JPH06219114A - Tire internal pressure detector - Google Patents

Tire internal pressure detector

Info

Publication number
JPH06219114A
JPH06219114A JP3407993A JP3407993A JPH06219114A JP H06219114 A JPH06219114 A JP H06219114A JP 3407993 A JP3407993 A JP 3407993A JP 3407993 A JP3407993 A JP 3407993A JP H06219114 A JPH06219114 A JP H06219114A
Authority
JP
Japan
Prior art keywords
internal pressure
tire
wheel
load
decrease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3407993A
Other languages
Japanese (ja)
Inventor
Kazuhiro Oda
和裕 小田
Kunio Kamishiro
邦雄 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP3407993A priority Critical patent/JPH06219114A/en
Publication of JPH06219114A publication Critical patent/JPH06219114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To enable monitoring or continuous measurement of tire internal pressure safely at low cost without placing a device in a part to rotate at high speed and without increasing weight by using a wheel rotating speed sensor or the like being an existing brake device in order to detect the tire internal pressure of a levitation type railway rolling stock where there exists even a case such as traveling at the highest speed when a mechanical brake is used. CONSTITUTION:Informations (omega) from respective wheel rotating speed sensors of four wheels of a single bogie are compared with each other, and internal pressure is detected from an increase in the (omega) caused by a decrease in a rolling radius of the wheels whose internal pressure is decreased. A wheel rolling radius is found by operation on V/omega by this and information V from vehicle speed, and the individual wheels of not more than a control limiting rolling radius 7 are judged as a decrease in the internal pressure. The internal pressure is also estimated as a continuous quantity from the relationship between bending of a tire and the internal pressure under the load condition after an uneven load of a vehicle by combining the rolling radius and information of a load gauge 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は、回転中の空気式タイ
ヤの内圧を検知する装置に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting the internal pressure of a pneumatic tire during rotation.

【0002】[0002]

【従来の技術】 従来空気式タイヤ内圧の検知装置は新
交通システム、自動車、航空機の一部で実用に供されて
いる。計測部に電力の要らないダイヤフラムによる機械
式圧力スイッチを用いてタイヤ内圧低下状況をタイヤ外
部に表示するだけの単一機能のものから、電子回路を設
計して計測部に電力を送り、圧力を連続量として検知し
環境温度で補正したうえ遠隔地に表示及び警報を発する
方式など各種ある。
2. Description of the Related Art Conventionally, pneumatic tire internal pressure detection devices have been put to practical use in some new transportation systems, automobiles, and aircraft. The measuring unit uses a mechanical pressure switch with a diaphragm that does not require electric power.It has a single function that only indicates the tire internal pressure drop condition outside the tire. There are various types such as a system that detects as a continuous quantity, corrects it according to the ambient temperature, and then displays and warns at a remote location.

【0003】これらの方式ではタイヤの内圧を直接的に
圧力を機械的な表示に変換したり、電気信号に変換する
方式の計測器で計測する方法が多く採用されている。そ
のなかで圧力を信号として取り出す一つの代表的方法は
図6に示す如く、気体の物理量である圧力を信号に変換
して出力する装置(圧力信号変換器62)を直接ホイー
ルの外周部61を加工して取り付け、センサー部がタイ
ヤ内部の気体に直接暴露するよう設置する方法である。
In many of these methods, a method of directly converting the internal pressure of the tire into a mechanical display of pressure or a measuring instrument of the type of converting into an electric signal is adopted. One of the typical methods of extracting the pressure as a signal is a device (pressure signal converter 62) for converting the pressure, which is a physical quantity of gas, into a signal and outputting it directly to the outer peripheral portion 61 of the wheel as shown in FIG. It is a method of processing and mounting, and installing so that the sensor part is directly exposed to the gas inside the tire.

【0004】これら圧力に関する信号はホイール2の側
で発生するため、車体に搭載の信号処理部64へ信号伝
送するために回転部から静止部への信号伝送が必要であ
る。圧力信号変換器62からの信号をホイール外周部6
1に設置したリング状のアンテナ63で無線送信し、車
体側の固定アンテナ68で受信することで非接触の伝送
方法で回転部より静止部へ伝送している。またこの固定
アンテナ68とリング状アンテナ63を使って信号処理
部64から圧力信号変換器62の電子回路へ必要な電力
を供給する役目もはたしている。
Since these pressure-related signals are generated on the side of the wheel 2, signal transmission from the rotating portion to the stationary portion is necessary for signal transmission to the signal processing portion 64 mounted on the vehicle body. The signal from the pressure signal converter 62 is applied to the wheel outer peripheral portion 6
Radio transmission is performed by the ring-shaped antenna 63 installed in No. 1 and reception is performed by the fixed antenna 68 on the vehicle body side, thereby transmitting from the rotating portion to the stationary portion by a non-contact transmission method. The fixed antenna 68 and the ring-shaped antenna 63 are also used to supply necessary electric power from the signal processing unit 64 to the electronic circuit of the pressure signal converter 62.

【0005】走行にともなって圧力信号変換器へ加わる
振動加速度はその頻度も絶対値も共にバネ・減衰系を介
入せず路面から直接伝達されるために大きく、ホイール
の回転に起因する遠心力も加わり機械的外乱が大きい。
これは車輪の回転半径が大きくなるほど、また回転速度
が大きくなるほど顕著になるが、既存の新交通システム
や自動車や航空機のタイヤ内圧検知装置には車輪走行速
度やホイール外径の大きさに依存する程度の差はある
が、機械的強度、安全性、信頼性の点で避けられない基
本的な課題を抱えている。それは、システムを簡素化
し、軽量化したいという設計要求と相容れない設計上の
制約である。
The vibration acceleration applied to the pressure signal converter as the vehicle travels is large in both frequency and absolute value because it is directly transmitted from the road surface without intervention of the spring / damping system, and centrifugal force due to wheel rotation is also added. Large mechanical disturbance.
This becomes more remarkable as the turning radius of the wheel increases and the rotating speed increases, but it depends on the wheel traveling speed and the outer diameter of the wheel in the existing new transportation system and the tire internal pressure detection device of the automobile or the aircraft. To some extent, they have fundamental problems that are unavoidable in terms of mechanical strength, safety, and reliability. It is a design constraint that is incompatible with the design requirements for system simplification and weight reduction.

