JPH06217762A - High-concentration and high-efficiency culture of coli bacillus - Google Patents
High-concentration and high-efficiency culture of coli bacillusInfo
- Publication number
- JPH06217762A JPH06217762A JP1151093A JP1151093A JPH06217762A JP H06217762 A JPH06217762 A JP H06217762A JP 1151093 A JP1151093 A JP 1151093A JP 1151093 A JP1151093 A JP 1151093A JP H06217762 A JPH06217762 A JP H06217762A
- Authority
- JP
- Japan
- Prior art keywords
- medium
- culture
- concentration
- glucose
- coli
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、大腸菌に酵素または生
理活性物質などを生産させるに際し、目的とする物質を
効率よく生産させるための大腸菌の高濃度効率培養方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-concentration efficient culturing method of Escherichia coli for efficiently producing a target substance when Escherichia coli produces an enzyme or a physiologically active substance.
【0002】[0002]
【従来の技術】従来、大腸菌を培養することにより、そ
の代謝物質である酵素またはホルモンなどの生理活性物
質を生産することが行われている。この生産性を高める
ために、その培養方法として、培養途中で基質を添加す
る培養方法が行われているが、基質の添加にもかかわら
ず培養中に大腸菌の増殖速度が低下する現象がある。こ
れは大腸菌から分泌される増殖阻害物質、特に酢酸の培
地中への蓄積により、その濃度が17g/L(280m
M)以上になると、増殖阻害は著しくなると言われてい
る。2. Description of the Related Art Conventionally, by culturing Escherichia coli, bioactive substances such as enzymes or hormones, which are metabolites thereof, have been produced. In order to increase the productivity, a culture method in which a substrate is added during the culture is performed as the culture method, but there is a phenomenon that the growth rate of Escherichia coli decreases during the culture despite the addition of the substrate. This is due to the accumulation of growth inhibitory substances secreted by E. coli, especially acetic acid, in the medium, resulting in a concentration of 17 g / L (280 m
It is said that the growth inhibition becomes remarkable at M or more.
【0003】このため、培養液中の酢酸濃度を指標に、
培養液を断続的または連続的に抜き出し、遠心分離など
により菌体を回収して再び培養槽に仕込む方法が提案さ
れている(特開昭63−141579号公報)。また、
酢酸濃度を指標に基質の添加速度およびその量を制御す
ることによって、大腸菌の増殖にとって主要な阻害物質
である酢酸を資化させる方法が提案されている〔 J. Fe
rment. Technol., 66,187-191(1988)〕。しかし、これ
らの培養方法は、高密度の菌体(乾燥菌体重量20g/
L以上)を得るのに20時間以上を要し、細胞周期の短
い大腸菌の特性が十分生かされておらず、その生産性は
高いとはいえない。Therefore, using the concentration of acetic acid in the culture solution as an index,
A method has been proposed in which the culture solution is intermittently or continuously withdrawn, the cells are recovered by centrifugation, and the cells are charged again in the culture tank (Japanese Patent Laid-Open No. 63-141579). Also,
A method of assimilating acetic acid, which is a major inhibitor for the growth of Escherichia coli, has been proposed by controlling the rate of substrate addition and the amount thereof with acetic acid concentration as an index [J.
rment. Technol., 66, 187-191 (1988)]. However, these culturing methods use high density cells (dry cell weight 20 g /
It takes more than 20 hours to obtain (L or more), the characteristics of Escherichia coli having a short cell cycle are not fully utilized, and the productivity cannot be said to be high.
【0004】また、大腸菌の培養を円滑に行うために、
培地のpHを大腸菌の成育に適した値に制御することは
通常実施されているが、そのpHの制御は、一般に培地
中に水酸化ナトリウムなどのアルカリあるいは塩酸など
の酸を加えることによって行われていた。しかし、本発
明のように、大腸菌の好気的培養の際、培地中にグルコ
ースを添加することによって、培地のpHが一定の値に
制御できることは、従来全く開示されておらず、示唆も
されていなかった。In order to smoothly culture E. coli,
It is usually practiced to control the pH of the medium to a value suitable for the growth of Escherichia coli, but the pH is generally controlled by adding an alkali such as sodium hydroxide or an acid such as hydrochloric acid to the medium. Was there. However, it has not been disclosed or suggested that the pH of the medium can be controlled to a constant value by adding glucose to the medium during aerobic culture of Escherichia coli as in the present invention. Didn't.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、培養
途中の酢酸濃度の測定、遠心分離等による固液分離処
理、あるいはアルカリまたは酸の添加によるpHの制御
等の必要なしに、大腸菌を高濃度効率的に培養する方法
を提供することである。The object of the present invention is to eliminate Escherichia coli without the need of measuring acetic acid concentration during culture, solid-liquid separation treatment such as centrifugation, or pH control by addition of alkali or acid. It is an object of the present invention to provide a method for efficiently culturing at high concentration.
