JPH06218273A - Fine particles carrying metal and production thereof - Google Patents

Fine particles carrying metal and production thereof

Info

Publication number
JPH06218273A
JPH06218273A JP2840993A JP2840993A JPH06218273A JP H06218273 A JPH06218273 A JP H06218273A JP 2840993 A JP2840993 A JP 2840993A JP 2840993 A JP2840993 A JP 2840993A JP H06218273 A JPH06218273 A JP H06218273A
Authority
JP
Japan
Prior art keywords
fine particles
metal
dispersion
colloidal
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2840993A
Other languages
Japanese (ja)
Inventor
Akira Kunugise
彰 椚瀬
Yumiko Imai
由美子 今井
Minoru Nomichi
稔 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2840993A priority Critical patent/JPH06218273A/en
Publication of JPH06218273A publication Critical patent/JPH06218273A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily procedure fine particles carrying metal uniform in metal distribution by applying metal on fine particles prepared by flocculating colloidal fine particles by an electrolysis. CONSTITUTION:A compound generating metallic ions by which a reduction process of silver nitrate and cupric chloride, etc., can be easily carried out, is added to a dispersion body of colloidal fine particles using water as a dispersion medium. This mixture is dispersed into an oily medium to prepare an emulsion and the colloidal fine particles in the emulsion are flocculated by using an electrolyte, etc., generating multivalent ions having the electric charge opposite to the charge in colloidal fine particles. Simultaneously or later they are reduced by using a reducing agent of sodium boronhydride, etc. Thus the fine particles carrying metal with uniform metal distribution are prepared simply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属担持微粒子及びその
製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to metal-supported fine particles and a method for producing the same.

【0002】[0002]

【従来の技術】金属微粒子は、帯電性防止材や電磁波シ
ールド材等の導電性製品や、導電性繊維等を製造するに
際して樹脂または繊維に添加されたり、種々の触媒とし
ても広く利用されている。このような金属としては、A
l、Ni、Cu、Ag、Au、Pd等が挙げられるが、
軽量性、分散性、価格等の観点からこれらの金属は雲
母、酸化チタンまたはシリカ等の無機微粒子に担持して
使用されている。無機微粒子表面に金属を析出させる方
法としては、無電解メッキ法が広く使用されている。無
電解メッキ法においては、担体となる無機微粒子を還元
剤の水溶液に浸漬し、次いで金属塩水溶液に浸漬して担
体表面に金属を析出させる方法が一般的である。
2. Description of the Related Art Fine metal particles are widely used as various catalysts when added to resins or fibers when producing conductive products such as antistatic materials and electromagnetic wave shielding materials, and conductive fibers. . Such metals include A
1, Ni, Cu, Ag, Au, Pd, etc.
From the viewpoints of lightness, dispersibility, cost, etc., these metals are used by being supported on inorganic fine particles such as mica, titanium oxide or silica. As a method for depositing a metal on the surface of the inorganic fine particles, an electroless plating method is widely used. In the electroless plating method, it is general to immerse the inorganic fine particles to be a carrier in an aqueous solution of a reducing agent and then to immerse it in an aqueous solution of a metal salt to deposit a metal on the surface of the carrier.

【0003】更に別法として真空蒸着法も知られてい
る。真空蒸着法は、担体微粒子を蒸着装置のチャンバー
内にセットして、蒸着源をタングステン製バスケットに
乗せ該チャンバー内にセットしたのち、該チャンバーを
減圧し次いで該バスケットを加熱して蒸着源金属を担体
上に蒸着させる。前者の無電解メッキ法は、特別な装置
も必要とせず比較的簡便な方法であるが、担体表面への
金属の析出を均一かつ強固にするためには、担体の脱
脂、粗面化、洗浄等の前処理が必要であり製造プロセス
が煩雑である。一方後者の蒸着法では、特別な装置を必
要とし、また蒸発金属の照射方向が限定されるために、
均一な金属担持ができづらい欠点を有する。
A vacuum vapor deposition method is also known as another method. In the vacuum vapor deposition method, carrier fine particles are set in a chamber of a vapor deposition apparatus, a vapor deposition source is placed on a tungsten basket and set in the chamber, the chamber is depressurized, and then the basket is heated to deposit a vapor deposition source metal. Deposit on a carrier. The former electroless plating method is a relatively simple method that requires no special equipment, but in order to uniformly and firmly deposit the metal on the surface of the carrier, degreasing, roughening, and cleaning the carrier. Pretreatment such as is necessary, and the manufacturing process is complicated. On the other hand, the latter vapor deposition method requires a special device and the irradiation direction of the evaporated metal is limited,
It has a drawback that it is difficult to support the metal uniformly.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、簡便
でかつ金属分布が均一な金属担持微粒子の製法及び得ら
れる金属微粒子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing metal-supporting fine particles which is simple and has a uniform metal distribution, and metal fine particles to be obtained.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記した
ような問題点を解決すべく鋭意研究を重ねた結果、本発
明を完成するに至った。すなわち本発明は、 1.コロイド状微粒子を電解質を用いて凝集させて得ら
れた微粒子を金属で被覆することにより得られる金属担
持微粒子、 2.金属イオンを発生する化合物を含むコロイド状微粒
子分散液中において、該コロイド状微粒子を電解質を用
いて凝集させると同時に又は凝集させた後に還元剤を用
いて還元処理することを特徴とする金属担持微粒子の製
法、に関する。
The present inventors have completed the present invention as a result of intensive studies to solve the above-mentioned problems. That is, the present invention is: 1. Metal-supported fine particles obtained by coating fine particles obtained by aggregating colloidal fine particles with an electrolyte, and 1. In a colloidal fine particle dispersion containing a compound that generates a metal ion, the colloidal fine particles are subjected to a reduction treatment with a reducing agent at the same time as or after the aggregation of the colloidal fine particles with an electrolyte. About the manufacturing method of.