【0006】具体的には、遠心力に耐える機械的強度を
十分にとった圧力信号変換器62を考慮すると重量増加
が避けられない。ホイール外周部61に圧力信号変換器
62を置くことは質量を回転半径の大きい箇所へ集中的
に付加する事になり、回転中心に対し等分布の慣性能率
を変化させるため回転運動にたいし悪影響を与えないよ
うカウンターバランスウエイト65を着けるなどの重量
増加となる。
Specifically, in consideration of the pressure signal converter 62 having sufficient mechanical strength to withstand centrifugal force, an increase in weight is inevitable. Placing the pressure signal converter 62 on the wheel outer peripheral portion 61 intensively adds the mass to a portion having a large radius of rotation, and changes the inertial ratio of the equal distribution with respect to the center of rotation, which adversely affects the rotational movement. It will increase the weight such as wearing the counter balance weight 65 so as not to give.

【0007】これを避ける方法としては、図7に示す如
く慣性質量を小さくするため、質量の大きい圧力信号変
換器62およびそのカウンターバランスウェイト65を
回転半径の小さなホイール車軸部66に配置し、タイヤ
内圧自体をホイール外周部61に加工した空気取り出し
口ないし、外部からタイヤに空気や窒素ガスを充填する
ためのバルブ(充填バルブ67)を利用して空気導管7
1でホイール車軸部66に設置した圧力信号変換器62
まで導き信号に変換する方法である。
As a method of avoiding this, in order to reduce the inertial mass as shown in FIG. 7, the pressure signal converter 62 having a large mass and its counterbalance weight 65 are arranged on the wheel axle portion 66 having a small turning radius, and the tire is rotated. The air conduit 7 is formed by using an air outlet formed by processing the inner pressure itself to the wheel outer peripheral portion 61 or a valve (filling valve 67) for filling the tire with air or nitrogen gas from the outside.
1, the pressure signal converter 62 installed on the wheel axle 66
It is a method of converting to a signal.

【0008】しかし、この方法でも高速で回転するホイ
ール2にタイヤ1以外の質量を付加することは変わら
ず、空気導管71を遠心力による変形や脱落を生じない
ようにホイール2に取り付ける必要があり、遠心力・振
動への対策が必要で重量増加となる。空気導管71はか
えって、飛来物などとの衝突で破損した場合に、タイヤ
内圧低下の2次災害の発生原因となる恐れがある。
However, even with this method, the mass other than the tire 1 is added to the wheel 2 rotating at high speed, and the air conduit 71 must be attached to the wheel 2 so as not to be deformed or dropped by centrifugal force. However, it is necessary to take measures against centrifugal force and vibration, which will increase the weight. On the contrary, if the air conduit 71 is damaged due to a collision with a flying object or the like, there is a risk of causing a secondary disaster such as a decrease in tire internal pressure.

【0009】また、特に、浮上式鉄道に既存のシステム
を使用する場合、浮上式鉄道の車輪はその近傍に搭載し
た超電導磁石の発生する3000ガウス程度の定常磁場
と±50ガウス程度の変動磁場の中に置かれるため、新
交通システムや自動車や航空機で使用されている様な、
回転するホイールから静止部分へ電気信号を授受するた
めに図6で示すようなホイール外周部61に設置する方
式のリング状アンテナ63では、浮上式鉄道の場合には
電磁ノイズが正しい圧力信号に重畳し、タイヤ内圧を表
わす電気信号を正確に伝送できない。
Further, in particular, when the existing system is used for the levitation type railway, the wheels of the levitation type railway have a stationary magnetic field of about 3000 gauss and a fluctuating magnetic field of about ± 50 gauss generated by a superconducting magnet mounted in the vicinity thereof. Because it is placed inside, it seems that it is used in new transportation systems, cars and aircraft,
In the case of the ring-shaped antenna 63, which is installed on the wheel outer circumference 61 as shown in FIG. 6 in order to transfer the electric signal from the rotating wheel to the stationary portion, in the case of the levitation railway, electromagnetic noise is superimposed on the correct pressure signal. However, the electric signal indicating the tire internal pressure cannot be accurately transmitted.

【0010】この改善策として図7に示す如く、誘導用
コイル72を近接して対面させて配置し、環境の電磁ノ
イズよりも強い電磁誘導を誘導用コイル72に生じさせ
ることにより信号を授受する方法がある。
As a remedy for this, as shown in FIG. 7, the induction coil 72 is arranged in close proximity to and facing each other, and electromagnetic induction stronger than the electromagnetic noise of the environment is generated in the induction coil 72 to transmit and receive signals. There is a way.

【0011】しかしこの方法でも、高い振動加速度に常
時曝されるホイール2の側に電子部品を内蔵する圧力信
号変換器62を取り付けるため信頼性、機械的疲労等に
課題が残る。さらに浮上式鉄道の基本ブ−キシステムで
ある電気ブレーキ方式に異常が発生した場合、図示は省
略した車輪に取り付けたディスクブレーキを500km/h
から作動させると、運動エネルギーから変換された熱エ
ネルギーにより車軸部分の環境温度は200℃近くまで
上昇するし、航空機では常用するディスクブレーキの使
用による発熱で同様な温度条件となる。これに電子部品
を内蔵する圧力信号変換器62が耐える様に断熱・耐熱
設計を考慮すると電子回路は煩雑となるとともにその容
積と重量とも増大することを避けられない。
However, even with this method, since the pressure signal converter 62 containing the electronic component is mounted on the side of the wheel 2 which is constantly exposed to high vibration acceleration, there remain problems in reliability and mechanical fatigue. Furthermore, if an abnormality occurs in the electric brake system, which is the basic brake system of the levitation railway, the disc brakes attached to the wheels (not shown) are 500 km / h.
When it is operated from the above, the environmental temperature of the axle part rises to nearly 200 ° C. due to the thermal energy converted from the kinetic energy, and the same temperature condition is caused by the heat generated by the use of the disc brake that is commonly used in aircraft. Considering the heat insulation and heat resistance design so that the pressure signal converter 62 with built-in electronic components can withstand this, the electronic circuit becomes complicated and inevitably increases in volume and weight.

