JPH06216853A - Optical frequency stabilizing system - Google Patents

Optical frequency stabilizing system

Info

Publication number
JPH06216853A
JPH06216853A JP5004682A JP468293A JPH06216853A JP H06216853 A JPH06216853 A JP H06216853A JP 5004682 A JP5004682 A JP 5004682A JP 468293 A JP468293 A JP 468293A JP H06216853 A JPH06216853 A JP H06216853A
Authority
JP
Japan
Prior art keywords
optical
signal
light
optical frequency
fsk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5004682A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kuboki
勝彦 久保木
Shigeki Kitajima
茂樹 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5004682A priority Critical patent/JPH06216853A/en
Publication of JPH06216853A publication Critical patent/JPH06216853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce the fluctuation of optical intensity by branching the signal light undergone the optical FSK modulation and transmitted to an optical element to convert the transmitted light into an electric signal, securing the correlation between the electric signal and an original signal, and correcting the optical frequency by the error signal obtained between the electric and original signals. CONSTITUTION:A semiconductor laser 100 of a transmission light source undergoes the optical frequency shift keying FSK modulation when an injecting current is directly modulated by an original signal 101. The FSK signal light passes through an optical element 104 whose transmitted light intensity varies by the optical frequency and is mostly transmitted to an optical fiber 107 by an optical branching device 106. Thus the signal light is received by a receiver 108 through the fiber 107 and partly converted into an electric signal by a photodetector 105. The correlation is secured between the electric signal and the signal 101 by an error signal generator 102, and the optical frequency of the laser 100 is controlled by an error signal 103. So that the optical frequency of the laser 100 can be stabilized at the frequency with which the transmitted light intensity of the element 104 is maximized. Thus the residual intensity modulation component of the FSK modulated light is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光FSK通信システム
における光周波数の安定化方法、更に詳しくいえば、光
合波器を利用する光FSK−FDM通信システムにおけ
る各FSK信号光周波数と光合波器の透過、又は反射す
る光強度が最大となる光周波数との相対的な位置関係の
安定化、と同時に各FSK信号光の光強度が変調符号に
依存して変動する事を低減するのに好適な光周波数安定
化方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of stabilizing an optical frequency in an optical FSK communication system, and more specifically, to each optical frequency and optical multiplexer of each FSK signal in an optical FSK-FDM communication system using an optical multiplexer. Suitable for stabilizing the relative positional relationship with the optical frequency at which the transmitted or reflected light intensity is maximum, and at the same time reducing the fluctuation of the light intensity of each FSK signal light depending on the modulation code. Optical frequency stabilization method.

【0002】[0002]

【従来の技術】光周波数をシフトさせることによって変
調する光FSK通信方式は、従来からの光強度変調通信
方式に比べて信号スペクトルがコンパクトなため、狭い
周波数間隔で複数のチャネルを伝送できるので大容量伝
送が可能となる。また光源である半導体レーザの注入電
流を直接に変調することによりFSK信号光が得られる
ため、送信器構成が簡潔となる。さらに光FSK通信方
式は本質的には伝送中の光強度が一定のため、伝送路で
ある光ファイバ中の非線形効果(光Kerr効果)によ
る伝送品質の劣化が生じにくい。そのため光FSK通信
方式は将来の通信方式として注目されている。
2. Description of the Related Art An optical FSK communication system which modulates by shifting an optical frequency has a compact signal spectrum as compared with a conventional optical intensity modulation communication system, so that a plurality of channels can be transmitted at narrow frequency intervals. Capacity transmission is possible. Further, since the FSK signal light can be obtained by directly modulating the injection current of the semiconductor laser which is the light source, the transmitter structure is simplified. Furthermore, since the optical intensity of the optical FSK communication system is essentially constant during transmission, the transmission quality is less likely to deteriorate due to the nonlinear effect (optical Kerr effect) in the optical fiber that is the transmission path. Therefore, the optical FSK communication system has been attracting attention as a future communication system.

【0003】しかし、実際の光FSK通信方式において
は半導体レーザの注入電流を変化させてFSK信号光を
発生させるために、変調符号に依存してその光強度まで
も変化してしまう。この現象は光FSK変調の変調ビッ
トレートが早くなればなるほど問題となってくる。これ
は変調ビットレートの増大と共に光周波数のシフト量も
増大させる必要があるため、必然的に半導体レーザへの
注入電流の変化量も大きくなるためである。
However, in the actual optical FSK communication system, since the injection current of the semiconductor laser is changed to generate the FSK signal light, the light intensity also changes depending on the modulation code. This phenomenon becomes more serious as the modulation bit rate of the optical FSK modulation becomes faster. This is because it is necessary to increase the shift amount of the optical frequency with the increase of the modulation bit rate, so that the change amount of the injection current to the semiconductor laser is inevitably large.