【0006】[0006]
【課題を解決するための手段】本発明者らは、前記の問
題点を解決するため、大腸菌がグルコースを資化する
と、増殖阻害物質である有機酸、特に酢酸の分泌が顕著
になることに着目し、グルコースの資化量を減少させる
ことによって増殖阻害物質の蓄積を抑制することについ
て鋭意検討した。その結果、グルコースの資化によって
分泌される有機酸で培地のpHが低下すること、および
アミノ酸の資化によって分泌される塩基性物質で培地の
pHが上昇することを利用して、すなわち培地のpHが
上昇する状態において培地中にグルコースを添加して培
地のpHを一定の値に制御すると、菌体当たりのグルコ
ース資化量が減少され、培養中の酢酸の生成が抑制さ
れ、大腸菌を短時間で高濃度にまで培養できることを見
出し、本発明を完成するに至った。本発明は、大腸菌を
得るための好気的培養において、該菌の増殖に必要なア
ミノ酸が欠乏しないように培地にアミノ酸組成物を添加
するとともに、培地のpHが上昇する状態においてグル
コースを添加して培地のpHの定値制御をすることを特
徴とする該菌の高濃度効率培養法に関するものである。In order to solve the above-mentioned problems, the present inventors have found that when Escherichia coli assimilates glucose, the secretion of organic acid, especially acetic acid, which is a growth inhibitor, becomes remarkable. Focusing attention, we diligently studied to suppress the accumulation of growth inhibitory substances by reducing the amount of glucose assimilation. As a result, by utilizing the fact that the pH of the medium is lowered by the organic acid secreted by the assimilation of glucose and the pH of the medium is increased by the basic substance secreted by the assimilation of amino acid, that is, When glucose is added to the medium to control the pH of the medium to a constant value in a state where the pH is increased, the amount of glucose assimilation per cell is reduced, the production of acetic acid during the culture is suppressed, and Escherichia coli is shortened. They have found that they can be cultivated to a high concentration in time, and have completed the present invention. The present invention, in aerobic culture for obtaining Escherichia coli, while adding an amino acid composition to the medium so as not to be deficient in the amino acids required for the growth of the bacterium, glucose is added in a state where the pH of the medium increases. The present invention relates to a high-concentration efficient culturing method of the bacterium, characterized in that the pH of the medium is controlled to a constant value.
【0007】以下、本発明を詳細に説明する。本発明の
大腸菌は、産業上有用な代謝物質を産生するものならば
特に制限はない。好ましくは、有用な酵素またはホルモ
ンなどの生理活性物質を産生するように遺伝子工学的手
法で作製された大腸菌、さらに好ましくはヒト銅、亜鉛
型スーパーオキシドジスムターゼを産生するように遺伝
子工学的手法で作製された大腸菌、例えばオーストラリ
ア特許公開公報第27,461/84号、特開昭60−
137285号公報、特開昭61−111690号公
報、特開昭61−111693号公報、特開昭61−1
39390号公報および特開昭64−39988号公報
で開示されている大腸菌等が挙げられる。The present invention will be described in detail below. The Escherichia coli of the present invention is not particularly limited as long as it produces an industrially useful metabolite. Preferably, Escherichia coli produced by a genetically engineered method to produce a useful enzyme or a physiologically active substance such as a hormone, and more preferably, produced by a genetically engineered method to produce human copper or zinc-type superoxide dismutase. E. coli, for example, Australian Patent Publication No. 27,461 / 84, JP-A-60-
137285, JP 61-111690 A, JP 61-111693 A, JP 61-1 A
Examples include Escherichia coli and the like disclosed in Japanese Patent No. 39390 and Japanese Patent Laid-Open No. 64-39988.