【0006】本発明の金属担持微粒子は、例えば、次の
方法で製造することができる。即ち、水を分散媒とする
コロイド状微粒子の分散体(ヒドロゾル)に金属イオン
を発生する化合物を加え、これを油性媒体中に分散させ
乳濁液となし、該乳濁液中のコロイド状微粒子を、電解
質を用いて凝集させると同時に又は凝集させた後に還元
剤を加え、該金属イオンを金属まで還元することによっ
て得ることができる。
The metal-supported fine particles of the present invention can be produced, for example, by the following method. That is, a compound that generates a metal ion is added to a dispersion (hydrosol) of colloidal fine particles having water as a dispersion medium, and the compound is dispersed in an oil medium to form an emulsion. The colloidal fine particles in the emulsion are prepared. Can be obtained by adding a reducing agent at the same time as or after aggregating with an electrolyte to reduce the metal ion to a metal.

【0007】本発明で使用する水を分散媒とするコロイ
ド状微粒子の分散体(ヒドロゾル)において、コロイド
状微粒子の粒子径は、通常は5〜1000nm、好まし
くは10〜500nmである。また、ヒドロゾルとして
例えば、酸化ケイ素、酸化ジルコニウム、酸化アルミニ
ウム、酸化鉄、酸化亜鉛、酸化クロムなどの金属酸化物
のゾル、硫化ヒ素、硫化亜鉛、硫化鉛などの金属硫化物
のゾル、その他ハロゲン化銀、硫酸バリウム、水酸化第
二鉄などのゾル、有機高分子からなる微粒子のゾル及び
これらの混合物のゾルが挙げられる。無機系ゾルは凝集
法や解膠法などの公知の方法で製造される。また、有機
系ゾルは、例えば、スチレン、メチル(メタ)アクリレ
ート、酢酸ビニル、塩化ビニル、塩化ビニリデン、など
の単独または、混合物を公知の乳化重合法で重合させて
製造される。ヒドロゾルの固形分濃度は特に限定される
ものではなく、油性媒体中にヒドロゾルを分散させる際
に、その分散が容易に行われる範囲であればよく、通常
は、5〜50重量%である。
In the dispersion (hydrosol) of colloidal fine particles having water as a dispersion medium used in the present invention, the particle size of the colloidal fine particles is usually 5 to 1000 nm, preferably 10 to 500 nm. Examples of hydrosols include sols of metal oxides such as silicon oxide, zirconium oxide, aluminum oxide, iron oxide, zinc oxide, and chromium oxide, sols of metal sulfides such as arsenic sulfide, zinc sulfide, and lead sulfide, and other halogenated compounds. Examples thereof include a sol of silver, barium sulfate, ferric hydroxide, a sol of fine particles made of an organic polymer, and a sol of a mixture thereof. The inorganic sol is produced by a known method such as an aggregation method or a peptization method. The organic sol is produced, for example, by polymerizing styrene, methyl (meth) acrylate, vinyl acetate, vinyl chloride, vinylidene chloride, etc., alone or in a mixture by a known emulsion polymerization method. The solid content concentration of the hydrosol is not particularly limited, and may be within a range that facilitates the dispersion of the hydrosol in the oil medium, and is usually 5 to 50% by weight.

【0008】本発明では、該ヒドロゾルに金属イオンを
発生する化合物を溶解する。金属イオンとしては、例え
ば銀イオン、金イオン、銅イオン、パラジウムイオン、
白金イオン、アルミニウムイオン、ニッケルイオン等が
挙げられるが、これらに特に限定されない。金属イオン
を発生する化合物は、水溶性のもので後から述べる還元
過程が容易に行われるものなら何でもよく、例えば硝酸
銀、テトラクロロ金酸およびそのアルカリ金属塩、塩化
第二銅、硝酸銅、硫酸銅、テトラクロロパラジウム酸の
アルカリ金属塩、テトラクロロ白金酸のアルカリ金属
塩、ヘキサクロロ白金酸およびそのナトリウム塩等が挙
げられる。又、酸化銀、酸化銅等を用い、これをヒドロ
ゾルに溶解し、金属イオンを発生する化合物に変換して
もよい。ヒドロゾル中の金属イオンを発生する化合物の
濃度は、該コロイド状微粒子が凝集しない程度でありか
つ、ヒドロゾルを油性媒体に分散させる際に容易に分散
が行われる範囲であれば特に限定されるものではなく、
通常0.001〜50重量%である。以下、この金属イ
オンを発生する化合物を含むヒドロゾルを単に金属イオ
ン含有ヒドロゾルと呼ぶ。
In the present invention, a compound capable of generating a metal ion is dissolved in the hydrosol. Examples of metal ions include silver ions, gold ions, copper ions, palladium ions,
Platinum ions, aluminum ions, nickel ions and the like can be mentioned, but not limited to these. The compound that generates a metal ion may be any compound that is water-soluble and can be easily subjected to the reduction process described later, and examples thereof include silver nitrate, tetrachloroauric acid and its alkali metal salts, cupric chloride, copper nitrate, and sulfuric acid. Examples thereof include copper, an alkali metal salt of tetrachloropalladic acid, an alkali metal salt of tetrachloroplatinic acid, hexachloroplatinic acid and its sodium salt. Alternatively, silver oxide, copper oxide, or the like may be used and dissolved in a hydrosol to be converted into a compound that generates metal ions. The concentration of the compound generating a metal ion in the hydrosol is not particularly limited as long as the colloidal fine particles are not aggregated and the dispersion is easily performed when the hydrosol is dispersed in an oil medium. Without
Usually, it is 0.001 to 50% by weight. Hereinafter, the hydrosol containing the compound that generates the metal ion is simply referred to as a metal ion-containing hydrosol.