【0004】この光FSK通信方式における光源の直接
変調に起因する光強度揺らぎ(残留強度変調成分)に関
する検討としては、1992年電子情報通信学会春季大
会講演論文集、分冊4、第433頁から第434頁に
「コヒーレント光増幅中継伝送システムにおける残留強
度変調成分の影響」として記載されている。この文献に
よると1チャネルのFSK信号光を伝送する場合、ファ
イバの非線形効果によって信号光に不要な位相揺らぎ、
同時に不要な周波数揺らぎが生じる事がシミュレーショ
ンによって確かめられている。この文献では、4%の残
留強度変調成分を持つFSK信号光を多中継システムで
10000kmの伝送を行う場合には中継器出力を約+
10dBm以下に設定する必要があると言及している。
As a study on the light intensity fluctuation (residual intensity modulation component) caused by the direct modulation of the light source in this optical FSK communication system, the 1992 Spring Conference of the Institute of Electronics, Information and Communication Engineers, Volume 4, pages 433 to 433 It is described on page 434 as "Influence of residual intensity modulation component in coherent optical amplification repeater transmission system". According to this document, when transmitting 1-channel FSK signal light, unnecessary phase fluctuations in the signal light due to the nonlinear effect of the fiber,
At the same time, it has been confirmed by simulation that unnecessary frequency fluctuations occur. In this document, when the FSK signal light having a residual intensity modulation component of 4% is transmitted at 10,000 km in a multi-relay system, the repeater output is approximately +
It mentions that it needs to be set to 10 dBm or less.

【0005】[0005]

【発明が解決しようとする課題】上記文献のように、F
SK信号光に残留強度変調成分が存在すると光ファイバ
伝送中に不要な位相揺らぎ、並びに不要な周波数揺らぎ
が生じる。このような不要な位相、周波数揺らぎが生じ
ると、伝送品質の低下につながる。またこの伝送品質の
低下をある一定の値以下に抑えるために、送信器の光出
力、並びに中継器出力の最大出力に制限がかかる。
As described in the above document, F
If there is a residual intensity modulation component in the SK signal light, unnecessary phase fluctuations and unnecessary frequency fluctuations occur during optical fiber transmission. When such unnecessary phase and frequency fluctuations occur, the transmission quality is degraded. Further, in order to suppress the deterioration of the transmission quality to a certain value or less, the optical output of the transmitter and the maximum output of the repeater are limited.

【0006】また上記で引用した文献の例では1チャネ
ルのFSK信号光の伝送に限っているが、光FSK−F
DM伝送方式のように1本の光ファイバで複数のFSK
信号光を伝送する場合には、自己のチャネルの残留強度
変調成分の他に、他のチャネルの残留強度変調成分の影
響によっても信号光の位相、並びに周波数が変動する。
これは相互位相変調効果(XPM)によるもので、1チ
ャネルの場合の自己位相変調効果(SPM)よりも残留
強度変調成分に対する位相変動量、周波数変動量の割合
が大きい。また、XPMによる位相変動、周波数変動は
伝送するチャネルの増加と共に増大するので、将来の超
多チャネル光FSK−FDM伝送方式の実現の際には障
害となる。
Further, although the example of the documents cited above is limited to the transmission of one-channel FSK signal light, the optical FSK-F is used.
Multiple FSK with one optical fiber like DM transmission
When transmitting the signal light, the phase and frequency of the signal light fluctuate due to the influence of the residual intensity modulation component of the other channel in addition to the residual intensity modulation component of the own channel.
This is due to the cross phase modulation effect (XPM), and the ratios of the phase fluctuation amount and the frequency fluctuation amount to the residual intensity modulation component are larger than the self phase modulation effect (SPM) in the case of one channel. Further, the phase fluctuation and the frequency fluctuation due to XPM increase as the number of channels to be transmitted increases, which is an obstacle in realizing a future super multi-channel optical FSK-FDM transmission system.

【0007】本発明の目的は、光FSK変調方式で伝送
する際の障害となる残留強度変調成分を低減する光強度
揺らぎ低減化を実現することである。また同時に光合波
器を使用する光FSK−FDM伝送方式において光合波
器から出射される信号光強度が最大となるように各送信
光源の光周波数を安定化することである。
An object of the present invention is to realize a reduction in light intensity fluctuation which reduces a residual intensity modulation component which is an obstacle when transmitting by an optical FSK modulation method. At the same time, in the optical FSK-FDM transmission system using the optical multiplexer, the optical frequency of each transmission light source is stabilized so that the signal light intensity emitted from the optical multiplexer is maximized.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の光周波数安定化方式は、光周波数によって
その透過、又は反射する光強度が変化する光素子と、F
SK信号光を前記光素子へ透過、又は反射させた後に伝
送路へ送り出す手段と、前記光素子を透過、又は反射し
た信号光の一部を検出し電気信号に変換する光検出器
と、前記光検出器からの電気信号と送信光源を光FSK
変調する原信号との相関信号を検出する手段を持ち、前
記送信光源の光周波数と前記光素子の透過、又は反射す
る光強度が最大となる光周波数が略一致するように一方
又は両者を調整した後、前記相関信号を用いて前記光素
子を透過、又は反射した後のFSK信号光の光強度揺ら
ぎが低減するように前記送信光源の光周波数、又は前記
光素子の透過、又は反射する光強度が最大となる光周波
数の値を補正する手段を持たせる事によって実現でき
る。
In order to achieve the above object, the optical frequency stabilization system of the present invention comprises an optical element in which the intensity of light transmitted or reflected changes depending on the optical frequency.
Means for sending out SK signal light to the transmission path after transmitting or reflecting the SK signal light, a photodetector for detecting a part of the signal light transmitted or reflected by the optical element and converting it into an electric signal, The optical signal from the photodetector and the transmission light source are optical FSK
Having means for detecting a correlation signal with the original signal to be modulated, and adjusting one or both so that the optical frequency of the transmission light source and the optical frequency at which the optical intensity transmitted or reflected by the optical element becomes maximum After that, the optical frequency of the transmission light source, or the light transmitted or reflected by the optical element so that the fluctuation of the light intensity of the FSK signal light after being transmitted or reflected by the optical element using the correlation signal is reduced. It can be realized by providing a means for correcting the value of the optical frequency at which the intensity becomes maximum.