【0008】本発明の培養は、基質として無機塩類、ア
ミノ酸組成物及びグルコースを含む培地中で、培養中の
温度、pH及び溶存酸素濃度をこれら大腸菌の成育に好
ましい値に制御しながら行う。無機塩類とは、一般に使
用される塩化アンモニウム、リン酸水素ナトリウム、リ
ン酸水素カリウム、硫酸マグネシウム、塩化カルシウ
ム、硫酸マンガン、塩化アルミニウム硫酸鉄、塩化銅、
硫酸亜鉛及びホウ酸を挙げることができる。また、本発
明のアミノ酸組成物とは、アミノ酸類、カザミノ酸、大
豆蛋白加水分解物及びこれらの1種又は2種以上の混合
物を意味する。アミノ酸類としては、例えばメチオニ
ン、トリプトファン、チロシン、アルギニン、プロリ
ン、スレオニン、グリシン、アラニン、アルギニン、ア
スパラギン酸、グルタミン酸、ロイシン、イソロイシ
ン、バリン、フェニルアラニン及びヒスチジンを挙げる
ことができる。The culture of the present invention is carried out in a medium containing an inorganic salt, an amino acid composition and glucose as a substrate while controlling the temperature, pH and dissolved oxygen concentration during the culture to values preferable for the growth of these E. coli. With inorganic salts, commonly used ammonium chloride, sodium hydrogen phosphate, potassium hydrogen phosphate, magnesium sulfate, calcium chloride, manganese sulfate, aluminum iron chloride sulfate, copper chloride,
Mention may be made of zinc sulphate and boric acid. Further, the amino acid composition of the present invention means amino acids, casamino acids, soybean protein hydrolysates, and one or a mixture of two or more thereof. Examples of amino acids include methionine, tryptophan, tyrosine, arginine, proline, threonine, glycine, alanine, arginine, aspartic acid, glutamic acid, leucine, isoleucine, valine, phenylalanine and histidine.
【0009】本発明の培養は、グルコース濃度が培地1
L当たり5g以下、大腸菌の成育に好ましい濃度のアミ
ノ酸混合物および無機塩類を含んだ培地中で行われる。
その際、培地のpHが設定した値よりも上昇する状態に
おいて、グルコースを添加することによって、培地のp
Hを6.5〜7.4、好ましくは7.2±0.05、さ
らに好ましくは7.2±0.025に制御できる。pH
の定値制御をする際のグルコースの1回の添加量は、培
地中のグルコース濃度が培地1L当たり0.2g以下と
なるように添加することが好ましい。The culture of the present invention has a glucose concentration of medium 1
It is performed in a medium containing an amino acid mixture and inorganic salts in an amount of 5 g or less per L, which is a concentration suitable for the growth of Escherichia coli.
At that time, when the pH of the medium rises above the set value, glucose is added to the medium to increase the p
H can be controlled to 6.5 to 7.4, preferably 7.2 ± 0.05, and more preferably 7.2 ± 0.025. pH
The amount of glucose to be added once for the constant value control is preferably such that the glucose concentration in the medium is 0.2 g or less per 1 L of the medium.
【0010】また、培養中、最初に仕込んだアミノ酸組
成物および無機塩類は消費され、これらが大腸菌の成育
に好ましい条件に対して不足してくるので、大腸菌の成
育に合わせて培地中にアミノ酸組成物を添加し、好まし
くは無機塩類を添加することにより、効果的に本発明の
方法を達成することができる。Further, during the culture, the amino acid composition and the inorganic salts initially charged are consumed, and these are insufficient for the conditions preferable for the growth of Escherichia coli. Therefore, the amino acid composition in the medium is adjusted to the growth of E. coli. It is possible to effectively achieve the method of the present invention by adding a substance, preferably an inorganic salt.