【0009】次いで、この金属イオン含有ヒドロゾルを
分散剤を含む有機溶媒(油性媒体)に分散し、W/O型
分散体にする。ここで用いる有機溶媒は、一般に疎水性
溶媒として知られているものならどの様な溶媒でも使用
できる。例えば脂肪族系溶媒としてはC6〜C12の炭
化水素、特にn−ヘキサン、n−ヘプタン、n−オクタ
ンなどが、芳香族系溶媒としては、ベンゼン、トルエ
ン、キシレンなどが、ハロゲン化物系溶媒としては塩化
物が一般的であり、クロロホルム、ジクロルメタン、テ
トラクロルメタン、モノまたはジクロルベンゼンなどが
ある。これらの溶媒は単独で用いてもよく、また、二種
以上の混合溶媒としてもよい。有機溶媒の使用量は、得
られる分散体がW/O型となる限り限定されないが、通
常このW/O型分散体中に占める割合が25体積%以
上、好ましくは、40〜90体積%となる量である。
Next, the metal ion-containing hydrosol is dispersed in an organic solvent (oil medium) containing a dispersant to obtain a W / O type dispersion. As the organic solvent used here, any solvent generally known as a hydrophobic solvent can be used. For example, aliphatic solvents include C6-C12 hydrocarbons, especially n-hexane, n-heptane, and n-octane, aromatic solvents such as benzene, toluene, xylene, and halide solvents. Chlorides are common, such as chloroform, dichloromethane, tetrachloromethane, mono- or dichlorobenzene. These solvents may be used alone or as a mixed solvent of two or more kinds. The amount of the organic solvent used is not limited as long as the resulting dispersion is a W / O type dispersion, but the proportion in the W / O type dispersion is usually 25% by volume or more, and preferably 40 to 90% by volume. It is an amount.

【0010】分散体を得る際に使用される分散剤として
は、非イオン性界面活性剤、例えば、ポリオキシエチレ
ンソルビタントリオレート、ポリオキシエチレンソルビ
タンモノオレート、ポリオキシエチレンソルビタンモノ
ラウリレート、ポリオキシエチレンソルビタントリステ
アレート、ポリオキシエチレンソルビタンモノステアレ
ート、ソルビタントリオレート、ソルビタンモノオレー
ト、ソルビタントリステアレート、ソルビタンモノステ
アレート、ソルビタントリパルミテート、ポリオキシエ
チレンアルキルエーテル、ポリオキシエチレンアルキル
フェニルエーテルなど、(水添)大豆レシチン、(水
添)卵黄レシチンなどのリン脂質、及び/または、特開
昭56−135501に開示されている高分子分散剤等
がある。これらは単独で用いてもよく、また、2種類以
上併用してもよい。これらの分散剤の使用量は金属イオ
ン含有ヒドロゾルに対して0.01〜30重量%が好ま
しく、特に0.2〜20重量%が好ましい。
As the dispersant used for obtaining the dispersion, nonionic surfactants such as polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monolaurate and polyoxy are used. Ethylene sorbitan tristearate, polyoxyethylene sorbitan monostearate, sorbitan trioleate, sorbitan monooleate, sorbitan tristearate, sorbitan monostearate, sorbitan tripalmitate, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, etc. , (Hydrogenated) soybean lecithin, (hydrogenated) egg yolk lecithin, and / or polymer dispersants disclosed in JP-A-56-135501. These may be used alone or in combination of two or more. The amount of these dispersants used is preferably 0.01 to 30% by weight, more preferably 0.2 to 20% by weight, based on the metal ion-containing hydrosol.

【0011】次にこの分散体のコロイド状微粒子を、電
解質を用いて凝集させ、本発明の微粒子のうち担体部を
形成させる。この凝集を行う方法としては、分散体を電
解質水溶液の中へ加えるか、または、電解質水溶液を分
散体に加える方法等が挙げられる。電解質としては特に
限定されないが、得られる微粒子を応用する際に障害を
起こさないもので、かつ金属の還元過程に影響を与えな
いものであればよい。
Next, the colloidal fine particles of this dispersion are agglomerated using an electrolyte to form the carrier portion of the fine particles of the present invention. Examples of the method of performing this aggregation include a method of adding the dispersion into the aqueous electrolyte solution or a method of adding the aqueous electrolyte solution to the dispersion. The electrolyte is not particularly limited, but any electrolyte may be used as long as it does not hinder the application of the resulting fine particles and does not affect the metal reduction process.

【0012】また、金属イオンを発生する化合物と同一
のものであってもよく、例えば、アルカリ金属、アルカ
リ土類金属、鉄、コバルト、ニッケル、銅、亜鉛、アル
ミニウムなどの塩化物、臭化物、硝酸塩、硫酸塩など
や、塩化テトラメチルアンモニウム、塩化アンモニウム
や、ポリアクリル酸、ポリスチレンスルホン酸、キトサ
ンなどの高分子電解質などがある。特に、コロイド状微
粒子のもっている荷電と反対の荷電をもつ多価のイオン
を発生する電解質を用いるのが好ましい。電解質の使用
量は、コロイド状微粒子が凝集するのに充分な量でよく
(Schulze−Hardyの法則で言う臨界凝結濃
度以上であればよい)、1〜50重量%(但し、高分子
電解質では0.1〜5重量%)の電解質水溶液を分散体
に対して5〜500体積%用いるのが好ましい。これら
電解質水溶液を以下凝集剤と呼ぶ。
Further, it may be the same as the compound which generates a metal ion, and examples thereof include chlorides, bromides and nitrates of alkali metals, alkaline earth metals, iron, cobalt, nickel, copper, zinc, aluminum and the like. , Sulfates, tetramethylammonium chloride, ammonium chloride, and polyelectrolytes such as polyacrylic acid, polystyrene sulfonic acid, and chitosan. In particular, it is preferable to use an electrolyte that generates polyvalent ions having a charge opposite to that of the colloidal fine particles. The amount of the electrolyte used may be an amount sufficient for agglomeration of the colloidal fine particles (as long as it is equal to or higher than the critical condensation concentration according to Schulze-Hardy's law), and 1 to 50% by weight (however, in the polymer electrolyte, 0 It is preferable to use 5 to 500% by volume of the electrolyte aqueous solution of 0.1 to 5% by weight based on the dispersion. These electrolyte aqueous solutions are hereinafter referred to as coagulants.