【0009】また、前記光素子として光周波数軸上で周
期的に透過、又は反射する光強度が変化する光素子を用
いる事により、1つの光素子によって複数の送信光源の
光周波数の安定化、並びに光強度揺らぎを低減できる。
この場合、光周波数の安定化、並びに光強度揺らぎ低減
化に用いる補正用の信号として送信光源を光FSK変調
する原信号とFSK信号光が光素子を透過、又は反射し
た光信号との相関信号を用いているので、各々の原信号
が異なっている時は1つの光検出器からの電気信号を分
割して利用できる。光FSK−FDM伝送の場合には各
チャネルは各々異なる信号を伝送するので、本発明は光
FSK−FDM伝送にも利用可能である。
Further, by using as the optical element an optical element whose light intensity that is periodically transmitted or reflected on the optical frequency axis is changed, one optical element stabilizes the optical frequencies of a plurality of transmission light sources, In addition, fluctuations in light intensity can be reduced.
In this case, the correlation signal between the original signal for optical FSK modulating the transmission light source and the optical signal transmitted or reflected by the FSK signal light as a correction signal used for stabilizing the optical frequency and reducing the fluctuation of the light intensity. , The electric signal from one photodetector can be divided and used when each original signal is different. In the case of optical FSK-FDM transmission, each channel transmits a different signal, so the present invention can also be used in optical FSK-FDM transmission.

【0010】[0010]

【作用】FSK信号光を光周波数によってその透過、又
は反射する光強度が変化する光素子に透過、又は反射さ
せる。該透過光、又は反射光の一部を光検出器で検出
し、電気信号に変換し出力する。該電気信号と送信光源
をFSK変調した原信号との相関を取ると、該光素子の
透過、又は反射する光強度が最大となる光周波数とFS
K信号光周波数との相対的な誤差信号が得られる。よっ
て、この誤差信号が0となるように送信光源の光周波数
を補正する事で、FSK信号光の光周波数の安定化が可
能となる。FSK信号光に残留強度変調成分がある場合
には該誤差信号には残留強度変調成分に比例した信号も
表れてくる。よって、この場合に該誤差信号が0となる
よう送信光源の光周波数を制御すると、残留強度変調成
分が低減する。すなわち、FSK信号光周波数の安定化
と同時に、光強度揺らぎの低減も可能となる。
The FSK signal light is transmitted or reflected by the optical element whose intensity varies depending on the optical frequency. A part of the transmitted light or the reflected light is detected by a photodetector, converted into an electric signal and output. When the correlation between the electric signal and the original signal obtained by FSK-modulating the transmission light source is taken, the optical frequency and FS at which the intensity of light transmitted or reflected by the optical element becomes maximum.
An error signal relative to the K signal light frequency is obtained. Therefore, by correcting the optical frequency of the transmission light source so that the error signal becomes 0, the optical frequency of the FSK signal light can be stabilized. When the FSK signal light has a residual intensity modulation component, a signal proportional to the residual intensity modulation component also appears in the error signal. Therefore, in this case, if the optical frequency of the transmission light source is controlled so that the error signal becomes 0, the residual intensity modulation component is reduced. That is, it is possible to reduce the fluctuation of the light intensity at the same time as stabilizing the frequency of the FSK signal light.

【0011】[0011]

【実施例】図1は本発明による光周波数安定化方式を1
チャネルの光通信システムへ適用した場合の一実施例の
構成を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an optical frequency stabilization system according to the present invention.
1 shows a configuration of an embodiment when applied to a channel optical communication system.

【0012】送信光源の半導体レーザ100は原信号1
01によって注入電流を直接変調されることにより、光
FSK変調される。このFSK信号光は光周波数によっ
て透過光強度が変化する光素子104を透過した後、光
分岐器106により大部分が光ファイバ107へ送出さ
れ、受信器108で受信される。光分岐器106に入力
した光の一部は光検出器105により電気信号に変換さ
れる。この例では光素子104と光分岐器106が別々
の素子として示したが、これら2つの機能を同時に有す
る別の光素子を用いる事により光部品の点数を減らす事
も可能である。
The semiconductor laser 100 as the transmission light source has an original signal 1
By directly modulating the injection current by 01, optical FSK modulation is performed. The FSK signal light passes through the optical element 104 whose transmitted light intensity changes depending on the optical frequency, and then, most of it is sent to the optical fiber 107 by the optical branching device 106 and received by the receiver 108. A part of the light input to the optical branching device 106 is converted into an electric signal by the photodetector 105. In this example, the optical element 104 and the optical branching device 106 are shown as separate elements, but the number of optical components can be reduced by using another optical element having these two functions at the same time.