【0011】本発明の方法によって効率的に大量の菌体
を得た培地は、遠心分離などの通常の操作によって液体
部分と固形部分とに分離したのち、大腸菌が酵素あるい
は生理活性物質を菌体外に分泌した場合には液体部分
を、また菌体内に蓄積した場合には固形物を遠心分離、
硫安塩析、ゲル濾過クロマトグラフィー、陰イオン交換
クロマトグラフィー、陽イオン交換クロマトグラフィ
ー、メタルキレーティングアフィニティクロマトグラフ
ィー、疎水性相互作用クロマトグラフィーなど通常行わ
れる精製法を適宜に組み合わせて精製することによっ
て、目的とする酵素あるいはホルモンなどの生理活性物
質を得ることができる。The medium in which a large amount of cells are efficiently obtained by the method of the present invention is separated into a liquid portion and a solid portion by a usual operation such as centrifugation, and then E. coli is treated with an enzyme or a physiologically active substance. If it is secreted outside, centrifuge the liquid part, and if it accumulates inside the cells, centrifuge the solid matter.
Ammonium sulphate salting out, gel filtration chromatography, anion exchange chromatography, cation exchange chromatography, metal chelating affinity chromatography, hydrophobic interaction chromatography by appropriately combining purification methods such as, by purification, A target physiologically active substance such as an enzyme or a hormone can be obtained.
【0012】[0012]
【実施例】以下、本発明を比較例および実施例によって
示す。なお、これらの実施例は、本発明の範囲を限定す
るものでない。EXAMPLES The present invention will be described below with reference to comparative examples and examples. Note that these examples do not limit the scope of the present invention.
【0013】比較例1 1)前培養 NH4 Cl0.1g、Na2 HPO4 0.6g、KH2
PO4 0.3g、NaCl0.05g、大豆蛋白加水分
解物0.3g、グルコース0.4g、MgSO 4 0.1
5g、CaCl2 ・2H2 O1mg、MnSO4 1m
g、AlCl3 1mg、H3 BO3 0.05mg、Fe
SO4 4mg、CuCl2 ・2H2 O0.7mg、Zn
SO4 ・7H2 O1.25mgとテトラサイクリン1.
25mgを含む培地100mL(pH7.2)を入れた
500mL容三角フラスコに、組換え大腸菌545πH
R(pHT351)(特開昭64−39,988号公
報)を接種し、振とう培養器により、振幅7cm、振と
う回数115回/分、37℃で一晩培養した。Comparative Example 1 1) Preculture NHFourCl 0.1g, Na2HPOFour0.6g, KH2
POFour0.3 g, NaCl 0.05 g, soy protein hydrolyzate
Dissolved product 0.3 g, glucose 0.4 g, MgSO Four0.1
5g, CaCl2・ 2H2O1mg, MnSOFour1m
g, AlCl31 mg, H3BO30.05mg, Fe
SOFour4mg, CuCl2・ 2H2O0.7mg, Zn
SOFour・ 7H2O1.25 mg and tetracycline 1.
100 mL of medium (pH 7.2) containing 25 mg was added
Recombinant E. coli 545πH in a 500 mL Erlenmeyer flask
R (pHT351) (Japanese Patent Laid-Open No. 64-39,988)
Report) and shake with a shake incubator, amplitude 7 cm, shake
The cells were cultured overnight at 37 ° C. at a strain frequency of 115 times / min.
【0014】2)本培養 K2 HPO4 4g、KH2 PO4 4g、Na2 HPO4
3g、大豆蛋白加水分解物20g、メチオニン0.31
g、トリプトファン1.02g、チロシン0.3g、グ
ルコース5g、MgSO4 1.5g、CaCl2 ・2H
2 O10mg、MnSO4 10mg、AlCl3 10m
g、H3 BO3 0.5mg、FeSO440mg、Cu
Cl2 ・2H2 O8mg、ZnSO4 ・7H2 O13m
gとテトラサイクリン12.5mgを含む培地1L(p
H7.2)を入れた2.6L容培養槽に、前培養菌50
mLを添加し、初発液量1.05Lで培養を開始した。
培養における温度は37℃に、溶存酸素濃度は攪拌数お
よび空気と純酸素の混合割合を調整することで飽和酸素
濃度の30%以上に維持した。培地のpHは、PID法
で10NNaOHを培地中に添加することによって、
7.2±0.025に制御した。2) Main culture K 2 HPO 4 4 g, KH 2 PO 4 4 g, Na 2 HPO 4
3 g, soy protein hydrolyzate 20 g, methionine 0.31
g, tryptophan 1.02 g, tyrosine 0.3 g, glucose 5 g, MgSO 4 1.5 g, CaCl 2 .2H
2 O 10 mg, MnSO 4 10 mg, AlCl 3 10 m
g, H 3 BO 3 0.5 mg, FeSO 4 40 mg, Cu
Cl 2 · 2H 2 O8mg, ZnSO 4 · 7H 2 O13m
g and 12.5 mg of tetracycline, 1 L (p
H7.2) was placed in a 2.6-liter culture tank containing 50 pre-cultured bacteria.
mL was added, and the culture was started at an initial volume of 1.05 L.