【0012】[0012]

【発明が解決しようとする課題】 本発明は、前記事情
に鑑みなされ、その目的とするところは、タイヤの内圧
低下を検知するために、圧力を直接計測するために高速
回転部であるホイールに計測センサーを取り付けること
をしないで、タイヤ内圧を他の計測情報から間接的に入
手することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wheel that is a high-speed rotating portion for directly measuring pressure in order to detect a decrease in internal pressure of a tire. It is to obtain the tire internal pressure indirectly from other measurement information without attaching a measurement sensor.

【0013】[0013]

【課題を解決するための手段】 本発明のタイヤ内圧検
知装置は、前記目的を達成するために、車両に既に搭載
されている車輪ブレーキのロック防止のためのアンチロ
ックブレーキ制御用の車輪回転数センサーよりの車輪回
転速度のみからタイヤ内圧の低下を判断したり、車輪回
転速度と車両走行速度の情報の組み合わせで車輪転動半
径を演算してタイヤ内圧の低下を判断したり、さらに車
輪回転速度と車両走行速度情報に車輪の荷重データの情
報を加えることでタイヤ内圧の低下の有無を判断するだ
けでなくタイヤ内圧の数値を連続的に推定することを特
徴とする。タイヤ内圧検知という目的を、既存の計測情
報から演算するソフトを増設するだけで、新たなるハー
ドウエアを加えず、そのための重量増加を全く生ぜず、
回転部から静止部への情報伝送も必要なく信頼度を損な
わずに実現した。
In order to achieve the above-mentioned object, the tire internal pressure detection device of the present invention has a wheel rotation speed for anti-lock brake control for preventing lock of a wheel brake already mounted on a vehicle. It is possible to judge the decrease of the tire internal pressure only from the wheel rotation speed from the sensor, or to calculate the wheel rolling radius by combining the information of the wheel rotation speed and the vehicle running speed to judge the decrease of the tire internal pressure. By adding the information of wheel load data to the vehicle traveling speed information, not only the presence or absence of the decrease in the tire internal pressure is determined, but also the numerical value of the tire internal pressure is continuously estimated. The purpose of detecting the tire internal pressure is to add software that calculates from the existing measurement information, without adding new hardware, resulting in no weight increase at all,
It was realized without the need to transfer information from the rotating part to the stationary part and without compromising reliability.

【0014】[0014]

【実施例1】 本発明の1実施例として図1に浮上式鉄
道車両車輪組み立ての断面図を示す。外接補助車輪4は
タイヤ1がパンク時に車両上下方向荷重を支えるもの
で、外接補助車輪半径寸法6をRsとする。外接補助車
輪4の半径寸法Rsに幾らかの余裕を持たせた半径寸法
をRaとし、これ以上タイヤが撓と内圧低下状態と判定
する管理限界半径寸法7とさだめる。Rbは正規タイヤ
内圧で正規車輪荷重がかかった時のタイヤ転動半径寸法
8とする。Roは車輪に荷重がかからない場合のタイヤ
半径寸法10である。アンチロックブレーキ制御用の車
輪回転速度センサー5の出力は、図示は省略したディス
クブレーキのブレーキ力制御のため、ないし車輪正常回
転の確認のため、車輪走行時は常時出力している。
First Embodiment FIG. 1 shows a cross-sectional view of a floating railroad vehicle wheel assembly as one embodiment of the present invention. The circumscribing auxiliary wheel 4 supports the vehicle vertical load when the tire 1 is punctured, and the circumscribing auxiliary wheel radius dimension 6 is Rs. The radius dimension Rs of the circumscribing auxiliary wheel 4 with some allowance is set to Ra, and the radius limit R is determined to be a control limit radius dimension 7 for determining that the tire is in a state of flexure and decrease in internal pressure. Rb is the tire rolling radius dimension 8 when a regular wheel load is applied with a regular tire internal pressure. Ro is the tire radius dimension 10 when no load is applied to the wheel. The output of the wheel rotation speed sensor 5 for controlling the anti-lock brake is constantly output during traveling of the wheels for the purpose of controlling the braking force of the disc brake (not shown) or for confirming the normal rotation of the wheels.

【0015】図1の場合は航空機と同型の中空車軸3の
中に内蔵の光学式回転数パルス発生装置の例をしめして
いるが、回転速度に一義的に相関する情報を得られ回転
部から静止部へのデータ伝送の要らない車輪回転速度セ
ンサーならばどんな方法でもどこへ配置しても構わな
い。例えば速度発電機でもかまわない。
In the case of FIG. 1, an example of an optical rotation speed pulse generator built in a hollow axle 3 of the same type as an aircraft is shown, but information uniquely correlated to the rotation speed can be obtained from the rotating portion. Any method of locating the wheel rotation speed sensor may be used as long as it does not require data transmission to the stationary portion. For example, a speed generator may be used.

【0016】浮上式鉄道車両の1台車にある4個の支持
車輪1位から4位のそれぞれの車輪回転速度センサ−の
出力をω1 からω4 とするとそれらの信号を比較し、ば
らつきがRb/Raの値以上となった車輪に装着されて
いるタイヤを管理値以上に内圧が低下したと判断する。
タイヤ内圧の低下した車輪は同一荷重条件下でも、図4
に示す様に撓み量が増大し、車輪転動半径が小さくな
り、車両回転速度ωが他の正常内圧タイヤの車輪回転速
度に比べて相対的に増加するためでありこれは、転動半
径に正比例する。例えばRbが300mmで、Raを2
70mmと定めるなら10%を閾値として、それ以上の
ばらつきを示す車輪がタイヤ内圧が管理値以上に低下し
た車輪と判定される。
Assuming that the outputs of the four wheel rotation speed sensors of the first to fourth support wheels on one bogie of the levitation railway vehicle are ω 1 to ω 4 , these signals are compared and the variation is Rb. It is determined that the internal pressure of the tire mounted on the wheel that has become equal to or higher than the value of / Ra has decreased to the control value or higher.
Even if the wheel with the decreased tire internal pressure is under the same load condition,
This is because the amount of deflection increases, the wheel rolling radius decreases, and the vehicle rotation speed ω increases relatively compared to the wheel rotation speeds of other normal internal pressure tires, as shown in Fig. Directly proportional. For example, Rb is 300 mm and Ra is 2
If it is set to 70 mm, a wheel having a variation of more than 10% is determined as a wheel in which the tire internal pressure has decreased to a control value or more, with 10% as a threshold value.