【0013】この電気信号と原信号101との相関関係
を誤差信号生成器102で求め、誤差信号103を得
る。得られた誤差信号103を用いてレーザ100の光
周波数を調整することにより、レーザ100の光周波数
を光素子104の透過光強度が最大となる周波数に安定
化でき、さらに光FSK変調光に残留強度変調成分が存
在する場合には、光素子104を透過した後の残留強度
変調成分が低減する。なお、光検出器105から出力さ
れる電気信号と原信号101との相関関係を求めるのは
ダブルバランスドミキサ等を用い、2つの信号の掛け算
を行うことにより容易に求められる。
An error signal generator 102 obtains a correlation between the electric signal and the original signal 101 to obtain an error signal 103. By adjusting the optical frequency of the laser 100 using the obtained error signal 103, the optical frequency of the laser 100 can be stabilized to a frequency at which the transmitted light intensity of the optical element 104 is maximized, and the optical frequency remains in the optical FSK modulated light. When the intensity modulation component is present, the residual intensity modulation component after passing through the optical element 104 is reduced. The correlation between the electrical signal output from the photodetector 105 and the original signal 101 can be easily obtained by using a double balanced mixer or the like and multiplying the two signals.

【0014】次に図2、図3を用いて、誤差信号103
により光周波数の安定化、並びに光強度揺らぎの低減が
可能となる制御の様子を説明する。
Next, referring to FIGS. 2 and 3, the error signal 103
A description will be given of how the control can stabilize the optical frequency and reduce the fluctuation of the light intensity.

【0015】図2はFSK信号光に残留強度変調成分が
無い場合に、本発明により光周波数の安定化が行われる
様子を模式的に説明する図である。
FIG. 2 is a diagram schematically illustrating how the optical frequency is stabilized by the present invention when the FSK signal light has no residual intensity modulation component.

【0016】図2の左側の一番上は光周波数によってそ
の透過光強度が変化する光素子(図1の104に相当)
の光周波数と透過率の関係を示した例である。この光素
子にFSK信号光を透過させる場合について説明する。
FSK信号光は原信号のマーク、スペースに対応して光
周波数軸上に2つのピークを持つ。このFSK信号光と
光素子の透過ピーク周波数との相対的な位置関係として
は、図2の(a)、(b)、(c)の3つの場合が考え
られる。すなわち、(a)マークとスペースの中間の光
周波数が透過ピーク周波数と一致している場合、(b)
マークとスペースの中間の光周波数が透過光ピーク周波
数より低い場合、(c)マークとスペースの中間の光周
波数が透過光ピーク周波数より高い場合、である。
(a)、(b)、(c)それぞれの場合に、FSK信号
光がこの光素子を透過した後の時間変化をそれぞれ対応
させて右側に示してある。(a)の場合、透過光強度は
時間的に変化しない。(b)の場合、透過光強度は原信
号と同相で時間変化する。(c)の場合、透過光強度は
原信号と逆相で時間変化する。すなわち、透過光の一部
を検出し、電気信号に変換した後、原信号との相関を取
ると、(a)の場合は相関が0、(b)の場合は相関が
正、(c)の場合は相関が負となる。これが図1の誤差
信号103である。よって、この誤差信号が0となるよ
うにレーザの光周波数を制御することにより、光素子の
透過ピークと信号光の相対的な位置関係は常に(a)の
状態に安定化される。
The uppermost part on the left side of FIG. 2 is an optical element whose transmitted light intensity changes depending on the optical frequency (corresponding to 104 in FIG. 1).
5 is an example showing the relationship between the optical frequency and the transmittance. A case where the FSK signal light is transmitted through this optical element will be described.
The FSK signal light has two peaks on the optical frequency axis corresponding to the marks and spaces of the original signal. There are three possible relative positional relationships between the FSK signal light and the transmission peak frequency of the optical element, as shown in FIGS. 2A, 2B, and 2C. That is, (a) when the optical frequency in the middle of the mark and space matches the transmission peak frequency, (b)
When the optical frequency between the marks and spaces is lower than the transmitted light peak frequency, (c) when the intermediate optical frequency between the marks and spaces is higher than the transmitted light peak frequency.
In each of the cases (a), (b), and (c), the time changes after the FSK signal light has passed through this optical element are shown correspondingly on the right side. In the case of (a), the transmitted light intensity does not change with time. In the case of (b), the transmitted light intensity changes with time in phase with the original signal. In the case of (c), the transmitted light intensity changes with time in the opposite phase to the original signal. That is, when a part of the transmitted light is detected and converted into an electric signal, the correlation with the original signal is taken. In the case of (a), the correlation is 0, in the case of (b) the correlation is positive, and in the case of (c) If, the correlation is negative. This is the error signal 103 in FIG. Therefore, by controlling the optical frequency of the laser so that this error signal becomes 0, the relative positional relationship between the transmission peak of the optical element and the signal light is always stabilized in the state of (a).

【0017】この説明は誤差信号によってレーザの光周
波数を制御する場合であるが、反対にこの誤差信号によ
って光素子の透過ピーク周波数を制御できる手段があれ
ば同様な結果が得られる事は明白である。
Although this explanation is for the case where the optical frequency of the laser is controlled by the error signal, it is obvious that the same result can be obtained if there is a means for controlling the transmission peak frequency of the optical element by the error signal. is there.

【0018】図3はFSK信号光に残留強度変調成分が
有る場合に、本発明により光周波数の安定化と同時に光
強度揺らぎの低減化が行われる様子を模式的に説明する
図である。
FIG. 3 is a diagram schematically illustrating how the present invention stabilizes the optical frequency and simultaneously reduces the fluctuation of the light intensity when the FSK signal light has a residual intensity modulation component.