The temperature in the culture was maintained at 37 ° C., and the dissolved oxygen concentration was maintained at 30% or more of the saturated oxygen concentration by adjusting the stirring number and the mixing ratio of air and pure oxygen. The pH of the medium was adjusted by adding 10N NaOH to the medium by the PID method.
It was controlled to 7.2 ± 0.025.
【0015】グルコースの供給は、溶存酸素濃度が上昇
した時に5g(50%グルコース溶液 10mL)を添
加することによって実施した。その他の栄養物の供給
は、溶液1L中にメチオニン7.5g、トリプトファン
10.2g、アルギニン2.1g、プロリン2.9gと
大豆蛋白加水分解物200gを含む水溶液(pH7.
2)100mLを計算吸光度[測定波長660nmにお
ける吸光度×培養液量(L)/初発培養液量(L)]が
25の時に添加して実施した。培養液中の酢酸濃度は、
培養液を抜き取りこれを遠心分離してえた上清を高速液
体クロマトグラフ法( カラム:ULTORON PS−
80H 8Φ×300mm、信和化工製 移動相:約4.
44mMトリフルオロ酢酸、pH2.3)で測定した。
7時間の培養で、測定波長660nmにおける培養液の
吸光度が26(計算吸光度37、乾燥菌体重量8.7g
/L)の菌体を得ることができた。酢酸生成量およびグ
ルコース資化量は、大腸菌の乾燥菌体1g当たりそれぞ
れ1512mgおよび4.01gであった。7時間以後
の酢酸濃度は200mM以上となり、比増殖速度は低下
した。Glucose was supplied by adding 5 g (10 mL of 50% glucose solution) when the dissolved oxygen concentration increased. For supplying other nutrients, an aqueous solution (pH 7.50) containing 7.5 g of methionine, 10.2 g of tryptophan, 2.1 g of arginine, 2.9 g of proline and 200 g of soybean protein hydrolyzate in 1 L of the solution was supplied.
2) 100 mL was added when the calculated absorbance [absorbance at measurement wavelength of 660 nm x culture solution volume (L) / initial culture solution volume (L)] was 25. The acetic acid concentration in the culture solution is
The culture solution was taken out and centrifuged, and the resulting supernatant was subjected to high performance liquid chromatography (column: ULTORON PS-
80H 8Φ × 300mm, made by Shinwa Kako Mobile phase: about 4.
It was measured with 44 mM trifluoroacetic acid, pH 2.3).
After 7 hours of culture, the absorbance of the culture solution at the measurement wavelength of 660 nm was 26 (calculated absorbance 37, dry cell weight 8.7 g).
/ L) were obtained. The amount of acetic acid produced and the amount of glucose assimilated were 1512 mg and 4.01 g per 1 g of dried E. coli cells, respectively. The acetic acid concentration after 7 hours became 200 mM or more, and the specific growth rate decreased.
【0016】比較例2 1)前培養 比較例1と同様に行った。 2)本培養 その他の栄養物の供給を、溶液1L中にアスパラギン酸
50.8g、スレオニン12.5g、グリシン14.7
g、アラニン8.4g、メチオニン3.1g、チロシン
0.4g、トリプトファン7.4g、アルギニン3.7
g、プロリン13.6gと大豆蛋白加水分解物100g
を含む水溶液(pH7.2)10mLを計算吸光度が4
増加する毎に添加して実施した以外は、比較例1と同様
に行った。7時間の培養で、測定波長660nmにおけ
る培養液の吸光度が54(計算吸光度63、乾燥菌体重
量18g/L)の菌体を得ることができた。酢酸生成量
およびグルコース資化量は、大腸菌の乾燥菌体1g当た
りそれぞれ681mgおよび2.03gであった。7時
間以後の酢酸濃度は200mM以上となり、比増殖速度
は低下した。Comparative Example 2 1) Preculture The same procedure as in Comparative Example 1 was carried out. 2) Main culture As for the supply of other nutrients, 50.8 g of aspartic acid, 12.5 g of threonine, and 14.7 glycine were added to 1 L of the solution.