【0017】前記の条件で車輪回転速度センサーの出力
データを縦軸にとり、横軸に時間をとって車輪ディスク
ブレーキ動作時の場合の出力例を図2に示す。内圧の低
下した車輪の車輪回転速度21は正常な車輪の車輪回転
速度23より高く現れる。この速度差が10%以上とな
ると内圧が管理値以上に低下したと判定する。一般にア
ンチロックブレーキ制御用の車輪回転速度センサーは信
号の分解性能が良く、ブレーキ作動状態では、アンチロ
ックブレーキ制御機構の作動で車輪がロックに陥りかけ
るとブレーキ緩解が自動的におこなわれ、車輪回転速度
センサーの出力のそのままの信号はスパイク状の信号を
持つ場合がある。その場合はフィルターをかけたり、積
分したりの信号演算処理をするか、アンチロックブレー
キ制御機構部の演算機能から算出した車輪基準速度を比
較し内圧の低下した車輪の基準速度22正常な車輪の基
準速度24に処理された後の情報を利用する。
FIG. 2 shows an output example in the case where the wheel disc brake operation is performed with the vertical axis representing the output data of the wheel rotation speed sensor and the horizontal axis representing the time under the above conditions. The wheel rotation speed 21 of the wheel whose internal pressure has decreased appears higher than the wheel rotation speed 23 of the normal wheel. When this speed difference is 10% or more, it is determined that the internal pressure has dropped to a control value or more. Generally, the wheel rotation speed sensor for anti-lock brake control has good signal decomposition performance, and when the wheel is locked due to the operation of the anti-lock brake control mechanism in the brake operating state, brake release is automatically performed, and wheel rotation The raw signal of the speed sensor output may have a spiked signal. In that case, a signal calculation process such as filtering or integration is performed, or the wheel reference speed calculated from the calculation function of the antilock brake control mechanism is compared to determine the reference speed of the wheel whose internal pressure has decreased. The information after being processed to the reference speed 24 is used.

【0018】車輪ディスクブレ−キ動作時以外の通常走
行時は車輪回転速度センサーの出力にスパイク状の信号
は発生せず、内圧の低下した車輪および正常な車輪のそ
のままの信号はそれぞれ基準速度22および24に相当
する。
During normal running other than the wheel disc brake operation, no spike-like signal is generated in the output of the wheel rotation speed sensor, and the signals of the wheel with the lowered internal pressure and the normal wheel are respectively the reference speed 22. And 24.

【0019】この方法は、車輪回転速度という常時モニ
ターしている最小の情報でタイヤ内圧の低下を車輪回転
速度の或るバラツキ値以上を閾値として検知することが
できる。実施例1の方法は、個々の車輪の回転速度を常
時計測しているシステムならば回転速度比較する機能を
追加することで新交通システム、自動車、航空機にもそ
のまま応用できる。
According to this method, the decrease in tire internal pressure can be detected with a threshold value equal to or more than a certain variation value of the wheel rotation speed, based on the minimum information of the wheel rotation speed which is constantly monitored. The method of the first embodiment can be directly applied to a new transportation system, an automobile, or an aircraft by adding a function of comparing rotation speeds to a system that constantly measures the rotation speeds of individual wheels.

【0020】[0020]

【実施例2】 地上1次リニア推進方式の浮上式鉄道は
車両の推進・制動のために、常に地上に設置した交差誘
導無線で車両の速度Vvを検知しながら走行している。
その情報は常に車両に無線伝送されるし、車両でも、説
明は省略するが、地上からは独立して速度Vvを検知す
るという多重系を採用している。最小限、この内のどれ
か1系統の車両速度情報を利用することを実施例2に示
す。
[Embodiment 2] The levitation railway of the primary linear propulsion system on the ground always travels while detecting the speed Vv of the vehicle by the cross guidance radio installed on the ground for propulsion and braking of the vehicle.
The information is always wirelessly transmitted to the vehicle, and the vehicle also employs a multiplex system in which the velocity Vv is detected independently from the ground, although the description is omitted. It is shown in the second embodiment that the vehicle speed information of any one of them is used at a minimum.

【0021】車輪回転速度として角速度ωをとり、接線
速度をVとすると、回転半径Rは、R=V/ωで与えら
れる。この演算により車輪の転動半径Rを推定する。こ
の値が図1で示したと同じ、管理限界半径Ra以下にな
ると撓み過大でタイヤ内圧が管理値以上に低下したと判
断する。
When the angular velocity ω is taken as the wheel rotational velocity and the tangential velocity is V, the turning radius R is given by R = V / ω. The rolling radius R of the wheel is estimated by this calculation. When this value is equal to or less than the control limit radius Ra as shown in FIG. 1, it is determined that the tire internal pressure has dropped to a control value or more due to excessive bending.

【0022】角速度ωは車輪回転速度センサーの信号を
アンチロックブレーキ制御装置で処理し、スパイク波形
のない基準速度情報とする。一方、車輪ブレーキの作動
時は車輪が軌道に対して相対的に滑り、厳密には車輪回
転の接線速度Vは車両走行速度Vvとは一致しない。接
線速度Vを極力制度良く演算するためにアンチロックブ
レーキ制御装置の滑り率の情報で車両の速度Vvを補正
して利用する。なお高速のアンチロックブレーキシステ
ムは標準的に滑り率を補正する機能を有しているが、な
い場合には半径演算機能と滑り率補正機能を追加する必
要がある。図3にそのブロック図を示す。
For the angular velocity ω, the signal of the wheel rotation velocity sensor is processed by the anti-lock brake control device to obtain the reference velocity information having no spike waveform. On the other hand, when the wheel brake is actuated, the wheel slips relative to the track, and strictly speaking, the tangential speed V of the wheel rotation does not match the vehicle traveling speed Vv. In order to calculate the tangential speed V as accurately as possible, the speed Vv of the vehicle is corrected and used based on the slip ratio information of the antilock brake control device. The high-speed anti-lock brake system has a function to correct the slip ratio as standard, but if it does not exist, it is necessary to add a radius calculation function and a slip ratio correction function. The block diagram is shown in FIG.