【0019】図2と同様に左側の一番上は光周波数によ
ってその透過光強度が変化する光素子の光周波数と透過
率の関係を示したものであり、その下側にFSK信号光
と光素子の透過ピーク周波数との相対的な3つの位置関
係(a)、(b)、(c)を示している。また、
(a)、(b)、(c)それぞれの場合の透過光強度の
時間変化を右側に示してある。この例ではマークに相当
する光強度がスペースに相当する光強度より強い場合で
ある。(a)の場合はマークとスペースの中間の周波数
が透過ピーク周波数と一致している場合であるが、図2
の(a)の場合と違いマーク強度が強いので、右側の透
過光の時間変化でもマークの強度が強くなる。(b)は
マークとスペースの中間の周波数が透過ピーク周波数よ
り若干高い場合である。この場合、透過するマークとス
ペースの光強度が等しくなるので、右側の時間変化の図
のように時間に対して透過光強度が変化しない。(c)
はマークとスペースの中間の周波数が透過ピーク周波数
に対してさらに高い場合である。この場合は透過する光
強度はスペースの方が強くなるので、右の時間変化のよ
うに原信号に対して逆相の変化をする。図2の場合と同
様に、透過光の一部を検出し、電気信号に変換した後、
原信号との相関を取ると、(a)の場合は相関が正、
(b)の場合は相関が0、(c)の場合は相関が負とな
る。よって、この誤差信号が0となるようにレーザの光
周波数を制御することにより、光素子の透過ピークと信
号光の相対的な位置関係は常に(b)の状態に安定化さ
れる。すなわち、光周波数が安定化されると共に、透過
光には残留強度変調成分が無くなった状態となる。
Similar to FIG. 2, the uppermost part on the left side shows the relationship between the optical frequency and the transmittance of the optical element whose transmitted light intensity changes depending on the optical frequency, and the lower side thereof shows the FSK signal light and the light. 3 shows three relative positional relationships (a), (b), and (c) with the transmission peak frequency of the device. Also,
The time change of the transmitted light intensity in each of (a), (b), and (c) is shown on the right side. In this example, the light intensity corresponding to the mark is stronger than the light intensity corresponding to the space. In the case of (a), the intermediate frequency between the mark and the space coincides with the transmission peak frequency.
Since the mark strength is strong unlike the case of (a), the strength of the mark becomes strong even if the transmitted light on the right side changes with time. (B) is a case where the intermediate frequency between the mark and the space is slightly higher than the transmission peak frequency. In this case, since the light intensity of the transmitted mark is equal to that of the space, the transmitted light intensity does not change with time as shown in the right side graph of time change. (C)
Is the case where the intermediate frequency between the mark and the space is higher than the transmission peak frequency. In this case, the intensity of the transmitted light becomes stronger in the space, and therefore changes in the opposite phase with respect to the original signal as in the time change on the right. As in the case of FIG. 2, after detecting a part of the transmitted light and converting it into an electric signal,
Taking the correlation with the original signal, the correlation is positive in the case of (a),
In the case of (b), the correlation is 0, and in the case of (c), the correlation is negative. Therefore, by controlling the optical frequency of the laser so that the error signal becomes zero, the relative positional relationship between the transmission peak of the optical element and the signal light is always stabilized in the state of (b). That is, the optical frequency is stabilized and the transmitted light has no residual intensity modulation component.

【0020】この例ではマークの光強度がスペースの光
強度より強い場合であったが、逆にスペースの光強度が
マークの光強度より強い場合でも同様に光周波数の安定
化、並びに光強度揺らぎの低減化は可能である。さら
に、光周波数軸上において、マークとスペースの位置関
係が逆転している場合(すなわちマークの光周波数がス
ペースの光周波数より低い場合)でも同様に光周波数の
安定化、光強度揺らぎの低減化が可能である。
In this example, the light intensity of the mark is stronger than the light intensity of the space. Conversely, even when the light intensity of the space is stronger than the light intensity of the mark, the optical frequency is similarly stabilized and the light intensity fluctuation is caused. Can be reduced. Furthermore, even when the positional relationship between the mark and the space is reversed on the optical frequency axis (that is, when the optical frequency of the mark is lower than the optical frequency of the space), the optical frequency is stabilized and the fluctuation of light intensity is reduced. Is possible.

【0021】図4は送信光源が複数個存在する光FSK
−FDM伝送システムに、本発明による光周波数安定化
方式を適用した場合の第2の実施例の構成図である。
FIG. 4 shows an optical FSK having a plurality of transmission light sources.
FIG. 7 is a configuration diagram of a second embodiment when the optical frequency stabilization system according to the present invention is applied to the FDM transmission system.

【0022】レーザ400、410、420はそれぞれ
異なる光周波数で発光しており、各々からのFSK信号
光は光合波器404で合波され、光周波数分割多重(光
FDM)信号となる。この光FDM信号は光分岐器40
6により2つに分岐され、大部分は光ファイバ407へ
送られ、受信器408で受信される。
The lasers 400, 410, 420 emit light at different optical frequencies, and the FSK signal lights from the respective lasers are combined by the optical multiplexer 404 to become an optical frequency division multiplexed (optical FDM) signal. This optical FDM signal is sent to the optical splitter 40.
It is branched into two by 6 and most of them are sent to the optical fiber 407 and received by the receiver 408.