g, alanine 8.4 g, methionine 3.1 g, tyrosine 0.4 g, tryptophan 7.4 g, arginine 3.7.
g, proline 13.6g and soy protein hydrolyzate 100g
10 mL of an aqueous solution (pH 7.2) containing
The same procedure as in Comparative Example 1 was carried out except that the addition was carried out every time the number was increased. By culturing for 7 hours, it was possible to obtain cells in which the absorbance of the culture solution at the measurement wavelength of 660 nm was 54 (calculated absorbance 63, dry cell weight 18 g / L). The amount of acetic acid produced and the amount of glucose assimilated were 681 mg and 2.03 g per 1 g of dry E. coli cells, respectively. The acetic acid concentration after 7 hours became 200 mM or more, and the specific growth rate decreased.
【0017】実施例1 1)前培養 比較例1と同様に行った。 2)本培養 最初に仕込んだグルコースが培地から消失したのち、培
地のpHが上昇するときを指標にしてグルコース(50
%グルコース水溶液)を添加して、pHを7.2±0.
025にPID法で制御した以外は、比較例1と同様に
行った。7時間の培養で、測定波長660nmにおける
培養液の吸光度が65(計算吸光度76、乾燥菌体重量
21.7g/L)であり、7.5時間の培養で、測定波
長660nmにおける培養液の吸光度が75(計算吸光
度94、乾燥菌体重量25g/L)の菌体を得ることが
できた。酢酸生成量およびグルコース資化量は、大腸菌
の乾燥菌体1g当たりそれぞれ300mgおよび1.0
7gであった。Example 1 1) Preculture The same procedure as in Comparative Example 1 was carried out. 2) Main culture After the glucose initially charged disappears from the medium, the glucose (50
% Glucose solution) to adjust the pH to 7.2 ± 0.
The same procedure as in Comparative Example 1 was carried out except that the PID method was used for controlling 025. After 7 hours of culture, the absorbance of the culture solution at the measurement wavelength of 660 nm is 65 (calculated absorbance: 76, dry cell weight: 21.7 g / L), and the absorbance of the culture solution at the measurement wavelength of 660 nm is 7.5 hours of culture. Was obtained (calculated absorbance: 94, dry cell weight: 25 g / L). The amount of acetic acid produced and the amount of glucose assimilated were 300 mg and 1.0, respectively, per 1 g of dried E. coli cells.
It was 7 g.
【0018】実施例2 1)前培養 比較例1と同様に行った。 2)本培養 初発培地のグルコースを無添加とした以外は実施例1と
同様に行った。8時間の培養で、測定波長660nmに
おける培養液の吸光度が56(計算吸光度69、乾燥菌
体重量18.7g/L)の菌体を得ることができた。酢
酸生成量およびグルコース資化量は、大腸菌の乾燥菌体
1g当たりそれぞれ286mgおよび1.12gであっ
た。Example 2 1) Preculture The same procedure as in Comparative Example 1 was carried out. 2) Main culture The same culture as in Example 1 was performed except that glucose was not added as the initial medium. By culturing for 8 hours, it was possible to obtain cells in which the absorbance of the culture solution at the measurement wavelength of 660 nm was 56 (calculated absorbance 69, dry cell weight 18.7 g / L). The amount of acetic acid produced and the amount of glucose assimilated were 286 mg and 1.12 g per 1 g of dried E. coli cells, respectively.
【0019】[0019]
【発明の効果】本発明の培養法は、培養途中の酢酸濃度
の測定、遠心分離等による固液分離処理、あるいはアル
カリまたは酸の添加によるpHの制御ではなく、培地の
pHが上昇する状態においてグルコースを添加して培地
のpHを定値制御することにより、大腸菌を高濃度効率
的に培養することができる改良された方法である。INDUSTRIAL APPLICABILITY The culturing method of the present invention does not measure the acetic acid concentration during the culturing, the solid-liquid separation treatment by centrifugation or the like, or the pH control by the addition of an alkali or an acid. It is an improved method capable of efficiently culturing Escherichia coli at a high concentration by adding glucose to control the pH of the medium to a constant value.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅田 和弘 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 (72)発明者 岩本 儀唯 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 (72)発明者 岡 由利夫 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuhiro Umeda Inventor Kazuhiro Ube City, Ube City, Yamaguchi Prefecture 5 1978, Ube Research Institute, Ube Research Institute (72) Inventor, Yoshii Yamaguchi Prefecture, Ube City, 5 1978, Ube City, Kushigushi 5 Ube Kosan Co., Ltd. Ube Research Center (72) Inventor Yukio Oka 5 1978, Kozugushi, Ube City, Yamaguchi Prefecture 5 Ube Ube Research Center Co., Ltd.