【0023】ただし、タイヤ内圧が低い場合や、車輪荷
重の小さい場合には、必ずしも、この方式では詳細に内
圧を検知することは出来ない。車両が曲線でカントのあ
る区間を設定速度以外で車輪走行すると遠心力とカント
角度による重力加速度の傾き成分が釣り合わず1台車に
4脚ある車輪のうち右側2車輪か左側2車輪に荷重が偏
ることとなる。また、加速中は後側2車輪に、減速中は
前側2車輪に、前後方向の加速度のため荷重が偏ること
となる。このような車輪の荷重偏りにより生じたタイヤ
撓み増加による車輪転動半径Rの減少か、タイヤ内圧自
体の低下が原因の転動半径の減少であるのかが判別出来
ないためである。
However, when the tire internal pressure is low or the wheel load is small, it is not always possible to detect the internal pressure in detail by this method. If the vehicle travels in a curved section with a cant at a speed other than the set speed, the centrifugal force and the gradient component of the gravitational acceleration due to the cant angle will not balance, and the load will be biased to the right two wheels or the left two wheels out of the four wheels on one bogie. It will be. Further, the load is biased to the two rear wheels during acceleration and to the two front wheels during deceleration due to the longitudinal acceleration. This is because it is not possible to determine whether the wheel rolling radius R is decreased due to an increase in tire flexure caused by such a load deviation of the wheels or the rolling radius is decreased due to a decrease in the tire internal pressure itself.

【0024】しかし、以下の理由で図4に示すごとく、
航空機タイヤや浮上式鉄道車両用タイヤ等の高圧・高荷
重タイヤは、タイヤ撓みが荷重変動よりも内圧変動に敏
感であるため、このように車輪毎に荷重が偏った場合で
も或る閾値を境にタイヤ内圧が管理値以上に低下したと
判断する簡易な方法ならば、荷重変動によるタイヤ転動
半径の変化は不感帯にはいり実用上の問題はない。
However, for the following reason, as shown in FIG.
High-pressure and high-load tires, such as aircraft tires and levitation railway vehicle tires, are more sensitive to internal pressure fluctuations than tire load fluctuations. If it is a simple method of judging that the tire internal pressure has dropped below the control value, the change of the tire rolling radius due to the load change is in the dead zone and there is no practical problem.

【0025】図4に縦軸にタイヤ撓み量( タイヤの無荷
重時の半径Roから撓み量を引けばタイヤタイヤ転動半
径Rとなる。つまりD=Ro−R) 、横軸に車輪荷重を
とり、タイヤ内圧をパラメ−タとして一定タイヤ内圧に
おける車輪荷重変化に伴うタイヤ撓み量変化の関係を示
す。車輪荷重Lとタイヤ内圧Pの両方の独立した変化に
よって、タイヤ転動半径Rは変化するが、タイヤ内圧一
定とすると、タイヤ撓み量は荷重の1乗に比例すると近
似できる。
In FIG. 4, the vertical axis represents the tire deflection amount (the tire rolling radius R is obtained by subtracting the deflection amount from the radius Ro of the tire when there is no load, that is, D = Ro-R), and the horizontal axis represents the wheel load. The relationship between the tire flexion amount change due to the wheel load change at a constant tire internal pressure will be shown with the tire internal pressure as a parameter. The tire rolling radius R changes due to independent changes in both the wheel load L and the tire internal pressure P, but if the tire internal pressure is constant, the tire deflection amount can be approximated to be proportional to the first power of the load.

【0026】自動車のタイヤ内圧は乗用車で2kgf/cm
2 程度、大型トラックでも7kgf/cm2 程度、新交通シ
ステムで9kgf/cm2 程度で、浮上式鉄道車両のタイヤ
の内圧は約21kgf/cm2 前後であり、航空機並みの高
内圧のタイヤを使用している。さらに、タイヤ1本当た
りの負担荷重でも浮上式鉄道は最大で9tあり、自動車
の4倍から10倍程度で浮上式鉄道用タイヤは高荷重で
ある。
The tire internal pressure of a car is 2 kgf / cm for passenger cars.
About 2, 7 kgf / cm 2 approximately in large trucks, at 9 kgf / cm 2 about the new transportation system, the internal pressure of a tire of a floating rail vehicle is about 21 kgf / cm 2 before and after use tires high internal pressure of the aircraft par is doing. Furthermore, even with the burden load per tire, the levitation railway has a maximum of 9 tons, and the levitation railway tire has a high load at about 4 to 10 times that of an automobile.

【0027】この結果、航空機や浮上式鉄道車両に用い
られるタイヤは、図4に示すとおり、正規内圧の条件下
で車両の運動や姿勢で予測しうる最大の荷重偏り対する
タイヤの撓み量DLよりも,正規荷重条件下で転動半径
Raに対応するタイヤ撓みDPの方が大きく、内圧低下
に起因しない限り撓みDPまで車輪転動半径が変化する
ことはなく、実用上はタイヤ撓み量だけでタイヤ内圧低
下を判定しても問題はない。
As a result, as shown in FIG. 4, the tire used for the aircraft and the levitation railway vehicle is obtained from the tire deflection amount DL with respect to the maximum load deviation that can be predicted by the movement and posture of the vehicle under the condition of the normal internal pressure. Also, the tire deflection DP corresponding to the rolling radius Ra is larger under normal load conditions, and the wheel rolling radius does not change to the deflection DP unless it is caused by a decrease in internal pressure. There is no problem in determining the decrease in tire internal pressure.

【0028】例えば、浮上式鉄道車両の現設計の最大荷
重と基準内圧のタイヤにおいて、これ以上タイヤが撓と
内圧低下状態と判定する限界半径Ra以下に至るまでの
荷重変動は約6tであり、カント区間停止や最大加速、
緊急ブレーキによる最大減速を考慮してもこれだけの荷
重偏りは発生しない。逆に言えば管理限界半径Raまで
タイヤが撓むのは内圧低下以外では生じない。よって、
内圧低下状態と判定する管理限界半径Raを閾値として
警報を発する単純な方法としてこの実施例2が採用でき
る。車両速度情報Vvは、交差誘導無線の信号で車上に
伝送されたものでも、車上で独立した方法で得られたも
のでもよい。
For example, in a tire with the maximum load and standard internal pressure of the current design of a levitation type rail vehicle, the load fluctuation until the tire is below the limit radius Ra for judging that the tire is flexed and the internal pressure is reduced is about 6 t, Kant section stop and maximum acceleration,
Even if the maximum deceleration by emergency braking is taken into consideration, such a load bias does not occur. Conversely speaking, the bending of the tire to the control limit radius Ra does not occur except for the decrease of the internal pressure. Therefore,
The second embodiment can be adopted as a simple method of issuing an alarm using the control limit radius Ra that is determined as the internal pressure reduction state as a threshold value. The vehicle speed information Vv may be transmitted on the vehicle by a signal of the cross guidance radio or may be obtained by an independent method on the vehicle.