【0023】一方、光FDM信号の一部は光検出器40
5へ送られ、電気信号に変換される。この電気信号は3
つの誤差信号生成器402、412、422へと分配さ
れる。レーザ400、410、420の光周波数を各々
のバイアス電流や温度を調整することで光合波器404
のそれぞれ異なる透過光強度が最大となる光周波数へと
概ね一致させておく。これにより、光検出器405が出
力する電気信号の中に3台のレーザそれぞれの光周波数
変動の情報、光強度揺らぎの情報が含まれる。各誤差信
号生成器402、412,422ではこの電気信号とそ
れぞれのレーザに対応する原信号401、411、42
1との相関を取ることにより、各レーザに対応する周波
数変動情報、光強度揺らぎ情報を分離し、かつ、各誤差
信号403、413、423を生成する。この誤差信号
403、413、423を用いて各レーザ400、41
0、420の光周波数を制御する事により、各レーザの
光周波数の安定化、光強度揺らぎの低減化が可能とな
る。
On the other hand, a part of the optical FDM signal is detected by the photodetector 40.
5, and converted into an electric signal. This electrical signal is 3
It is distributed to two error signal generators 402, 412, 422. The optical frequency of the lasers 400, 410, 420 is adjusted by adjusting the bias current and the temperature of each of the optical multiplexers 404.
The respective transmitted light intensities are substantially matched to the optical frequency at which the transmitted light intensity becomes maximum. As a result, the electric signal output from the photodetector 405 includes the information on the optical frequency fluctuation of each of the three lasers and the information on the light intensity fluctuation. In each error signal generator 402, 412, 422, this electrical signal and the original signal 401, 411, 42 corresponding to each laser
By taking the correlation with 1, the frequency fluctuation information and the light intensity fluctuation information corresponding to each laser are separated, and each error signal 403, 413, 423 is generated. Using the error signals 403, 413, 423, the lasers 400, 41
By controlling the optical frequencies of 0 and 420, it is possible to stabilize the optical frequency of each laser and reduce the fluctuation of the light intensity.

【0024】図4では送信光源としてのレーザが3台の
場合を示しているが、さらに多くのレーザがある場合で
も本発明は同様に適用できる。
Although FIG. 4 shows the case where three lasers are used as the transmission light source, the present invention can be similarly applied even when there are more lasers.

【0025】光合波器404としては、マッハツェンダ
型干渉計を多段に接続したマッハツェンダ型光合波器
や、アレイ導波路型光合波器等、を用いることが可能で
ある。
As the optical multiplexer 404, a Mach-Zehnder type optical multiplexer in which Mach-Zehnder type interferometers are connected in multiple stages, an arrayed waveguide type optical multiplexer, or the like can be used.

【0026】[0026]

【発明の効果】本発明によれば、光FSK通信方式にお
いて伝送中の品質劣化につながる光強度揺らぎ、すなわ
ち残留強度変調成分を低減できるので、伝送品質が向上
する。また、伝送品質が劣化する割合は残留強度変調成
分の大きさにのみ依存するので、信号光全体の光強度に
占める残留強度変調成分が低減するという事は光ファイ
バに入力できる信号光強度を増大できるという事でもあ
る。よって伝送距離が拡大するという利点も有する。こ
れはまた光中継器を用いた長距離伝送システムにおい
て、中継間隔の拡大という事でもあるので、使用する光
中継器の個数が減少し、システム全体のコスト減、保守
性の容易さという利点も生ずる。
As described above, according to the present invention, it is possible to reduce the fluctuation of the light intensity, that is, the residual intensity modulation component that leads to the deterioration of the quality during transmission in the optical FSK communication system, so that the transmission quality is improved. In addition, since the rate of deterioration of transmission quality depends only on the magnitude of the residual intensity modulation component, the reduction of the residual intensity modulation component in the overall optical intensity of the signal light means that the signal light intensity that can be input to the optical fiber is increased. It also means that you can. Therefore, there is also an advantage that the transmission distance is extended. This also means that in a long-distance transmission system using optical repeaters, the repeater interval is expanded, so the number of optical repeaters to be used is reduced, the cost of the entire system is reduced, and the maintainability is also easy. Occurs.

【0027】さらに本発明を光FSK−FDM通信シス
テムに適用すると、送信器の信号光を合波する光合波器
の透過光、又は反射光のピーク付近に各送信器の光周波
数を安定化できるので、信号光を低損失で、かつ安定に
光ファイバへ送り出せるという利点も有する。
Further, when the present invention is applied to the optical FSK-FDM communication system, the optical frequency of each transmitter can be stabilized near the peak of the transmitted light or the reflected light of the optical multiplexer for multiplexing the signal light of the transmitter. Therefore, there is also an advantage that the signal light can be stably sent to the optical fiber with low loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による周波数安定化方式を光FSK通信
システムへ適用した場合の一実施例の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of an embodiment when a frequency stabilization system according to the present invention is applied to an optical FSK communication system.

【図2】本発明により、FSK信号光の光周波数が安定
化される様子を説明する図である。
FIG. 2 is a diagram for explaining how the optical frequency of the FSK signal light is stabilized by the present invention.

【図3】本発明により、残留強度変調成分を有するFS
K信号光の光周波数が安定化され、同時に残留強度変調
成分が低減化される様子を説明する図である。
FIG. 3 is a diagram showing an FS having a residual intensity modulation component according to the present invention.
It is a figure explaining a mode that the optical frequency of K signal light is stabilized and a residual intensity modulation component is reduced at the same time.