【0013】次いで分散体に還元剤水溶液を加えて、還
元処理を行い、金属イオン含有ヒドロゾル中の金属イオ
ンを金属まで還元する。還元剤の種類は、還元が容易に
行われる限り特に限定されず、例えば水素化ホウ素ナト
リウム、クエン酸塩、ヒドラジン、次亜リン酸塩、亜硫
酸塩、塩化第一スズ、L−アスコルビン酸塩、タンニン
酸、ホルムアルデヒド、ブドウ糖等の還元糖類、水素等
が挙げられる。還元剤の使用量は還元すべき金属イオン
の等量以上であれば特に限定されないが、通常還元すべ
き金属イオンの1〜10当量倍、好ましくは、1.5〜
4当量倍である。還元剤の添加方法は、凝集剤中に還元
剤を溶解して加えても凝集剤を加えたのち別に加えても
よい。但し凝集剤を加えたのち還元剤を加えると金属の
担持率が低くなる傾向があるので、特に支障(還元剤と
凝集剤の化学反応等)がない限り好ましくは凝集剤と還
元剤を同時に加える。
Next, an aqueous reducing agent solution is added to the dispersion to carry out a reduction treatment to reduce the metal ions in the metal ion-containing hydrosol to the metal. The type of reducing agent is not particularly limited as long as the reduction is easily performed, and examples thereof include sodium borohydride, citrate, hydrazine, hypophosphite, sulfite, stannous chloride, L-ascorbate, Examples thereof include tannic acid, formaldehyde, reducing sugars such as glucose, hydrogen, and the like. The amount of the reducing agent used is not particularly limited as long as it is equal to or more than the amount of the metal ion to be reduced, but it is usually 1 to 10 equivalent times, preferably 1.5 to
It is 4 equivalents. The reducing agent may be added by dissolving the reducing agent in the coagulant or by adding the coagulant and then separately. However, if the reducing agent is added after adding the aggregating agent, the metal supporting rate tends to be low, so it is preferable to add the aggregating agent and the reducing agent at the same time unless there is a particular problem (chemical reaction between the reducing agent and the aggregating agent). .

【0014】本発明を行う際の温度は分散系が壊れない
温度であれば特に限定されず、通常は20〜70℃で行
うことができる。本発明を行う際のpHは、凝集過程及
び還元過程等に影響がない限りアンモニアや水酸化ナト
リウム等で調整することができ、通常3〜13である。
分散体を凝集剤の中へ加えるか、または、凝集剤を分散
体中へ加える際の添加速度は、分散状態が壊れないよう
な速度であれば特に限定されない。ここで金属担持微粒
子はスラリー状で得られこれから粉末状の金属担持微粒
子にするには、特に制限がなく、慣用の方法でよい。例
えば、微粒子スラリーをアルコール及び水などで洗浄
し、吸引濾過で固液分離し、乾燥することによって得ら
れる。その他、噴霧乾燥法などで直接粉末状微粒子を得
ることもできる。
The temperature for carrying out the present invention is not particularly limited as long as it does not break the dispersion system, and it can be carried out usually at 20 to 70 ° C. The pH at the time of carrying out the present invention can be adjusted with ammonia, sodium hydroxide or the like as long as it does not affect the aggregation process, the reduction process and the like, and is usually 3 to 13.
The addition speed at which the dispersion is added into the coagulant or the coagulant is added to the dispersion is not particularly limited as long as the dispersion state is not broken. Here, the metal-supporting fine particles are obtained in the form of a slurry, and there is no particular limitation to obtain powdery metal-supporting fine particles by a conventional method. For example, it can be obtained by washing the fine particle slurry with alcohol, water and the like, performing solid-liquid separation by suction filtration, and drying. Alternatively, powdery fine particles can be directly obtained by a spray drying method or the like.

【0015】本発明の方法等により得られる金属担持微
粒子の粒子径は、分散体の分散条件で決定される。すな
わち、使用する分散剤の種類と量、および、撹拌条件
(撹拌翼径、回転数など)を選択することによって通常
0.5〜500μmの粒子径のものが得られるので、金
属担持微粒子の使用目的に応じて調節することができ
る。
The particle size of the metal-supported fine particles obtained by the method of the present invention is determined by the dispersion conditions of the dispersion. That is, a particle having a particle size of 0.5 to 500 μm is usually obtained by selecting the type and amount of the dispersant to be used and the stirring conditions (stirring blade diameter, rotation speed, etc.). It can be adjusted according to the purpose.

【0016】本発明の金属担持微粒子の粒子径は通常
0.5〜500μmであるが、好ましくは1〜100μ
mであり、又、本発明の金属担持微粒子に担持されてい
る金属の量は、本発明の金属担持微粒子に対し好ましく
は0.002〜60重量%、特に好ましくは0.01〜
20重量%である。本発明の方法によれば、金属分布が
均一な金属担持微粒子を簡便に調製することができる。
The particle size of the metal-supported fine particles of the present invention is usually 0.5 to 500 μm, preferably 1 to 100 μm.
m, and the amount of the metal supported on the metal-supported fine particles of the present invention is preferably 0.002 to 60% by weight, particularly preferably 0.01 to 60% by weight based on the metal-supported fine particles of the present invention.
It is 20% by weight. According to the method of the present invention, metal-supported fine particles having a uniform metal distribution can be easily prepared.