Claims (1)
て、該菌の増殖に必要なアミノ酸が欠乏しないように培
地にアミノ酸組成物を添加するとともに、培地のpHが
上昇する状態においてグルコースを添加して培地のpH
の定値制御をすることを特徴とする該菌の高濃度効率培
養法。1. In aerobic culture for obtaining Escherichia coli, an amino acid composition is added to a medium so that the amino acids required for the growth of the bacterium are not deficient, and glucose is added in a state where the pH of the medium is increased. Then the pH of the medium
A high-concentration efficient culturing method of the bacterium, characterized in that the constant value control is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1151093A JPH06217762A (en) | 1993-01-27 | 1993-01-27 | High-concentration and high-efficiency culture of coli bacillus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1151093A JPH06217762A (en) | 1993-01-27 | 1993-01-27 | High-concentration and high-efficiency culture of coli bacillus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06217762A true JPH06217762A (en) | 1994-08-09 |
Family
ID=11780017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1151093A Pending JPH06217762A (en) | 1993-01-27 | 1993-01-27 | High-concentration and high-efficiency culture of coli bacillus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06217762A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015509734A (en) * | 2012-03-12 | 2015-04-02 | ハンミ サイエンス カンパニー リミテッドHanmi Scienceco.,Ltd. | High concentration culture method of E. coli cells |
-
1993
- 1993-01-27 JP JP1151093A patent/JPH06217762A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015509734A (en) * | 2012-03-12 | 2015-04-02 | ハンミ サイエンス カンパニー リミテッドHanmi Scienceco.,Ltd. | High concentration culture method of E. coli cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2672714C (en) | Method for obtaining crystals of a basic amino acid hydrochloride | |
JP2003219807A (en) | Granulated and dried product mainly comprising l-lysine | |
JP2664648B2 (en) | Method for producing L-aspartic acid | |
FR2459832A1 (en) | PROCESS FOR PRODUCING L-HISTIDINE BY FERMENTATION | |
JPH04248987A (en) | Method for preparation of l-phosphinothricin by conjugate enzymatic reaction | |
FR2925069A1 (en) | PROCESSES FOR THE PRODUCTION OF SUCCINIC ACID | |
JPS58152498A (en) | Production of low-molecular peptide mixture | |
KR20080015074A (en) | PROCESS FOR THE PRODUCTION OF gamma;-GLUTAMYLCYSTEINE | |
JPH06217762A (en) | High-concentration and high-efficiency culture of coli bacillus | |
KR100249084B1 (en) | Process for producing s-phenyl-l-cysteine | |
KR900001610B1 (en) | Method of separating mono hydrate of l-systeine hydrochloride | |
JP2832723B2 (en) | Method for producing L-alanine | |
US4769491A (en) | Method for production of cystine from cysteine | |
EP0102529B1 (en) | Process for preparation of aspartylphenylalanine alkyl esters | |
US4859591A (en) | Transamination process for producing amino acids | |
JPH0337916B2 (en) | ||
JP3408575B2 (en) | Dehydration method of tangible sodium hydrosulfide with inert gas | |
US3438860A (en) | Process for the preparation of pyridoxal-5'-phosphate | |
JP3880072B2 (en) | [S, S] -ethylenediamine-N, N′-disuccinic acid alkali metal salt production method | |
JPH05163193A (en) | Separation of tartaric acid | |
JP3415386B2 (en) | Method for recovering diaminoalkylene-N, N'-disuccinic acid | |
JP2872178B2 (en) | Method for producing L-aspartic acid | |
JPH01104194A (en) | Production of d-(-)-tartaric acid | |
JP3325433B2 (en) | Method for producing S-phenyl-L-cysteine hydrochloride | |
JPS61260889A (en) | Production of calcium malate |