【図4】本発明による周波数安定化方式を光FSK−F
DM通信システムへ適用した場合の一実施例の構成を示
す図である。
FIG. 4 shows an optical FSK-F based frequency stabilization system according to the present invention.
It is a figure which shows the structure of one Example at the time of applying to a DM communication system.

【符号の説明】[Explanation of symbols]

100,400,410,420…送信光源、レーザ、101,401,411,421
…光FSK変調原信号、102,402,412,422…誤差信号生
成器、103,403,413,423…誤差信号、104,404…光素子、
又は合波器、105,405…光検出器、106,406…光分岐器、
107,407…光ファイバ、108,408…受信器。
100,400,410,420… Transmission light source, laser, 101,401,411,421
... optical FSK modulated original signal, 102,402,412,422 ... error signal generator, 103,403,413,423 ... error signal, 104,404 ... optical element,
Or multiplexer, 105,405 ... Photodetector, 106,406 ... Optical brancher,
107,407 ... optical fiber, 108,408 ... receiver.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】光周波数シフトキーイング変調(光FS
K)方式を用いた光通信システムにおいて、 光周波数に応じてその透過光強度、又は反射光強度が変
化する光素子に、送信信号となるFSK信号光を透過、
又は反射させる手段と、 前記透過光、又は反射光を伝送路へ送りこむ手段と、 前記透過光、又は反射光の一部を検出し電気信号に変換
する光検出手段と、 該光検出手段によって得られた電気信号から前記FSK
信号光の光周波数変動の情報、並びに前記FSK信号光
の光強度揺らぎの情報を含んだ誤差信号を生成するため
に、該電気信号と光源を光FSK変調する原信号との相
関を取る手段と、前記電気信号と前記原信号との相関関
係から得られた前記誤差信号を用いて前記光源の光周波
数を調整することにより、前記FSK信号光の光周波数
値と前記光素子の透過光強度、又は反射光強度が最大と
なる光周波数値との相対的な位置関係を調整する手段と
を備え、 前記調整手段により、前記FSK信号光の光周波数を前
記光素子の透過光強度、又は反射光強度が最大となる光
周波数近傍に安定化することを特徴とする光周波数安定
化方式。
1. Optical frequency shift keying modulation (optical FS
In the optical communication system using the K) method, the FSK signal light as a transmission signal is transmitted to an optical element whose transmitted light intensity or reflected light intensity changes according to the optical frequency,
Or means for reflecting, a means for sending the transmitted light or the reflected light to a transmission line, a light detecting means for detecting a part of the transmitted light or the reflected light and converting it into an electric signal, and the light detecting means. The FSK is calculated from the received electric signal.
A means for correlating the electric signal with an original signal for optical FSK-modulating the light source, in order to generate an error signal containing information on the optical frequency fluctuation of the signal light and information on the light intensity fluctuation of the FSK signal light; Adjusting the optical frequency of the light source using the error signal obtained from the correlation between the electric signal and the original signal to obtain the optical frequency value of the FSK signal light and the transmitted light intensity of the optical element, Or a means for adjusting the relative positional relationship with the optical frequency value that maximizes the reflected light intensity, and the adjusting means adjusts the optical frequency of the FSK signal light to the transmitted light intensity of the optical element or the reflected light. Optical frequency stabilization method characterized by stabilizing near the optical frequency where the intensity is maximum.
【請求項2】光周波数シフトキーイング変調(光FS
K)方式を用いた光通信システムにおいて、 光周波数に応じてその透過光強度、又は反射光強度が変
化する光素子に、送信信号となるFSK信号光を透過、
又は反射させる手段と、 前記透過光、又は反射光を伝送路へ送りこむ手段と、 前記透過光、又は反射光の一部を検出し電気信号に変換
する光検出手段と、 該光検出手段によって得られた電気信号から前記FSK
信号光の光周波数変動の情報、並びに前記FSK信号光
の光強度揺らぎの情報を含んだ誤差信号を生成するため
に、該電気信号と光源を光FSK変調する原信号との相
関を取る手段と、前記電気信号と前記原信号との相関関
係から得られた前記誤差信号を用いて前記光素子の透過
光強度、又は反射光強度が最大となる光周波数を調整す
ることにより、前記FSK信号光の光周波数値と前記光
素子の透過光強度、又は反射光強度が最大となる光周波
数値との相対的な位置関係を調整する手段とを備え、 前記調整手段により、前記FSK信号光の光周波数を前
記光素子の透過光強度、又は反射光強度が最大となる光
周波数近傍に安定化することを特徴とする光周波数安定
化方式。
2. Optical frequency shift keying modulation (optical FS
In the optical communication system using the K) method, the FSK signal light as a transmission signal is transmitted to an optical element whose transmitted light intensity or reflected light intensity changes according to the optical frequency,
Or means for reflecting, a means for sending the transmitted light or the reflected light to a transmission line, a light detecting means for detecting a part of the transmitted light or the reflected light and converting it into an electric signal, and the light detecting means. The FSK is calculated from the received electric signal.
A means for correlating the electric signal with an original signal for optical FSK-modulating the light source, in order to generate an error signal containing information on the optical frequency fluctuation of the signal light and information on the light intensity fluctuation of the FSK signal light; The FSK signal light is adjusted by adjusting the optical frequency at which the transmitted light intensity or the reflected light intensity of the optical element is maximized by using the error signal obtained from the correlation between the electric signal and the original signal. Means for adjusting the relative positional relationship between the optical frequency value of the optical element and the optical frequency value at which the transmitted light intensity or the reflected light intensity of the optical element is maximum, and the adjusting means controls the light of the FSK signal light. An optical frequency stabilization system, characterized in that the frequency is stabilized in the vicinity of an optical frequency where the transmitted light intensity or the reflected light intensity of the optical element is maximized.
【請求項3】請求項1又は2記載の光周波数安定化方式
において、複数の上記光源の光周波数変動を1台又はそ
れ以上の上記光素子で共通に制御するために、光周波数
に応じて透過光強度、又は反射光強度が周期的に変化す
る光素子を用いることを特徴とする光周波数安定化方
式。
3. The optical frequency stabilization system according to claim 1 or 2, wherein the optical frequency fluctuations of the plurality of light sources are commonly controlled by one or more optical elements, so that the optical frequency variation is controlled according to the optical frequency. An optical frequency stabilizing method using an optical element in which transmitted light intensity or reflected light intensity changes periodically.
【請求項4】請求項1、2又は3記載の光周波数安定化
方式を光FSKかつ光周波数分割多重(光FDM)伝送
方式に適用することを特徴とする光周波数安定化方式。
4. An optical frequency stabilization system, wherein the optical frequency stabilization system according to claim 1, 2 or 3 is applied to an optical FSK and optical frequency division multiplexing (optical FDM) transmission system.
【請求項5】請求項3又は4記載の光周波数安定化方式
において、上記光素子として光合波器を用いることを特
徴とする光周波数安定化方式。
5. The optical frequency stabilizing system according to claim 3, wherein an optical multiplexer is used as the optical element.
【請求項6】請求項5記載の光周波数安定化方式におい
て、上記光合波器としてマッハツェンダー型光合波器を
用いることを特徴とする光周波数安定化方式。
6. The optical frequency stabilizing system according to claim 5, wherein a Mach-Zehnder type optical multiplexer is used as the optical multiplexer.
【請求項7】請求項5記載の光周波数安定化方式におい
て、上記光合波器としてアレイ導波路型光合波器を用い
ることを特徴とする光周波数安定化方式。
7. The optical frequency stabilizing system according to claim 5, wherein an arrayed waveguide type optical multiplexer is used as the optical multiplexer.
JP5004682A 1993-01-14 1993-01-14 Optical frequency stabilizing system Pending JPH06216853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5004682A JPH06216853A (en) 1993-01-14 1993-01-14 Optical frequency stabilizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5004682A JPH06216853A (en) 1993-01-14 1993-01-14 Optical frequency stabilizing system