【0029】この演算は各支持車輪毎に独立して行える
ので、同一台車内の4脚の車輪のうち複数車輪の内圧低
下が同時に発生しても対応可能で、各車輪独立に判定が
可能となる。本方式はタイヤ撓みが荷重変動よりも内圧
変動に敏感であるタイヤを使用するシステムならば、新
交通システム、自動車、航空機にもそのまま応用でき
る。
Since this calculation can be carried out independently for each supporting wheel, it is possible to deal with the internal pressure drop of a plurality of wheels of the four legs in the same carriage at the same time, and it is possible to make an independent judgment for each wheel. Become. This system can be applied to new transportation systems, automobiles, and aircraft as long as the system uses tires whose flexure is more sensitive to internal pressure fluctuations than load fluctuations.

【0030】[0030]

【実施例3】 本実施例はタイヤ内圧を連続数値として
推定する方式である。タイヤ転動半径Rはタイヤ内圧P
に比例することを応用するものである。図4では、タイ
ヤ転動半径Rは車輪荷重Lの1乗に比例することを示し
たが、同時にタイヤ転動半径Rはタイヤ内圧Pにも比例
する。これを図8に分かり易く示す。図4と同じタイヤ
のデ−タを縦軸にタイヤ撓み量Dを、横軸にタイヤ内圧
Pをとって、車輪荷重Lをパラメ−タとして、タイヤ内
圧Pの変化によってタイヤたわみ量Dがどのように変化
するかを示す。タイヤ内圧に対するタイヤ撓み量の曲線
は車輪荷重Lで表される。
Third Embodiment This embodiment is a method of estimating the tire internal pressure as a continuous numerical value. Tire rolling radius R is tire internal pressure P
It is applied to be proportional to. Although FIG. 4 shows that the tire rolling radius R is proportional to the first power of the wheel load L, the tire rolling radius R is also proportional to the tire internal pressure P at the same time. This is clearly shown in FIG. The tire deflection amount D is plotted on the vertical axis of the same tire data as in FIG. 4, the tire internal pressure P is plotted on the horizontal axis, and the wheel load L is used as a parameter. To show how it changes. The curve of the tire deflection amount with respect to the tire internal pressure is represented by the wheel load L.

【0031】特に、タイヤ内圧が規定内圧の±20%の
範囲では図8で判るように曲線の傾きはタイヤ内圧Pの
1次式、ΔD/ΔP=aP+bで表される。また縦軸と
の交点Cもタイヤ内圧の1乗に比例するC=cP+dと
なっている。よってタイヤ撓み量Dは数式1で正確に近
似できる。ここでa、b、c、dは定数である。
In particular, in the range where the tire internal pressure is within ± 20% of the specified internal pressure, the slope of the curve is expressed by a linear expression of the tire internal pressure P, that is, ΔD / ΔP = aP + b. Also, the intersection C with the vertical axis is C = cP + d, which is proportional to the first power of the tire internal pressure. Therefore, the tire deflection amount D can be accurately approximated by Formula 1. Here, a, b, c and d are constants.

【数1】 数式1をPに関する式に変換すると、数式2となる。[Equation 1] When Formula 1 is converted into a formula relating to P, Formula 2 is obtained.

【数2】 車輪荷重Lの情報は浮上式鉄道車両の低速時の支持脚走
行状態の監視・制御のため常時出力しており、そのため
図1に示す如く車軸等に設置の荷重ゲージ9から入手す
ることにする。車輪荷重Lが分かれば、数式2はDの1
次式であり、車輪転動半径Rに対応して撓み量DはD=
Ro−Rで入手できタイヤ内圧Pは簡単な1次式で近似
できる。この関係を利用してタイヤ内圧Pを任意の車輪
荷重条件下でも正しく推定できる。
[Equation 2] The information on the wheel load L is constantly output for monitoring and controlling the running condition of the supporting legs of the floating railway vehicle at low speed, and therefore, it is obtained from the load gauge 9 installed on the axle as shown in FIG. . If the wheel load L is known, Equation 2 is 1 of D
It is the following equation, and the deflection amount D is D = corresponding to the wheel rolling radius R.
It can be obtained from Ro-R and the tire internal pressure P can be approximated by a simple linear equation. Using this relationship, the tire internal pressure P can be correctly estimated even under an arbitrary wheel load condition.

【0032】規定内圧の±20%の範囲に関して前記の
とおり1次式近似としたが、図8の曲線をPn 次式でよ
り高次の式で表現し近似することでタイヤ内圧検知範囲
を広げることが容易に可能である、nは整数でなくとも
よい。つまり演算部における内圧を計算する変換式を、
P=f(D,L)で必要なだけ広い検知幅まで近似でき
る式で表現すればよい。この方法で内圧はタイヤ撓み量
とタイヤ荷重から一義的に決定される。
[0032] While the ± 20% of said as linear equation with respect to the scope approximation prescribed internal pressure, the tire pressure detection range by represented by Formula higher order curve of Figure 8 in P n following equation approximation N need not be an integer, as it can be easily widened. That is, the conversion formula for calculating the internal pressure in the calculation unit is
It may be expressed by an equation that can approximate a detection width as wide as necessary with P = f (D, L). In this method, the internal pressure is uniquely determined from the tire deflection amount and the tire load.

【0033】図5に実施例3のブロック図を示す。更に
厳密にはタイヤ内の封入気体の温度が影響し、自動車等
の従来のタイヤ内圧検知装置では温度センサーの信号を
タイヤ内圧の補正に使用するものもあるが、浮上式鉄道
の場合は車輪走行時間が限られた短い時間であり正常走
行ではその影響は無視できる。本発明を実施する上で必
要により温度補正機能は加えればよい。
FIG. 5 shows a block diagram of the third embodiment. Strictly speaking, the temperature of the gas filled in the tire influences, and there are some conventional tire internal pressure detection devices such as automobiles that use the signal of the temperature sensor to correct the tire internal pressure, but in the case of a levitation railway, wheel traveling It is a short time with limited time, and its influence can be ignored in normal driving. In implementing the present invention, a temperature correction function may be added if necessary.