【0017】[0017]

【実施例】以下実施例により本発明を説明する。 実施例1 シリカゾル(スノーテックスO、日産化学(株)製、粒
子径10〜20nm、濃度20%)32mlに硝酸銀2
00mgを溶解し、大豆レシチン0.06g、ソルビタ
ンモノオレエート0.6gを溶解したヘプタン96ml
にホモジナイザーを用いて分散し(8000rpm.、
30秒)、W/O型分散体を調製した。これを撹拌器の
ついた300mlの丸底フラスコに取り、撹拌しながら
20wt.%の硝酸ナトリウム水溶液20gに水素化ホ
ウ素ナトリウム70mgを溶解した水溶液を約5分かけ
て室温で滴下した。そのまま15〜30分室温で撹拌を
続け、得られた微粒子のスラリーにメタノールを10〜
20ml加えて、吸引濾過で微粒子を濾別し乾燥した。
銀を担持した微粒子が得られ、その平均粒子径は、4.
5μmで、収率は96.5%、銀担持率は98%であっ
た。(ここで言う銀担持率とは銀仕込量に対して、得ら
れた微粒子に担持できた銀の量比をいう。以下同様)
The present invention will be described with reference to the following examples. Example 1 Silver nitrate 2 was added to 32 ml of silica sol (Snowtex O, Nissan Chemical Co., Ltd., particle size 10 to 20 nm, concentration 20%).
96 ml of heptane in which 00 mg was dissolved and 0.06 g of soybean lecithin and 0.6 g of sorbitan monooleate were dissolved.
Was dispersed using a homogenizer (8000 rpm.,
30 seconds), a W / O type dispersion was prepared. This was placed in a 300 ml round bottom flask equipped with a stirrer and stirred at 20 wt. % Sodium nitrate aqueous solution (20 g), an aqueous solution prepared by dissolving 70 mg of sodium borohydride was added dropwise at room temperature over about 5 minutes. Stirring is continued as it is for 15 to 30 minutes at room temperature, and methanol is added to the obtained fine particle slurry in an amount of 10 to 10.
After adding 20 ml, the fine particles were filtered off by suction filtration and dried.
Fine particles carrying silver were obtained, and the average particle size was 4.
At 5 μm, the yield was 96.5% and the silver loading was 98%. (The silver supporting rate here means the ratio of the amount of silver that can be supported on the obtained fine particles to the amount of charged silver. The same applies hereinafter.)

【0018】実施例2 シリカゾル(スノーテックスO、日産化学(株)製、粒
子径10〜20nm、濃度20%)32mlに硝酸銀5
00mgを溶解しアンモニアでpHを11.5に調整
し、大豆レシチン0.12g、ソルビタンモノステアレ
ート1.2gを溶解したクロロホルム96mlにホモジ
ナイザーを用いて分散し(8000rpm.、30
秒)、W/O型分散体を調製した。これを撹拌器のつい
た300mlの丸底フラスコに取り、撹拌しながら20
wt.%の硝酸ナトリウム水溶液30gにホルムアルデ
ヒド200mgを溶解した水溶液を約5分かけて室温で
滴下した。そのまま15〜30分室温で撹拌を続け、得
られた微粒子のスラリーにメタノールを10〜20ml
加えて、吸引濾過で微粒子を濾別し乾燥した。銀を担持
した微粒子が得られ、その平均粒子径は、10.2μm
で、収率は98.3%、銀担持率は96%であった。
Example 2 Silver nitrate 5 was added to 32 ml of silica sol (Snowtex O, Nissan Chemical Co., Ltd., particle size 10 to 20 nm, concentration 20%).
00 mg was dissolved and the pH was adjusted to 11.5 with ammonia, and dispersed in 96 ml of chloroform containing 0.12 g of soybean lecithin and 1.2 g of sorbitan monostearate dissolved using a homogenizer (8000 rpm., 30
Sec), and a W / O type dispersion was prepared. Take this in a 300 ml round bottom flask with a stirrer and stir for 20
wt. An aqueous solution prepared by dissolving 200 mg of formaldehyde in 30 g of a 10% aqueous sodium nitrate solution was added dropwise at room temperature over about 5 minutes. Stirring is continued for 15 to 30 minutes at room temperature and 10 to 20 ml of methanol is added to the obtained fine particle slurry.
In addition, fine particles were separated by suction filtration and dried. Fine particles carrying silver were obtained, and the average particle size was 10.2 μm.
The yield was 98.3% and the silver loading was 96%.

【0019】実施例3 酸化ジルコニウムゾル(ジルコニアゾル−NZS−30
A、日産化学(株)製、粒子径95nm、濃度35%)
32mlに硫酸銅500mgを溶解し水酸化ナトナリウ
ムでpHを10.5に調整し、ソルビタンモノステアレ
ート0.7gとポリオキシエチレンソルビタンモノオレ
ート0.07gを溶解したトルエン96mlにホモジナ
イザーを用いて分散し(9500rpm.、30秒)、
W/O型分散体を調製した。これを撹拌器のついた30
0mlの丸底フラスコに取り、撹拌しながら20wt.
%の硫酸ナトリウム水溶液20gにL−アスコルビン酸
ナトリウム700mgを溶解した水溶液を約5分かけて
室温で滴下した。液温を60℃に昇温し、60分撹拌を
続け、得られた微粒子のスラリーにメタノールを10〜
20ml加えて、吸引濾過で微粒子を濾別し乾燥した。
銅を担持した微粒子が得られ、その平均粒子径は、8.
4μmで、収率は94.2%、銅担持率は97%であっ
た。
Example 3 Zirconium oxide sol (zirconia sol-NZS-30)
A, Nissan Chemical Co., Ltd., particle size 95 nm, concentration 35%)
500 mg of copper sulfate was dissolved in 32 ml, the pH was adjusted to 10.5 with sodium natrium hydroxide, and the mixture was dispersed in 96 ml of toluene containing 0.7 g of sorbitan monostearate and 0.07 g of polyoxyethylene sorbitan monooleate dissolved using a homogenizer. (9500 rpm., 30 seconds),
A W / O type dispersion was prepared. 30 with stirrer
Transfer to a 0 ml round bottom flask and stir 20 wt.
Aqueous solution of 700 mg of sodium L-ascorbate dissolved in 20 g of a 10% aqueous solution of sodium sulfate was added dropwise at room temperature over about 5 minutes. The liquid temperature was raised to 60 ° C., stirring was continued for 60 minutes, and methanol was added to the obtained fine particle slurry in an amount of 10 to 10.
After adding 20 ml, the fine particles were filtered off by suction filtration and dried.
Fine particles carrying copper were obtained, and the average particle size was 8.
At 4 μm, the yield was 94.2% and the copper loading was 97%.