Publications (1)

Publication Number Publication Date
JPH06216853A true JPH06216853A (en) 1994-08-05

Family

ID=11590668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5004682A Pending JPH06216853A (en) 1993-01-14 1993-01-14 Optical frequency stabilizing system

Country Status (1)

Country Link
JP (1) JPH06216853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094897A (en) * 2007-10-10 2009-04-30 Sumitomo Electric Ind Ltd Optical transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094897A (en) * 2007-10-10 2009-04-30 Sumitomo Electric Ind Ltd Optical transmitter

Similar Documents

Publication Publication Date Title
US6421151B1 (en) Method and arrangement for stabilizing wavelength of multi-channel optical transmission systems
US8073342B2 (en) Method and apparatus for transmitting optical signals
US6594070B2 (en) Optical communication system, optical receiver and wavelength converter
US7937000B2 (en) Optical receiver and optical transceiver using the same
US6198757B1 (en) Control system for wavelength stabilization of a laser source
US20030210914A1 (en) Optical modulating device, optical transmitting apparatus using the same, method of controlling optical modulating device, and control program recording medium
US7155071B2 (en) Device for Mach-Zehnder modulator bias control for duobinary optical transmission and associated system and method
US6424774B1 (en) Tunable wavelength four light wave mixer
US6990296B2 (en) Optical phase modulation
EP1376902B1 (en) Optical vestigial sideband transmitter/receiver
US5949925A (en) Method, device, and system for optical modulation in wavelength division multiplexing
JP3487217B2 (en) Optical transmitter and optical transmission device using the same
JP3447664B2 (en) Optical transmitter and optical transmitter control method
JPH06216853A (en) Optical frequency stabilizing system
US7016614B1 (en) Optical wavelength division multiplexing transmission suppressing four-wave mixing and SPM-GVD effects
JP3368935B2 (en) Optical transmission equipment
JP3238061B2 (en) Optical pulse modulator
JP3472151B2 (en) Optical 2R circuit
JP2001298416A (en) Optical amplifier system
US20080159754A1 (en) Modulation Light Signal Generating Device and Fsk Modulation Signal Generating Device
JP4008793B2 (en) Optical modulator driving device and optical transmission device using the same
CN118214484A (en) Underwater high-precision frequency transmission system based on frequency multiplication blue-green laser
KR101012853B1 (en) System and method for fire transfering
KR100460492B1 (en) Apparatus and method for optical wavelength locking in optical wavelength division multiple transmission equipment
JP3023737B2 (en) Optical frequency discriminating apparatus and optical frequency control apparatus using the same