【0034】[0034]

【発明の効果】 以上説明したように本発明のタイヤ内
圧の検知装置は、高速で回転する車輪のタイヤ内圧低下
を監視計測するための全ての構成要素が非回転部分にあ
り且つ既存の信号から演算するため、信頼度が高く、故
障しても新たなる2次災害源とならず安全で、重量増加
が防げるという利点がある。またホイールにはなんら加
工が不要で、既存のタイヤ内圧検知装置ではホイールに
圧力信号変換器を最低でも1個、信頼度を上げるために
は複数個設置するのに対し本発明では新規ハードウエア
の増加は無く低コストで実現できる。単純な仕様として
は内圧低下の警報装置として使用でき、また車輪荷重セ
ンサーの信号を併せて利用することによって、タイヤ内
圧を連続的に計測する用途にも適用できる。
As described above, in the tire internal pressure detection device of the present invention, all the constituent elements for monitoring and measuring the decrease in the tire internal pressure of the wheel that rotates at high speed are in the non-rotating portion, and the existing signal is used. Since the calculation is performed, there is an advantage that the reliability is high, it is safe because it does not become a new secondary disaster source even if it breaks down, and the weight increase can be prevented. In addition, the wheel does not require any processing. In the existing tire internal pressure detection device, at least one pressure signal converter is installed on the wheel, and a plurality of pressure signal converters are installed on the wheel to improve reliability. There is no increase and it can be realized at low cost. As a simple specification, it can be used as an alarm device for a decrease in internal pressure, and by also using the signal from the wheel load sensor, it can be applied to continuously measure the tire internal pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す浮上式鉄道車両車輪組み
立ての断面図
FIG. 1 is a sectional view of a floating railroad vehicle wheel assembly showing an embodiment of the present invention.

【図2】車輪ディスクブレーキ作動時の回転速度センサ
ーの出力データの例
[Fig. 2] Example of output data of a rotation speed sensor when a wheel disc brake is activated

【図3】車輪転動半径で判定する場合のブロック図FIG. 3 is a block diagram in the case of judging by a wheel rolling radius.

【図4】タイヤ荷重と撓み量の関係を内圧をパラメータ
として表現した図
FIG. 4 is a diagram in which a relationship between a tire load and a flexure amount is expressed by using an internal pressure as a parameter.

【図5】車輪転動半径と車輪荷重で判定する場合のブロ
ック図
FIG. 5 is a block diagram when determination is made based on wheel rolling radius and wheel load.

【図6】従来のタイヤ内圧検知装置の組み立て断面図FIG. 6 is an assembled sectional view of a conventional tire internal pressure detection device.

【図7】従来のタイヤ内圧検知装置の遠心力対策を考慮
した組み立て断面図
FIG. 7 is an assembly sectional view of a conventional tire internal pressure detection device in consideration of measures against centrifugal force.

【図8】タイヤ内圧と撓み量の関係を荷重をパラメータ
として表現した図
FIG. 8 is a diagram in which the relationship between the tire internal pressure and the amount of flexure is expressed by using a load as a parameter.

【符号の説明】[Explanation of symbols]

1.タイヤ 2.ホイール 3.車軸 4.外接補助車輪 5.車輪回転速度センサー 6.外接補助車輪半径寸法 7.管理限界半径寸法 8.正規荷重がかかった時のタイヤ転動半径 9.荷重ゲージ 10.荷重がかからない場合のタイヤ半径寸法 21.内圧の低下した車輪の車輪回転速度 22.内圧の低下した車輪の基準速度 23.正常な車輪の車輪回転速度 24.正常な車輪の基準速度 61.ホイール外周部 62.圧力信号変換器 63.リング状アンテナ 64.信号処理部 65.カウンタバランスウエイト 66.ホイール車軸部 67.充填バルブ 68.車体側の固定アンテナ 71.空気導管 72.誘導用コイル 1. Tire 2. Wheel 3. Axle 4. External contact auxiliary wheel 5. Wheel speed sensor 6. Circumscribing auxiliary wheel radius 7. Control limit radius dimension 8. Tire rolling radius when a normal load is applied 9. Load gauge 10. 21. Tire radial dimension when no load is applied 21. 22. Wheel rotation speed of the wheel with reduced internal pressure Reference speed of wheels with reduced internal pressure 23. Wheel rotation speed of normal wheel 24. Normal wheel reference speed 61. Wheel outer periphery 62. Pressure signal converter 63. Ring-shaped antenna 64. Signal processing unit 65. Counter balance weight 66. Wheel axle 67. Fill valve 68. Fixed antenna on vehicle body 71. Air conduit 72. Induction coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タイヤ内圧検知装置において、空気式タ
イヤの内圧の低下を検知するために直接的に圧力を計測
する手段に代えて、各車輪それぞれの車輪回転速度を計
測する手段と、前記計測手段の計測値を管理値と比較す
る手段と、前記比較手段の比較出力に応じてタイヤ内圧
の低下の警報を発する手段と、を具備したことを特徴と
するタイヤ内圧検知装置
1. In a tire internal pressure detecting device, means for measuring the wheel rotation speed of each wheel in place of the means for directly measuring the pressure in order to detect a decrease in the internal pressure of a pneumatic tire; A tire internal pressure detection device comprising: a means for comparing the measured value of the means with a control value; and a means for issuing an alarm of a decrease in the tire internal pressure according to the comparison output of the comparison means.
【請求項2】 タイヤ内圧検知装置において、空気式タ
イヤの内圧の低下を検知するために直接的に圧力を計測
する手段に代えて、車両速度及び各車輪それぞれの車輪
回転速度を計測する手段と、前記計測手段の計測値から
タイヤ転動半径を演算する手段と、正規内圧時の車輪荷
重のない場合のタイヤ転動半径との差を撓み量とし、前
記演算手段の結果が、予め定めたタイヤ撓み量以上とな
るとタイヤ内圧が管理すべき値以下に低下したと判断す
る手段と、前記判断手段の判断結果に応じてタイヤ内圧
の低下の警報を発する手段と、を具備したことを特徴と
するタイヤ内圧検知装置
2. In a tire internal pressure detecting device, a means for measuring a vehicle speed and a wheel rotation speed of each wheel in place of a means for directly measuring a pressure for detecting a decrease in internal pressure of a pneumatic tire, The difference between the means for calculating the tire rolling radius from the measurement value of the measuring means and the tire rolling radius when there is no wheel load at the normal internal pressure is the deflection amount, and the result of the calculating means is predetermined. When the tire flexure amount or more, the means for determining that the tire internal pressure has decreased to a value to be controlled or less, and means for issuing a warning of a decrease in the tire internal pressure according to the determination result of the determination means. Tire pressure detector
【請求項3】 タイヤ内圧検知装置において、車輪荷重
が静止時ないし巡行走行時から曲線走行や加速・減速時
などで各車輪で偏りを生ずる場合にも、空気式タイヤの
内圧の低下を検知するために直接的に圧力を計測する手
段に代えて、車両速度及び各車輪それぞれの車輪回転速
度を計測する手段と、前記計測手段の計測値からタイヤ
転動半径を演算する手段と、各車輪の上下方向荷重を計
測する手段と、を併設することで、それぞれの偏荷重条
件下の車輪荷重の場合のタイヤ内圧変化とタイヤ撓み量
変化の関係からタイヤ内圧の数値を連続的に検知するこ
とを可能としたこと、を特徴とするタイヤ内圧検知装置
3. A tire internal pressure detection device detects a decrease in internal pressure of a pneumatic tire even when a wheel load deviates from a stationary or cruising running to a curved running or acceleration / deceleration at each wheel. Therefore, instead of directly measuring the pressure, means for measuring the vehicle speed and the wheel rotation speed of each wheel, means for calculating the tire rolling radius from the measurement value of the measuring means, and each wheel By installing a means for measuring the vertical load, it is possible to continuously detect the numerical value of the tire internal pressure from the relationship between the tire internal pressure change and the tire deflection amount change in the case of wheel load under each unbalanced load condition. Tire internal pressure detection device characterized in that it is possible
JP3407993A 1993-01-29 1993-01-29 Tire internal pressure detector Pending JPH06219114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3407993A JPH06219114A (en) 1993-01-29 1993-01-29 Tire internal pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3407993A JPH06219114A (en) 1993-01-29 1993-01-29 Tire internal pressure detector