【0020】実施例4 酸化ジルコニウムゾル(ジルコニアゾル−NZS−30
A、日産化学(株)製、粒子径95nm、濃度35%)
32mlに硫酸銅200mgを溶解し、水酸化ナトナリ
ウムでpHを10.1に調整し、大豆レシチン0.06
g、ソルビタンモノオレエート0.6gを溶解したヘプ
タン96mlにホモジナイザーを用いて分散し(150
00rpm.、30秒)、W/O型分散体を調製した。
これを撹拌器のついた300mlの丸底フラスコに取
り、撹拌しながら40wt.%の塩化カルシウム水溶液
30gに水素化ホウ素ナトリウム60mgを溶解した水
溶液を約5分かけて室温で滴下した。液温を60℃に昇
温し、60分撹拌を続け、得られた微粒子のスラリーに
メタノールを10〜20ml加えて、吸引濾過で微粒子
を濾別し乾燥した。銅を担持した微粒子が得られ、その
平均粒子径は、3.4μmで、収率は98.2%、銅担
持率は98%であった。
Example 4 Zirconium oxide sol (zirconia sol-NZS-30)
A, Nissan Chemical Co., Ltd., particle size 95 nm, concentration 35%)
200 mg of copper sulfate was dissolved in 32 ml, the pH was adjusted to 10.1 with sodium sodium hydroxide, and soybean lecithin 0.06 was added.
g and 0.6 g of sorbitan monooleate were dissolved in 96 ml of heptane and dispersed using a homogenizer (150
00 rpm. , 30 seconds), and a W / O type dispersion was prepared.
This was placed in a 300 ml round bottom flask equipped with a stirrer, and 40 wt. % Aqueous solution of calcium chloride containing 30 mg of sodium borohydride dissolved therein was added dropwise at room temperature over about 5 minutes. The liquid temperature was raised to 60 ° C., stirring was continued for 60 minutes, 10 to 20 ml of methanol was added to the obtained fine particle slurry, the fine particles were separated by suction filtration and dried. Fine particles supporting copper were obtained, the average particle diameter was 3.4 μm, the yield was 98.2%, and the copper supporting rate was 98%.

【0021】実施例5 シリカゾル(スノーテックスO、日産化学(株)製、粒
子径10〜20nm、濃度20%)32mlにテトラク
ロロパラジウム酸ナトリウム200mgを溶解し、大豆
レシチン0.12g、ソルビタンモノステアレート1.
2gを溶解したクロロホルム96mlにホモジナイザー
を用いて分散し(8000rpm.、30秒)、W/O
型分散体を調製した。これを撹拌器のついた300ml
の丸底フラスコに取り、撹拌しながら10wt.%の硝
酸ナトリウム水溶液40gに塩化第一スズ250mgを
溶解した水溶液を約5分かけて室温で滴下した。そのま
ま15〜30分室温で撹拌を続け、得られた微粒子のス
ラリーにメタノールを10〜20ml加えて、吸引濾過
で微粒子を濾別し乾燥した。パラジウムを担持した微粒
子が得られ、その平均粒子径は、5.1μmで、収率は
98.5%、パラジウム担持率は96%であった。
Example 5 200 mg of sodium tetrachloropalladate was dissolved in 32 ml of silica sol (Snowtex O, manufactured by Nissan Kagaku Co., Ltd., particle size 10 to 20 nm, concentration 20%), soybean lecithin 0.12 g, sorbitan monostea. Rate 1.
Disperse 2 g of it in 96 ml of chloroform using a homogenizer (8000 rpm., 30 seconds) and W / O
A mold dispersion was prepared. 300 ml with a stirrer
In a round bottom flask of 10 wt. An aqueous solution in which 250 mg of stannous chloride was dissolved in 40 g of a 10% aqueous solution of sodium nitrate was added dropwise at room temperature over about 5 minutes. Stirring was continued for 15 to 30 minutes at room temperature, 10 to 20 ml of methanol was added to the obtained fine particle slurry, and the fine particles were filtered by suction filtration and dried. Fine particles supporting palladium were obtained, the average particle diameter was 5.1 μm, the yield was 98.5%, and the palladium supporting ratio was 96%.

