン
ズアルデヒドに変換し、生成した4−ヒドロキシベンズ
アルデヒドを定量することを特徴とするアンジオテンシ
ン変換酵素の活性測定法。
2. N-benzoyl-L-2- (4-hydroxyphenyl) glycyl-L-histidyl-L-leucine is reacted with angiotensin converting enzyme to produce N-benzoyl-L-2- (4-hydroxyphenyl). A method for measuring the activity of an angiotensin converting enzyme, which comprises producing glycine, converting the product into 4-hydroxybenzaldehyde by an oxidase, and quantifying the produced 4-hydroxybenzaldehyde.
【請求項3】 L−ロイシル−L−2−(4−ヒドロキ
シフェニル)グリシンにアミノペプチダーゼを作用させ
てL−2−(4−ヒドロキシフェニル)グリシンを生成
させ、生成物を酸化酵素により4−ヒドロキシベンズア
ルデヒドに変換し、生成した4−ヒドロキシベンズアル
デヒドを定量することを特徴とするアミノペプチダーゼ
の活性測定法。
3. L-Leucyl-L-2- (4-hydroxyphenyl) glycine is reacted with aminopeptidase to produce L-2- (4-hydroxyphenyl) glycine, and the product is treated with oxidase to give 4- A method for measuring the activity of aminopeptidase, which comprises quantifying 4-hydroxybenzaldehyde produced by converting it to hydroxybenzaldehyde.
JP2859493A 1993-01-25 1993-01-25 Hydroxyphenylglycine derivative and enzyme activity assay using the same Pending JPH06220002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2859493A JPH06220002A (en) 1993-01-25 1993-01-25 Hydroxyphenylglycine derivative and enzyme activity assay using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2859493A JPH06220002A (en) 1993-01-25 1993-01-25 Hydroxyphenylglycine derivative and enzyme activity assay using the same

Publications (1)

Publication Number Publication Date
JPH06220002A true JPH06220002A (en) 1994-08-09

Family

ID=12252923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2859493A Pending JPH06220002A (en) 1993-01-25 1993-01-25 Hydroxyphenylglycine derivative and enzyme activity assay using the same

Country Status (1)

Country Link
JP (1) JPH06220002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389644B1 (en) * 2001-02-26 2003-06-27 한미약품 주식회사 4-hydroxyphenylglycine anhydrides and process for the preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389644B1 (en) * 2001-02-26 2003-06-27 한미약품 주식회사 4-hydroxyphenylglycine anhydrides and process for the preparation thereof

Similar Documents

Publication Publication Date Title
Maryanoff et al. Macrocyclic peptide inhibitors of serine proteases. Convergent total synthesis of cyclotheonamides A and B via a late-stage primary amine intermediate. Study of thrombin inhibition under diverse conditions
US5035999A (en) Aminoluciferin derivatives, processes for the production thereof and their application in the determination of enzyme activities
JPS6345397B2 (en)
JP2627503B2 (en) New peptide derivatives
US4119620A (en) Novel dipeptide derivatives, salts thereof, and method of measuring enzyme activity
US5610146A (en) 2,3-disubstituted isoxazolidines, a process for their preparation, agents containing them, and their use
US4138394A (en) Peptide derivatives and a method of measuring collagenase activity
NO177677B (en) Analogous Process for the Preparation of Therapeutically Active Compounds
US20220002348A1 (en) Tailored cyclodepsipeptides as potent non-covalent serine protease inhibitors
JPS6126558B2 (en)
US4147692A (en) Novel dipeptide derivatives, and method of measuring enzymatic activity
DK145799B (en) TRIPEPTIDES OR SALTS THEREOF USED AS DIAGNOSTIC CHROMOGENT SUBSTRATE WITH HIGH SPECIFICITY ABOVE THROMBIN AND THROMBIN SIMILAR ENZYMES
US4191808A (en) Method of measuring dipeptidyl-amino-peptidase activity
US4176009A (en) Method of measuring collagenase activity
JPH06220002A (en) Hydroxyphenylglycine derivative and enzyme activity assay using the same
JP3593590B2 (en) Peptide-substituted coumarin derivatives
US4474691A (en) Chromophoric peptides, a process for their preparation, agents containing them and their use for determining DD-carboxypeptidases
CA1283500C (en) Thiopeptolide substrates for vertebrate collagenase
US4191809A (en) Method of measuring enzymatic activity using novel peptide derivatives
US6441131B1 (en) Peptides, method for assaying human pepsinogen II or human pepsin II, and assaying kit
JPS5828867B2 (en) New tetrapeptide derivatives
Terzani et al. Synthesis and biological evaluation of selective Pepstatin based trifluoromethylated inhibitors of Cathepsin D
JP2890330B2 (en) Peptide substrate for identifying factor Xa
ATSUUMI et al. Renin inhibitors. II. Synthesis and structure-activity relationships of N-terminus modified inhibitors containing a homostatine analogue
JP3667470B2 (en) Method and reagent for measuring acid carboxypeptidase activity