Publications (1)

Publication Number Publication Date
JPH06219114A true JPH06219114A (en) 1994-08-09

Family

ID=12404262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3407993A Pending JPH06219114A (en) 1993-01-29 1993-01-29 Tire internal pressure detector

Country Status (1)

Country Link
JP (1) JPH06219114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321060A1 (en) * 2003-05-10 2004-12-02 Continental Aktiengesellschaft Pressure measurement method for a vehicle tire in which radial tire deformation and wheel loading are simultaneously measured
JP2007163158A (en) * 2005-12-09 2007-06-28 Sumitomo Rubber Ind Ltd Method for estimating state of vehicle load and alarm method for reduction in tire pressure
JP2010175398A (en) * 2009-01-29 2010-08-12 Sumitomo Rubber Ind Ltd Method and device for detecting lowering of inner pressure of tire, and tire inner pressure lowering detection program
EP3243673A1 (en) * 2016-05-11 2017-11-15 Airbus Operations Limited Tyre deflection monitoring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321060A1 (en) * 2003-05-10 2004-12-02 Continental Aktiengesellschaft Pressure measurement method for a vehicle tire in which radial tire deformation and wheel loading are simultaneously measured
JP2007163158A (en) * 2005-12-09 2007-06-28 Sumitomo Rubber Ind Ltd Method for estimating state of vehicle load and alarm method for reduction in tire pressure
JP2010175398A (en) * 2009-01-29 2010-08-12 Sumitomo Rubber Ind Ltd Method and device for detecting lowering of inner pressure of tire, and tire inner pressure lowering detection program
EP3243673A1 (en) * 2016-05-11 2017-11-15 Airbus Operations Limited Tyre deflection monitoring
US10336143B2 (en) 2016-05-11 2019-07-02 Airbus Operations Limited Tyre deflection monitoring

Similar Documents

Publication Publication Date Title
EP0291217B2 (en) A method of detecting a deflated tyre on a vehicle
JP3516917B2 (en) System and method for monitoring vehicle conditions affecting tires
US4163208A (en) Automatic wireless tire pressure monitoring system
US20190152276A1 (en) Tire pressure monitoring systems and methods
US8096174B2 (en) Vehicle load weight detecting apparatus
US7338201B2 (en) Method of estimating the temperature of the air in the internal cavity of a tire and application to the detection of abnormal operating of a running-flat system
JP4739194B2 (en) Brake system for railway vehicles
US7573375B2 (en) Rollover prediction and warning method
US8423234B2 (en) Device for measuring the movement of a self-guided vehicle
CA2110964C (en) Method and device for detecting a deflated tire
US20030058118A1 (en) Vehicle and vehicle tire monitoring system, apparatus and method
US5442331A (en) Method and device for detecting a deflated tire by comparing angular velocity and forward/backward speed data with a data table
WO2006068113A1 (en) Method and device for detecting abnormality of vehicle and sensor unit of the device
WO2017145574A1 (en) Bearing monitoring device for railway vehicle
JPH10297228A (en) Tire pneumatic pressure alarm device
US20070299573A1 (en) Accelerometer based system for detection of tire tread separation and loose wheels
JP2001524049A (en) Safety insert generating a transverse vibration signal and device for detecting tire support on the safety insert
JPH06219114A (en) Tire internal pressure detector
WO2017145572A1 (en) Bearing monitoring device for railway vehicle
EP3927586B1 (en) Method for detecting a braking action of a railway vehicle and emergency braking method of a railway vehicle
EP3765828B1 (en) Rim with sensor and wheel including that rim
JPH0682327A (en) Apparatus for monitoring inner pressure of tire
JP5407131B2 (en) Stress sensor system for vehicles
JP2003227843A (en) Device for transmitting signal indicating state of part in vicinity of wheel
Holtschulze et al. A tyre sensor system with electronics for data transmission and power supply