【0022】実施例6 シリカゾル(スノーテックスO、日産化学(株)製、粒
子径10〜20nm、濃度20%)32mlにテトラク
ロロ白金酸カリウム300mgを溶解し、ソルビタンモ
ノステアレート0.7gとポリオキシエチレンソルビタ
ンモノオレート0.07gを溶解したトルエン96ml
にホモジナイザーを用いて分散し(8000rpm.、
30秒)、W/O型分散体を調製した。これを撹拌器の
ついた300mlの丸底フラスコに取り、撹拌しながら
10wt.%の硝酸ナトリウム水溶液40gに塩化第一
スズ350mgを溶解した水溶液を約5分かけて室温で
滴下した。そのまま15〜30分室温で撹拌を続け、得
られた微粒子のスラリーにメタノールを10〜20ml
加えて、吸引濾過で微粒子を濾別し乾燥した。白金を担
持した微粒子が得られ、その平均粒子径は、6.5μm
で、収率は97.5%、白金担持率は98%であった。
Example 6 300 mg of potassium tetrachloroplatinate was dissolved in 32 ml of silica sol (Snowtex O, manufactured by Nissan Kagaku Co., Ltd., particle size: 10-20 nm, concentration: 20%) to obtain 0.7 g of sorbitan monostearate and poly. 96 ml of toluene in which 0.07 g of oxyethylene sorbitan monooleate was dissolved
Was dispersed using a homogenizer (8000 rpm.,
30 seconds), a W / O type dispersion was prepared. This was placed in a 300 ml round bottom flask equipped with a stirrer and stirred at 10 wt. An aqueous solution in which 350 mg of stannous chloride was dissolved in 40 g of an aqueous sodium nitrate solution of 50% was added dropwise at room temperature over about 5 minutes. Stirring is continued for 15 to 30 minutes at room temperature and 10 to 20 ml of methanol is added to the obtained fine particle slurry.
In addition, fine particles were separated by suction filtration and dried. Fine particles supporting platinum were obtained, and the average particle diameter was 6.5 μm.
The yield was 97.5% and the platinum loading was 98%.

【0023】実施例7 シリカゾル(スノーテックスO、日産化学(株)製、粒
子径10〜20nm、濃度20%)32mlに硫酸銅5
00mgを溶解し、水酸化ナトリウムでpHを11.5
に調整し、大豆レシチン0.06g、ソルビタンモノオ
レエート0.6gを溶解したヘプタン96mlにホモジ
ナイザーを用いて分散し(15000rpm.、30
秒)、W/O型分散体を調製した。これを撹拌器のつい
た300mlの丸底フラスコに取り、撹拌しながら20
wt.%の硝酸ナトリウム水溶液20gを約5分かけて
室温で滴下し、そのまま15分間撹拌を続けた。次い
で、5wt.%のL−アスコルビン酸ナトリウム水溶液
20gを約5分かけて室温で滴下した。液温を60℃に
昇温し、60分撹拌を続け、得られた微粒子のスラリー
にメタノールを10〜20ml加えて、吸引濾過で微粒
子を濾別し乾燥した。銅を担持した微粒子が得られ、そ
の平均粒子径は、6.4μmで、収率は97.3%、銅
担持率は85%であった。
Example 7 Copper sulfate 5 was added to 32 ml of silica sol (Snowtex O, manufactured by Nissan Kagaku KK, particle size 10 to 20 nm, concentration 20%).
Dissolve 00 mg and adjust the pH to 11.5 with sodium hydroxide.
And soybean lecithin (0.06 g) and sorbitan monooleate (0.6 g) were dissolved in 96 ml of heptane and dispersed using a homogenizer (15000 rpm., 30
Sec), and a W / O type dispersion was prepared. Take this in a 300 ml round bottom flask with a stirrer and stir for 20
wt. % Aqueous sodium nitrate solution (20 g) was added dropwise at room temperature over about 5 minutes, and stirring was continued for 15 minutes. Then, 5 wt. % Sodium L-ascorbate aqueous solution (20 g) was added dropwise at room temperature over about 5 minutes. The liquid temperature was raised to 60 ° C., stirring was continued for 60 minutes, 10 to 20 ml of methanol was added to the obtained fine particle slurry, the fine particles were separated by suction filtration and dried. Fine particles supporting copper were obtained, the average particle diameter was 6.4 μm, the yield was 97.3%, and the copper supporting rate was 85%.

【0024】実施例8 酸化ジルコニウムゾル(ジルコニアゾル−NZS−30
A、日産化学(株)製、粒子径95nm、濃度35%)
32mlに硝酸銀500mgを溶解し、アンモニアでp
Hを10.5に調整し、ソルビタンモノステアレート
0.7gとポリオキシエチレンソルビタンモノオレート
0.07gを溶解したトルエン96mlにホモジナイザ
ーを用いて分散し(8000rpm.、30秒)、W/
O型分散体を調製した。これを撹拌器のついた300m
lの丸底フラスコに取り、撹拌しながら20wt.%の
硫酸ナトリウム水溶液20gを約5分かけて室温で滴下
し、そのまま15分間撹拌を続けた。次いで、2wt.
%のホルムアルデヒド水溶液10gを約5分かけて室温
で滴下した。液温を60℃に昇温し、60分撹拌を続
け、得られた微粒子のスラリーにメタノールを10〜2
0ml加えて、吸引濾過で微粒子を濾別し乾燥した。銀
を担持した微粒子が得られ、その平均粒子径は、5.4
μmで、収率は96.8%、銀担持率は82%であっ
た。
Example 8 Zirconium oxide sol (zirconia sol-NZS-30)
A, Nissan Chemical Co., Ltd., particle size 95 nm, concentration 35%)
Dissolve 500 mg of silver nitrate in 32 ml and pour with ammonia.
H was adjusted to 10.5, and dispersed in 96 ml of toluene in which 0.7 g of sorbitan monostearate and 0.07 g of polyoxyethylene sorbitan monooleate were dissolved using a homogenizer (8000 rpm., 30 seconds), and W /
An O type dispersion was prepared. 300m with a stirrer
1 round bottom flask, 20 wt. % Sodium sulfate aqueous solution (20 g) was added dropwise at room temperature over about 5 minutes, and stirring was continued for 15 minutes. Then, 2 wt.
% Aqueous formaldehyde solution was added dropwise at room temperature over about 5 minutes. The liquid temperature was raised to 60 ° C., stirring was continued for 60 minutes, and 10 to 2 of methanol was added to the obtained fine particle slurry.
0 ml was added, and the fine particles were separated by suction filtration and dried. Fine particles carrying silver were obtained, and the average particle size was 5.4.
In μm, the yield was 96.8%, and the silver supporting rate was 82%.

【0025】[0025]

【発明の効果】本発明によれば、金属分布が均一な金属
担持微粒子を簡便に調製することができ、本発明の金属
担持微粒子は、導電性材料、抗菌素材、反応触媒等に応
用可能である。
According to the present invention, metal-supporting fine particles having a uniform metal distribution can be easily prepared, and the metal-supporting fine particles of the present invention can be applied to conductive materials, antibacterial materials, reaction catalysts and the like. is there.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】コロイド状微粒子を電解質を用いて凝集さ
せて得られた微粒子を金属で被覆することにより得られ
る金属担持微粒子。
1. Metal-supporting fine particles obtained by coating fine particles obtained by aggregating colloidal fine particles with an electrolyte, with a metal.
【請求項2】金属イオンを発生する化合物を含むコロイ
ド状微粒子分散液中において、該コロイド状微粒子を電
解質を用いて凝集させると同時に又は凝集させた後に還
元剤を用いて還元処理することを特徴とする金属担持微
粒子の製法。
2. A colloidal fine particle dispersion containing a compound that generates a metal ion, wherein the colloidal fine particles are subjected to reduction treatment with a reducing agent at the same time as or after the aggregation. And a method for producing metal-supporting fine particles.
JP2840993A 1993-01-26 1993-01-26 Fine particles carrying metal and production thereof Pending JPH06218273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2840993A JPH06218273A (en) 1993-01-26 1993-01-26 Fine particles carrying metal and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2840993A JPH06218273A (en) 1993-01-26 1993-01-26 Fine particles carrying metal and production thereof

Publications (1)

Publication Number Publication Date
JPH06218273A true JPH06218273A (en) 1994-08-09

Family

ID=12247864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2840993A Pending JPH06218273A (en) 1993-01-26 1993-01-26 Fine particles carrying metal and production thereof

Country Status (1)

Country Link
JP (1) JPH06218273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440092A (en) * 1992-06-10 1995-08-08 Nadex Co., Ltd. Welding controller and/or pinching force controller
EP0826415A1 (en) * 1996-08-28 1998-03-04 MITSUI MINING & SMELTING CO., LTD. Silver sol, preparation thereof, coating material for forming transparent conductive film and transparent conductive film
US7625464B2 (en) 2001-09-28 2009-12-01 Kao Corporation Method for producing heat-generating formed product
CN116726983A (en) * 2023-08-08 2023-09-12 山东久元新材料有限公司 High-load petrochemical catalyst carrier and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440092A (en) * 1992-06-10 1995-08-08 Nadex Co., Ltd. Welding controller and/or pinching force controller
EP0826415A1 (en) * 1996-08-28 1998-03-04 MITSUI MINING & SMELTING CO., LTD. Silver sol, preparation thereof, coating material for forming transparent conductive film and transparent conductive film
US5957828A (en) * 1996-08-28 1999-09-28 Mitsui Mining And Smelting Co., Ltd. Silver sol, preparation thereof, coating material for forming transparent conductive film and transparent conductive film
KR100414387B1 (en) * 1996-08-28 2004-05-14 미츠이 긴조쿠 고교 가부시키가이샤 Silver sol, preparation thereof, coating material for forming transparent conductive film and transparent conductive film
US7625464B2 (en) 2001-09-28 2009-12-01 Kao Corporation Method for producing heat-generating formed product
CN116726983A (en) * 2023-08-08 2023-09-12 山东久元新材料有限公司 High-load petrochemical catalyst carrier and preparation method thereof
CN116726983B (en) * 2023-08-08 2023-10-03 山东久元新材料有限公司 High-load petrochemical catalyst carrier and preparation method thereof

Similar Documents

Publication Publication Date Title
CN107349964A (en) A kind of preparation method of nano particle@small sized metallic organic framework materials
US4652311A (en) Catalytic metal of reduced particle size
JP4732645B2 (en) Method for producing metal composite ultrafine particles
US4863510A (en) Reduction process for preparing copper, silver, and admixed silver-palladium metal particles
Yamauchi et al. Highly ordered mesostructured Ni particles prepared from lyotropic liquid crystals by electroless deposition: the effect of reducing agents on the ordering of mesostructure
CN107413354B (en) Preparation method of silver-loaded copper oxide nanocomposite
JP2002180110A (en) Method for manufacturing metallic colloidal solution
CN112828300A (en) Nano silver, preparation method and application
JPH06218273A (en) Fine particles carrying metal and production thereof
US4220678A (en) Dispersions for activating non-conductors for electroless plating
Byeon et al. Ultrasound-assisted copper deposition on a polymer membrane and application for methanol steam reforming
TW201402206A (en) Carbon nanotube based composte and catalyst material including the same
JPH11241170A (en) Catalytic composition for electroless plating
JPH09225317A (en) Nickel/noble metal binary metal cluster and catalyst made from the cluster and its preparation
CN105642302A (en) Copper bismuth catalyst for synthesis of 1, 4-butynediol and preparation method thereof
JP3871653B2 (en) Method for producing conductive fine particles
US4261747A (en) Dispersions for activating non-conductors for electroless plating
TW201402455A (en) Method for making carbon nanotube based composite
JP3607656B2 (en) Method for producing noble metal nanoparticles
JP2531588B2 (en) Method for producing metal-supported particles having ferromagnetism
KR20230124606A (en) Gold-supported carbon catalyst and manufacturing method thereof
US4132832A (en) Method of applying dispersions for activating non-conductors for electroless plating and article
CN1369341A (en) Superfine tree-shaped silver powder and its preparing process
JP2500936B2 (en) Powder plating method
JP2004131800A (en) Conductive electroless plating powder and method for manufacturing the same